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Abstract

Background: The bran from polished rice grains can be used to produce rice bran oil (RBO). High oleic (HO) RBO
has been generated previously through RNAi down-regulation of OsFAD2-1. HO-RBO has higher oxidative stability
and could be directly used in the food industry without hydrogenation, and is hence free of trans fatty acids.
However, relative to a classic oilseed, lipid metabolism in the rice grain is poorly studied and the genetic alteration

in the novel HO genotype remains unexplored.

Results: Here, we have undertaken further analysis of role of OsFAD2-1 in the developing rice grain. The use of
llumina-based NGS transcriptomics analysis of developing rice grain reveals that knockdown of Os-FAD2-1 gene
expression was accompanied by the down regulation of the expression of a number of key genes in the lipid
biosynthesis pathway in the HO rice line. A slightly higher level of oil accumulation was also observed in the HO-RBO.

Conclusion: Prominent among the down regulated genes were those that coded for FatA, LACS, SAD2, SADS5, caleosin
and steroleosin. It may be possible to further increase the oleic acid content in rice oil by altering the expression of the

lipid biosynthetic genes that are affected in the HO line.
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Background

Rice is one of the most important crops for mankind as it
provides nearly half of the world’s population a source of
dietary energy [1]. Apart from starch, rice grains contain a
small proportion of lipids (1-4 % of the grain) located
mostly in the bran. Rice bran oil (RBO) is extracted from
rice bran as a by-product of milling and is commercially
available as a food grade vegetable oil [2, 3]. Triacylglycer-
ols (TAGs) make up about 85 % of the total lipids in RBO,
followed by phospholipids (~6.5 %) and free fatty acids
(~4.5 %) [4]. RBO is also rich in compounds such as
oryzanol and tocotrienes having antioxidant and
cholesterol-reducing activities [5-8]. TAGs inRBO are
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composed of three main fatty acids: palmitic acid, oleic
acid and linoleic acid. The relative content of palmitic
(15-20 %), oleic (36—48 %) and linoleic acids (30—-38 %)
depends on the cultivar and environment [9, 10].

Linoleic acid can undergo non-enzymatic oxidation
because of the presence of the two reactive double
bonds in the molecule [11, 12] which reduces the
shelf-life of RBO and leads to wastage of 60-70 % of
RBO [6, 13]. Therefore, partial hydrogenation has
often been used to enhance the oxidative stability of
RBO, resulting in nutritionally undesirable trans fatty
acids as a by-product. Tranms fatty acids have been
found to increase the risk of cardiovascular diseases
and have been prohibited in foods in an increasing
number of countries in the world [14-17]. On the
other hand, oleic acid is both oxidatively stable and
nutritionally desirable, hence favored for direct food
applications without partial hydrogenation.
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The microsomal enzyme Al2 fatty acid desaturase
(FAD2) converts oleic acid into linoleic acid while
associated with phosphatidylcholine in the endoplasmic
reticulum (ER). A total of 18 desaturase genes have been
annotated in rice genome, among which are the four
FAD?2 genes investigated by Zaplin et al. [18]. These were
termed OsFAD2-1, -2, -3 and —4. Among these four
genes, the expression of OsFAD2—1 was reduced by RNA
interference (RNAi) suppression which resulted in an
increase in the proportion of oleic acid and a reduction of
the proportions of linoleic and palmitic acids in T3 grains.
Our previous results suggested that the OsFAD2-Igene
was an effective target for raising oleic acid levels at the
expense of the oxidatively unstable linoleic acid and the
cholesterol-raising palmitic acid [18].

Most reports of genetic modification and characterisa-
tion of oil accumulation in plants have so far been carried
out in Arabidopsis and classic dicot oilseed crops and fo-
cused mainly on trait development [19-24]. We have
therefore decided to investigate further the role of the
OsFAD2-1 gene in the rice grain. The comparative analysis
of lipid fractions in wild type (WT) and HO-RBO was car-
ried out. We also describe the use of Illumina-based NGS
transcriptomic analysis on the same selected HO rice line
to study the effect of RNAi down-regulation of OsFAD2-1
on the grain transcriptome, especially on other genes that
are involved in lipid biosynthesis and turnover. Prelimin-
ary qPCR experiments confirmed the transcriptomic
results for some of the selected genes. In this paper we
also show that the down-regulation of OsFAD2-Iwith a
seed-specific promoter to produce HO rice line was not
associated with compromised oil accumulation in the
grain, but rather a modest increase.
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Results and discussion

Analysis of lipid composition in rice grains from HO rice
line and its null segregant

Total lipids were analysed from the HO rice grains.
These grains were from the homozygous transgenic line
containing the OsFAD2-1 RNAI construct that was used
for transcriptomics analysis. The total lipids in the HO
rice grain were composed of 55.0 % oleic acid, 19.8 %
linoleic acid and 16.8 % palmitic acid, whereas the grains
from a null segregant (a sister line derived from the same
original transformation event that does not contain the
OsFAD2-1 RNAi construct) comprised 32.3 % oleic acid,
40.7 % linoleic acid and 18.6 % palmitic acid (Table 1).
The oleic acid content from HO rice line was significantly
higher than that from its null segregant (p < 0.05). Similar
changes were also observed in TAG and phosphatidylcho-
line (PC) pools, however, there were somewhat different
fatty acid compositional profiles for polar lipids, such as
the phosphatidylethanolamine (PE) and phosphatidylcho-
line (PC) pools. The overall results are in broad agreement
with the results from Zaplin et al. [18] from an earlier
generation of this material (Additional file 1).

Grains from OsFAD2-1 RNAi line contained higher
levels of total lipids (2.9 % by dry weight) compared to
2.6 % in its null segregant (p < 0.05), which was reflected
by the significant increases in both TAG and polar lipids.

Transcriptome analysis of rice immature endosperms
from HO rice line and its null segregant

RNAseq reads from three developmental stages of
endosperm of both the HO rice line and its null segregant
were mapped against the reference rice genome (cultivar
Nipponbare) [25] to generate the mapped contigs as

Table 1 Fatty acid composition of rice grains of OsFAD2-1 RNAJ line and its null segregant line

Total lipids Triacylglycerols Polar lipid pool Free fatty acids PC PE

Control Fad2 Control Fad2 Control Fad2 Control Fad2 Control  Fad2  Control  Fad2
Cl4:0 06+00 03+£00 0500 0300 25%0.1 1.2+0.1 16+00 09+0.1 1.1 0.6 1.6 12
cle:0 186+02 168+04 184+01 163+03 267+10 252+08 18706 222+06 210 178 258 24.1
cle:1 03+00 03+£00 03+00 03+00 02+00 03+00 02+00 03+00 03 03 03 03
Cl8.0 24+00 26+0.1 24+0.1 26+0.1 1.8+0.1 21+£0.1 30+£0.1 38+02 15 14 2.2 19
08.1 323+£04 550+07 338+£03 562+07 241+10 439+14 118+03  454+09 388 554 254 418
c18ld11 1.0+£00 1.1£00 10+00 1.1£00 1100 12+00 0.6+ 00 08+00 14 14 13 13
Clg.2 40.7+04 198+07 402+£05 198+06 366+04 200+ 06 589+06 214+£13 332 204 403 26.2
Cl8:3n3 1.7+0.1 1.5+01 1.7+£0.1 14+0.1 15+02 1.5+01 2500 24+02 14 1.2 13 1.1
C20:0 0.7+£00 08+00 0.7£00 08+00 03+00 03+00 03+00 04+00 02 0.2 02 03
C20:1d11 0400 06 0.0 04+00 06+00 0.1+£00 02+00 0.1£0.1 02+00 0.2 0.2 0.1 02
€220 04£00 04+00 02+00 02+£00 13%01 1.1+0.1 05+00 05+00 03 03 04 04
C24:0 08+00 08+00 04+00 04+00 3703 32+03 19+£0.1 1.8+02 0.7 0.7 12 13
% oil/wt  26+0.1 29+0.1 1.8+0.1 21+£0.1 021£001 023£000 007+£000 008+001 0.06 0.08 002 0.02

Control: represents grains from null segregant; Fad2: represents grains from OsFAD2-1RNAi line; numbers represent mean + SE in percentage (%); Mean Values are
from three repeat analyses of lipid samples which were extracted separately from three independent grain samples
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summarised in Table 2. In total, 1.5-9 million of contigs
per sample were assembled which included approximately
80-94 % counted contigs for use in further analysis, and
6-20 % un-counted contigs, defined as the total number
of fragments after sequencing which could not be
mapped, either as intact or as broken pairs. Among
the counted contigs, 75-86 % were unique, and 3-
10%were non-specific contigs, defined as the reads
which have multiple equally good alignments to the
reference and therefore have to be excluded from the
RNA-seq analysis.
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The genes analysed could be grouped broadly into four
categories: genes known to be involved in fatty acid
biosynthesis and degradation, genes involved in TAG me-
tabolism, transcriptional factors and other genes found to
be affected (Additional file 2 and Additional file 3). A total
of 55,801 different gene transcripts were detected in the
overall analyses out of which 1,617 (2.9 %) genes at 10 days
after anthesis (DAA), 1,175 (2.1 %) genes at 15 DAA and
626 (1.12 %) genes at 20 DAA showed significant differ-
ences in expression between the null segregant and the
HO rice line.

Table 2 Mapped contig results of RNA-Seq reads from null segregant (NG) and OsFAD2-TRNAI rice lines at three grain

developmental stages

Contigs Null segregant Os-FAD2-1 RNAi
Sample1 Sample 2 Sample 3 Sample 1 Sample 2 Sample 3
10 DAA
Counted contigs 1,474,350 2,451,049 912,841 2,305,750 7,974,195 3,179,294
Unique contigs 1,403,705 2,334,799 858,280 2,090,665 7,406,550 3,050,886
Non-S contigs 70,645 116,250 54,561 215,085 567,645 128,408
Un-C contigs 380,469 691,998 678,922 221,969 1,119,121 590,977
Total contigs 1,854,819 3,143,047 1,591,763 2,527,719 9,093,316 3,770,271
Counted contigs (%) 79.49 77.98 57.35 91.22 87.69 84.33
Unique contigs (%) 75.68 74.28 53.92 82.71 8145 80.92
Non-S contigs (%) 3.81 3.70 343 851 6.24 341
Un-C contigs (%) 20.51 22.02 42.65 878 12.31 15.67
15 DAA
Counted contigs 1,721,045 4,038,637 6,507,485 1,260,698 4,102,787 5,184,375
Unique contigs 1,580,034 3,759,033 5,944,747 1,211,621 3,877,771 4,889,384
Non-S contigs 141,011 279,604 562,738 49,077 225,016 294,991
Un-C contigs 210,716 347,568 496,403 385,014 1,123,069 436,145
Total contigs 1,931,761 4,386,205 7,003,888 1,646,312 5,225,856 5,620,520
Counted contigs (%) 89.09 92.08 9291 76.58 7851 92.24
Unique contigs (%) 81.79 85.70 84.88 73.60 74.20 86.99
Non-S contigs (%) 7.30 6.37 8.03 298 431 525
Un-C contigs (%) 1091 792 7.09 2342 2149 7.76
20 DAA
Counted contigs 2,945,375 1,943,916 1,348,074 3,914,475 791,645 3,627,328
Unique contigs 2,797,599 1,778,024 1,212,290 3,446,816 734,727 3,386,969
Non-S contigs 147,776 165,892 135,784 467,659 56,918 240,359
Un-C contigs 447,772 250,284 168,761 441,185 464,829 492,027
Total contigs 3,393,097 2,194,200 1,516,835 4,355,660 1,256,474 4,119,355
Counted contigs (%) 89.09 88.59 8887 89.87 63.01 88.06
Unique contigs (%) 86.80 81.03 79.92 79.13 5848 82.22
Non-S contigs (%) 8245 7.56 8.95 10.74 453 583
Un-C contigs (%) 436 1141 11.13 1013 36.99 11.94

Non-S contigs- Non-specific contigs; Un C contigs-Un-counted contigs
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Expression of genes involved in fatty acid biosynthesis
and degradation

De novo fatty acid biosynthesis occurs primarily in
plastids, although it also occurs in the mitochondrion to a
much lesser extent [26, 27]. The first addition of a malonyl
group to an acetyl group is catalysed by KASIIL, while the
subsequent acyl chain elongation up to C16 and the final
two-carbon extension to form C18 fatty acid while associ-
ated with acyl carrier protein (ACP) are catalysed by KASI
and KASII, respectively (Additional file 4: Table S1).
None of the putative transcripts for KAS genes were
affected by the RNAi down-regulation of OsFAD2-1
gene (LOC_0s02g48560) (Additional file 5).

Termination of fatty acid elongation in plastids is
catalysed by acyl-ACP thioesterase enzymes (Fat), 25 uni-
genes of which have been annotated in the Rice Genome
project [25]. Among them FatA and FatB are represented
by LOC_0s09g32760 and LOC_Os06g05130, respectively.
FatA preferentially catalyses the cleavage of the thioester
bond of oleyl-ACP, and is also regarded as one of the key
enzymes responsible for oleic acid concentration in oil
and FatB has substrate preference forC16 - C18 saturated
fatty acids [28]. Expression of FatA was found significantly
reduced at 15 DAA by -1.62 fold (p = 0.04) equivalent to
-0.91 log 2 fold (Table 3). This is in contrast to the tran-
script abundance of FatB that was not affected in the
RNAIi-OsFAD2-1line, compared to the null segregant
control, in all three developmental stages analysed (Fig. 1a).
Significant differences in the expression levels of FatA and
FatB were not observed at 10 and 20 DAA.

The first desaturation step of a saturated fatty acid
occurs in the plastids, catalysed by stearoyl-ACP desaturase
(SAD). SAD is a soluble plastidial enzyme that introduces
the first double bond into stearic acid and to a lesser extent
palmitic acid to form oleic acid and palmitoleic acid,
respectively. LOC_Os01g69080annotated as SAD2gene
was highly expressed in rice grains at 10 DAA. In compari-
son to the null segregant, the expression level of SAD2 was
reduced by —1.6 and —1.35 fold in the HO rice grains at 15
DAA (p=0.02) and 20 DAA (p =0.01) respectively, while
no significant difference was observed at 10 DAA (Table 3,
Fig. 1a). SAD5 (LOC_Os04g31070) expression was also
found to be down regulated at 15 DAA by -1.88 fold
(p=2.17E-4) and -1.12 log2 fold change (Table 3,
Fig. 1a). No significant change in expression was found in
other unigenes annotated for encoding SAD in the HO
line compared to null segregant (Additional file 2).

The nucleotide sequence alignment match between
either of SAD2 or SAD5 and OsFAD2-1 is generally low
and stretches of 20 nucleotide DNA sequences with
significant identity were not found. It is therefore un-
likely that the decrease in expression level of SAD genes
in HO line was due to cross silencing. As SAD is an
upstream fatty acid desaturase of FAD2, it is tempting to
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assume that the reduction in the expression of OsFAD2-1
leading to the build-up of oleic acid may have a feedback
effect that leads to the down regulation of SAD expression
which is responsible for oleic acid production.

Oleic acid could be further modified by FAD2 in endo-
plasmic reticulum (ER) through the eukaryotic pathway
or by FAD6 in plastids via the prokaryotic pathway. In
the previous study [18], four genes in the rice genome
were putatively identified as FAD2 that are present in
the eukaryotic pathway, LOC_Os02g48560 (OsFAD2-1),
LOC_0s07g23430 (OsFAD2-2), LOC_0Os07g23410 (Os
FAD2-3) and LOC_0Os07g23390 (OsFAD2-4). Transcrip-
tome analysis showed that the expression patterns of all
the four OsFAD2 genes were consistent with the previ-
ous data of Zaplin et al. [18] and the analysis of publicly
available transcriptome data (Additional file 6: Table S2).
The analysis of transcriptome data described in this
paper showed that, only OsFAD2-1 transcripts were
found in all three grain developmental stages (10, 15 and
20 DAA) (Table 4). The highest expression level of
OsFAD2-1 was found in the early developmental stage in
the null segregant line and it declined as the grains de-
veloped. Such a finding is consistent with Wang et al.
[29] who found that in sesame most of the genes related
to lipid biosynthesis were highly expressed at early stage
of seed development, which is at 10 DAA. This may sug-
gest that the biosynthesis of polyunsaturated fatty acids is
initiated at a rather early stage of grain development. Such
a factor needs to be considered for the choice of promoter
that drives the hairpin expression cassette of the OsFAD2-
1 sequence in RNAIi construct. The HO rice line was gen-
erated by using a storage protein promoter, Bx17, which
becomes most active from the mid-stage of endosperm
development onwards [18]. It is tempting to assume that
further enhancement of oleic acid accumulation above
that observed in the current transgenic lines is possible
when an alternative grain- or bran- specific promoter that
is active from early grain development is employed.

The expression of OsFAD2-1 in the HO rice lines was
significantly down regulated in all the three developmen-
tal stages examined, with the most marked reduction by
-2.05 fold (p=9.15E-6) and -1.22 log2 fold at 15 DAA
(Table 3, Fig. la). This is anticipated because OsFAD2-
Iwas specifically targeted by RNAi mediated gene si-
lencing. However, the down-regulation of OsFAD2-1
expression did not result in detectable level of alteration
in the already very low expression of OsFAD2-2, -3, -4
genes at 10, 15 and 20 DAA stages.

Effect on long chain fatty acyl-CoA synthetases (LACS) genes
Long chain fatty acyl-CoA synthetases (LACS) are
known to be involved in the breakdown of complex fatty
acids. Among a total of five annotated LACS unigenes in
rice, LOC_Os05g25310 was found to be significantly



Tiwari et al. BMC Plant Biology (2016) 16:189

Page 5 of 13

Table 3 Differential expression of genes in the metabolism of Fatty acid and TAG biosynthesis

Feature ID Gene abbreviation DAA Weighted proportions P-value RNAI/WT mean RNAI/WT mean log2
fold change fold change fold change
LOC_0s09g32760 FATA 10 -1 0.54 093 -0.1
LOC_0s09g32760 FATA 15 -1.62 *0.04 0.53 -0.91
LOC_0s09g32760 FATA 20 -1.28 0.22 0.80 -0.32
LOC_0s01g69080 SAD2 10 -1.04 0.76 0.98 -003
LOC_0Os01g69080 SAD2 15 -1.57 *0.02 0.55 -0.85
LOC_0Os01g69080 SAD2 20 -135 *0.01 0.75 -041
LOC_0s04g31070 SAD5 10 -1.31 02 0.78 -037
LOC_0s04g31070 SADS5 15 -1.88 *217E-4 046 -1.12
LOC_0s04g31070 SAD5 20 -1.01 0.92 1.01 0.01
LOC_0s05g25310 LACS 10 -13 0.13 0.78 -036
LOC_0s05g25310 LACS 15 —-145 *0.04 059 -0.76
LOC_0s05g25310 LACS 20 =137 0.23 0.74 -043
LOC_0s01g70090 ECH1 10 -1 0.56 091 -0.13
LOC_0s01g70090 ECH1 15 -1.64 0.03 053 -093
LOC_0Os01g70090 ECH1 20 1.06 0.79 1.1 0.15
LOC_0s02g48560 FAD2 10 A *2.02E-3 0.48 -1.05
LOC_0s02g48560 FAD2 15 -2.05 *9.15E-6 043 =122
LOC_0s02g48560 FAD2 20 =177 *0.04 0.59 -0.75
LOC_0s06g22080 DGAT2 10 -1.31 045 0.76 -039
LOC_0s06g22080 DGAT2 15 =171 *7.73E-3 0.51 -0.98
LOC_0s06g22080 DGAT2 20 -1.16 0.28 0.89 -0.17
LOC_0s02g50174 Caleosin 10 1.52 0.27 1.56 0.64
LOC_0s02g50174 Caleosin 15 -133 *0.04 0.65 -0.63
LOC_0s02g50174 Caleosin 20 -197 *5.02E-3 0.51 -0.97
LOC_0s03g12230 Caleosin 10 -1.14 042 0.88 -0.18
LOC_0s03g12230 Caleosin 15 -1.58 *6.60E-3 055 -0.86
LOC_0s03g12230 Caleosin 20 =127 0.5 0.81 -0.31
LOC_0s04g32080 STEROLEOSIN 10 -136 042 0.73 —-045
LOC_0s04g32080 STEROLEOSIN 15 -136 *0.03 0.64 —-065
LOC_0s06g22080 STEROLEOSIN 20 -1.16 0.28 0.89 -0.17
LOC_0s02g49410 LEC 10 -1.23 042 0.81 -0.30
LOC_0s02g49410 LECT 15 -1.66 *391E-3 053 -092
LOC_0s02g49410 LECT 20 -1.44 0.12 0.71 -0.49

*represents significant p-values

down regulated by -1.45 fold (p=0.04) and -0.76 log2
fold in the HO line at 15 DAA (Table 3, Fig. 1la)
compared to the null segregant. Such reduction of
LOC_0s05g25310 was also verified by real time quanti-
tative reverse transcriptase polymerase chain reaction
(qRT-PCR) (Fig. 2) indicating the significant reduction
of the expression at 15 DAA developmental stage. The
significance of such a down-regulation remains unclear.
There was no significant change in the expression of
LOC_0s05g25310 at 10 and 20 DAA. Expression of
LOC_0s05g25310 was the highest at 10 DAA with a

gradual decrease as the

progressed.

rice grain development

Effects on TAG assembly

As the major storage lipid in oilseeds, TAG is utilized to
fuel seed germination and early seedling establishment
prior to autotrophy by photosynthesis [30, 31]. Given
the potential importance of the HO trait in rice bran oil,
it is pivotal to understand whether and how the TAG
biosynthesis, turnover and catabolism are impacted upon
in the HO grains.
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Fig. 1 Differential transcript expression of genes involved in rice (a) fatty acid biosynthesis and (b) lipid metabolism between the null segregates
and OsFAD2-1 RNAI lines. Developing stages of immature endosperm and gene types are indicated above each figure, the values on the y-axis
represent RPKM, and gene locus and their names are labelled underneath. Data analysed using CLC-Bio Genomic Workbench. Baggerley's test
was conducted for analysing genes between the null segregates (WT or NG) and OsFAD2-1 RNAi (RNAI) lines. The letter a: indicates significant

acyltransferase, LECT: Leafycotyledon1

results at p value <0.01, the letter b: indicates significant results at 0.01 = p value < 0.05. FAT: Acyl-ACP thioesterase A, SAD: stearoyl-ACP
desaturases, LACS: Long-chain acyl-CoA synthetase, ECH1: enoyl-CoA hydratase 1, FAD: fatty acid desaturases, DGAT:acyl-CoA:DAG

TAG biosynthesis starts with glycerol-3-phosphate
(G3P). Apart from glycolysis, G3P could also be pro-
duced by the action of glycerol kinase (GK). There are
14 unigenes encoding for GK as annotated in the rice
genome database [25]. None of the GK genes was
affected in their expression in any of the time points in
the HO rice line. Also, there was no effect on the
expression of the 18 annotated genes encoding for
GPAT required to form lysophosphatidic acid (LPA) at
the next stage of TAG assembly.

LPA is acylated by a lysophosphatidic acid acyltransfer-
ase (LPAAT) enzyme to form phosphatidic acid (PA).
Again the expression of annotated LPAAT genes (http://
rice.plantbiology.msu.edu/) was not affected in the HO
rice. Diacylglycerol (DAG) is generated by removing the
phosphate group from PA by phosphatidic acid phos-
phohydrolase (PAP). PAP1I (LOC_Os01g63060), PAP2
(LOC_0s05g21180) and PAP3 (LOC_Os05g37910) have
been annotated in the rice genome database [25]. TAG
can be synthesised from DAG in two ways, the acyl-CoA
dependent which is normally known as the Kennedy
pathway or the acyl-CoA independent pathway. DGAT
catalyses the last step of Kennedy pathway by transfer-
ring an acyl group from acyl-CoA to DAG to generate
de novo TAG and has been implicated as the key enzyme

in determining the oil content in seed oil [32, 33].
Expression of DGAT2 (LOC_0Os06g22080) was found to
increase with the seed development in the null segre-
gant. At 15 DAA, expression of DGAT2 was significantly
down regulated by -1.71 fold (p=7.73E-3) and -0.98
log2 fold (Table 3) in the HO line. There was no signifi-
cant difference in the expression level of DGAT2 gene at
other time points between HO and the null segregant
line (Table 3, Fig. 1b). DGAT2 has been regarded as a
key enzyme in incorporation of unusual fatty acids such
as epoxy or hydroxyl fatty acids in TAG to prevent their
accumulation in the form of free fatty acids which might
cause membrane dysfunction [34, 35]. The other DGAT
enzyme, DGAT1, has low expression in the endosperm
and no effect was detected.

The acyl-CoA independent reactions are involved in the
conversion of two DAGs into a monoacyl glycerol (MAG)
and a TAG by DAG:DAG transacylase [36, 37] or the
conversion of DAG to TAG by an acyl transfer from the
sn-2 position of PC to DAG by Phospholipid:diacylglycero-
lacyltransferase (PDAT) using PC as acyl donor in TAG
formation [34, 38]. In the null segregant, among the 8
annotated PDAT unigenes, the majority of them were
found to express at high levels at 10 DAA and decrease in
expression in mature grains. Such an expression pattern
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Table 4 Expressionlevels of four FAD2 genes in a null segregant (NG) and an OsFAD2-1RNAI line at 10, 15 and 20 DAA developmental stages

DAA Gene Rice Genome NG 1 NG2 NG3 NG OsFAD2-T1RNAI 1 OsFAD2-1RNAI 2 OsFAD2-1 RNAi 3 OsFAD2-1RNAI
Annotation (RPKM) (RPKM) (RPKM) (RPKM mean) (RPKM) (RPKM) (RPKM) (RPKM mean)
Project locus 1D

10 OsFAD2-1 LOC_0s02g48560 296.6 37157 482.81 383.66 188.21 210.85 158.01 185.69

15 OsFAD2-1 LOC_0s02g48560 134.18 133.69 160.53 1428 348 89.31 59.16 61.09

20 OsFAD2-1 LOC_0s02g48560 89.67 89.96 128.16 101.93 5463 55.79 709 6044

10 OsFAD2-2 LOC_0s07g23430 0 0 0 0 0 0 0 0

15 OsFAD2-2 LOC_0s07g23430 0 0 0 0 0 0 0 0

20 OsFAD2-2 LOC_0s07g23430 0 0 0 0 0.13 0 13 048

10 OsFAD2-3 LOC_0s07g23410 0 0 0.15 0.53 0.15 05 0 023

15 OsFAD2-3 LOC_0s07g23410 0.19 0.06 0 0 0 0 0 0

20 OsFAD2-3 LOC_0s07g23410 046 0.15 031 0 031 0 0 0.10

10 OsFAD2-4 LOC_0s07g23390 0 0 0 0 0 0 0 0

15 OsFAD2-4 LOC_0s07g23390 0 022 0 0.07 1.18 036 0 051

20 OsFAD2-4 LOC_0s07g23390 0 0 0 0 0 082 1.87 0.90

DAA-days after anthesis

681:91 (9107) Abojoig 1upjd DNG D 15 1iemi

€1 jJo £ abed



Tiwari et al. BMC Plant Biology (2016) 16:189

a
0.05
g 004 T *
é *
g 003 —-
5
3 002
C
S 001
2 o
0
ECH1_10 ECH1_15 ECH1_20
I RNAi WWT
0.25
@
g 02
o
o
5 045 T
3 * =
< 01
8 I
P i
0
LACS_10 LACS_15 LACS_20
RNAi mWT
Fig. 2 Level of ECH1 and LACS transcripts of two OsFAD2-1 RNAI
lines (RNAI) and two null segregants (WT) at three different
developmental stages. The AACT method [55] was used to
determine the expression of the ECH1 (a) and LACS (b) gene
transcripts normalised to the a-tubulin housekeeping gene from
gRT-PCR data to produce a mean fold difference. Error bars are one
standard error (s.e). ECH1_10: ECH1 gene at 10 DPA; ECH1_15: ECH1
gene at 15DAA; ECH1_20: ECH1 gene at 20 DAA; LACS_10: LACS gene
at 10 DAA; LACS_15: LACS gene at 15 DAA; LACS_20: LACS gene at 20
DAA; OsFAD2-1RNAI Line 22-4 (4) and Line 22-4 (5) were used as
transgenic lines, OsFAD2—1 RNAI Line 22-4 (1) and Line 22-4 (2) were
used as the null segregants. All four lines were derived from one
OsFAD2-1 RNAi 22-4 T, plant.* shows the significantly different at
P <005 levels

was not affected in the HO line. The PDAT route is a
mechanism for incorporation of unusual fatty acids in Rici-
nus communis by their direct transfer from PC to DAG [39,
40]. As unusual fatty acids have not been reported in rice
bran oil, the significance of PDAT in RBO biosynthesis re-
mains unresolved. The consistent expression between WT
and HO rice may indicate the PDAT is not a key enzyme
determining the oleic acid accumulation in RBO.

Effect on genes involved in TAG packaging and oil body
formation

TAG molecules synthesised are packaged and stored in
oil bodies (OBs). OBs are maintained and protected by a
single layer of PC and proteins which include oleosins,
caleosins and steroleosins, with oleosin being the most
abundant [41, 42]. Six oleosin genes, 9 caleosin genes
and 1 steroleosin gene have been annotated in the rice
genome database [25]. Our transcriptomics data showed
that in the null segregant each of the three classes of oil
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body protein genes is expressed in all the three
developmental stages examined, and increased as the
grain developed. The expression of the oleosins was not
found to be significantly affected in the HO line when
compared to null segregant rice grain.

Caleosins are calcium- binding OB proteins. The
expression of caleosins is reduced during germination to
provide access to lipases for breakdown of TAG [53].
Among caleosins, the expression of LOC_Os02g50174 in
the HO rice was significantly down regulated at both 15
and 20 DAA by -1.33 (and -0.63 log2 fold) and -1.97 fold
(p =0.04, 5.02E-3) (-0.97 log2 fold)respectively; (Table 3,
Fig. 1b). Steroleosin has sterol-binding capacity and is
mostly involved in signal transduction. The steroleosin
unigene annotated as LOC_0s04g32080 was down
regulated at 15 DAA by -1.36 fold (p =0.03) and -0.65
log2 fold in the HO rice line (Table 3, Fig. 1b). It
remains unclear how the down-regulation of OsFAD2-1
in rice led to the down-regulation of OB protein gene
expression. It is also of particular interest that such a
change did not result in the reduction, but rather a
modest increase of oil accumulation in HO rice.

Effects on genes involved in fatty acid and lipid catabolism
The key genes coding for the enzymes involved in f-
oxidation or fatty acid catabolism were also analysed. In
general, all enoyl-CoA hydratase (ECH), 3- hydroxyacyl-
CoA dehydrogenase (HACDH), ketoacyl-CoA thiolase
(KAT) and acyl-CoA thioesterase (ACT) genes were
expressed at high levels at 10 DAA and their expression
level gradually decreased as seed development progressed.
In the HO line, at 15 DAA stage the expression of ECH1
(LOC_0Os01g70090) was significantly reduced by -1.64 fold
(p=0.03) and -0.93 log2 fold, compared to the null segre-
gant (Table 3, Fig. 1a). Such reduction of the expression
was also supported by qRT-PCR analysis (Fig. 2).

In the HO line, the majority of lipases are found to be
expressed at high levels in the early developmental stage
at 10 DAA and gradually decreased at later stages.
Down-regulation of lipase promotes TAG stabilisation in
rice [43]. Among all four phospholipases (PLC1-4),
PLC2 was found to be highly expressed with maximum
expression at 10 DAA in null segregant. There was no
significant variation on the PLC gene expression
between the HO and null segregant.

Expression of transcription factors that may be relevant
to lipid accumulation

Apart from the genes that encode functional enzymes or
proteins in the lipid biosynthesis or catabolism pathways,
several transcription factors such as Leafy cotyledonl
(LEC1), LEC2 and FUSCA3 Like 1 (FL1), Wrinkled 1
(WRI1) and Abscisic acid-insensitive (ABI3) are also
known to regulate fatty acid and TAG biosynthesis and
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play an important role in lipid accumulation in seed, in
addition to their roles in seed development and
maturation [44-49]. At 15 DAA, the expression level of
the unigene LOC_0s02g49410 annotated as LECI was
significantly reduced by -1.66 fold (p = 3.91E-3) and -0.92
log2 fold in the HO line compared to the null segregant
(Table 3, Additional file 5).

Impact of OsFAD2-1 RNAi down regulation on other
genes

It was found that the expression of several genes not
discussed above was also affected in the HO rice. These
are not known to have a direct association with fatty
acid and lipid biosynthesis (Additional file 7: Figure S1).
For example, the expression of different storage protein
genes were differentially regulated at all three stages in
the HO rice grains (see Table 5). The expression patterns
of additional selected genes being significantly affected
in all the time points are also shown in Table 5. This
data may facilitate the exploration of other potential
molecular networks OsFAD2-1 might be involved, in
addition to its key role in linoleic acid biosynthesis.

Conclusion

The transcriptomic analysis of the HO rice grains ge-
nerated through RNAi down-regulation of OsFAD2-1
suggests that a suite of key genes involved in fatty acid
biosynthesis, TAG assembly and turnover have been
differentially regulated in order to incorporate the in-
creased level of oleic acid in TAG that is stored in the
form of OBs. Further, the observation of a modest increase
in TAG in the HO rice grains may also suggest that the
availability of high level of oleic acid is likely favourable
for TAG biosynthesis in rice. Overall, this study has delin-
eated a subset of lipid-metabolism genes as being affected
when OsFAD2-1 is down-regulated and the proportion of
oleic acid increases in TAG (Fig. 3). The impact on these
genes is currently being verified by other techniques. It is
envisaged that the genetic manipulation or co-expression
of the genes clearly shown to be affected might lead to in
further enhancement of the nutritionally desirable oleic
acid and TAG accumulation in rice grains.

Methods

Plant materials

High oleic (HO) and null segregant rice (O. sativacv.
Nipponbare) seeds were harvested in CSIRO Agriculture,
Australia where the HO rice line was previously developed
[18]. One OsFAD2-1RNA:i silencing line, FAD2RNAi-22(4)
and a null segregant, FAD2RNAI-22(8) were used for this
study. These were derived from the progeny from one
single transformation event, FAD2RNAi-22, which had a
dramatic reduction of the targeted gene expression and
high level of oleic acid content [18]. Rice plants were
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grown in a containment glasshouse with a constant
temperature regime of 27 °C (day and night) under natural
light. Fifteen to twenty of immature seeds were collected
at 10, 15 and 20 DAA respectively. The endosperms were
isolated from the developing grains, frozen in liquid
nitrogen and preserved at -80 °C freezer for RNA isola-
tion. Ts seeds from T, plants were analysed, whereas in
Zaplin et al. [18], T, seeds from T3 plants were analysed.

Rice grain lipid analysis

Mature brown rice grains were obtained by manual de-
hulling and ground with a CapMixTM capsule mixing
device (3 M ESPE, Seefeld, Germany). Total lipids from
~300 mg above prepared rice flour samples were ex-
tracted with a mixture of chloroform/methanol/0.1 M
KCI (at a ratio of 2/1/1, by volume). Fatty acid methyl
esters (FAME) were prepared by incubating lipid sam-
ples in 1 N Methanolic-HCI (Supelco, Bellefonte, PA) at
80 °C for 2 h. TAG and polar membrane lipid pools were
fractionated from total lipids in thin layer chromatog-
raphy (TLC) (Silica gel 60, Merck, Darmstadt, Germany)
using a solvent mixture of hexane/diethylether/acetic
acid (at a ratio of 70/30/1, by volume) and individual
membrane lipid classes were separated by TLC using a
solvent mixture of chloroform/methanol/acetic acid/
water (90/15/10/3, by volume). Authentic lipid standards
were loaded and were run in separate lanes on the same
plates for identification of lipid classes. Silica bands,
containing individual class of lipid were used to prepare
FAME as mentioned above and were analysed by gas
chromatography GC-FID 7890A (Agilent Technologies,
Palo Alto, CA) that was fitted with a 30 m BPX70 column
(SGE, Austin, TX) for quantifying individual fatty acids on
the basis of peak area of the known amount of heptadeca-
noin that was added in as an internal standard [50].

RNA isolation and transcriptomic analysis

Total RNA was isolated from endosperm at 10, 15 and 20
DAA following the method of Higgins et al. [51] with
modifications. For each RNA preparation, three endo-
sperms were first ground in liquid nitrogen, then further
ground with 600 pL NTES buffer (containing 100
mMNaCl, 10 mMTris, pH8.0, 1 mM EDTA and 1 % SDS),
800 pL phenol/chloroform (Sigma-Aldrich, St. Louis, MO).
Samples were transferred into Eppendorf tubes and centri-
fuged at 13,000x rpm for 5 min in a microcentrifuge. After
transferring into new Eppendorf tubes, the supernatant was
mixed with an equal volume of 4 M LiCl/10 mM EDTA so-
lution and kept at -20 °C overnight for RNA precipitation.
RNA samples were precipitated by centrifugation at
10,000x rpm for 15 min at room temperature (25 °C),
rinsed with 70 % ethanol and air dried. RNA pellets were
dissolved in 360 pL milliQ H,O and 40 pL of 2 M NaOAc,
pH5.8, which were then precipitated again with 1 mL 95 %



Table 5 Differential expression of non lipid genes between OsFAD2-TRNAI lines and their null segregant (NG)

Gene ID Gene description 10 DAA (RPKM) 15 DAA (RPKM) 20 DAA (RPKM)
NG RNAi p-value Fold change NG RNAi p-value  Fold change NG RNAi p-value  Fold change
LOC_0s05g26377  PROLMO - precursor, expressed 1042 3497 333E4 3.355 6.14 13.75 0.00 2241 13.93 4811 0.00 3452
LOC_0s03g07226  Thioredoxin, putative, expressed  176.08 879 0.02 -2.00 234.84 13473 2.16E-07 —1.743 431 74.28 0.00 —1.488
LOC_0s05g926770  PROLM18- precursor, expressed 144 39126 556E-5 2717 2521 39794  1.21E-05 1.578 783.1 2001.73 0.01 2.556
LOC_0s06g31070  PROLM24 precursor, expressed 799923 662943 0.03 —1.206 13109.13  8339.18 0.01 -1.571 2161221 13605.77 0.01 —1.588
LOC_0Os01g60410  Ubiquitinconjugating enzyme 392.22 27147 002 —1444 258.38 153.13  1.55E-05 -1.687 182.23 133.27 0.02 -1.367
LOC_0s03g55730  SSA2 - 2S albumin seed 701017 473188 497E-4 —1481 761626 423357 001 —1.799 8507.59 5390.14 0.02 —-1.578
storage family protein precursor
LOC_0s05g33570  40S ribosomal protein $9-2 807.34 51012 001 —1.582 402.52 183.09 565E-10 —-2.198 99.06 61.26 0.04 -1617

DAA- days after anthesis
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ethanol and kept at -20 °C for 2 h. Samples were centri-
fuged, rinsed with 70 % ethanol and air dried as above.
After drying, RNAs were dissolved in 20 uL DEPC water,
and treated with RQ1 RNase-Free DNase (Promega, Madi-
son, WI) following protocols. The quality of RNA samples
were measured with Nanodrop 1000 Spectrophotometer
for the ratios of OD 260 nm/280 nm (=1.8) and OD260
nm/230 nm (>1.8) and with Aligent Bioanalyser for RNA
integrity number (RIN 2 6.5) score. RNA was normalised to
1 pg starting amounts in 50 pL. Sequencing libraries were
prepared using the NEBNext® Ultra™ RNA Library Prep Kit
for Illumina (New England Biolabs Inc., Ipswich, MA) fol-
lowing manufacturer’s instructions. Quantification and size
estimation of libraries were performed on a Bioanalyser
2100 High Sensitivity DNA chip (Agilent Technologies,
Waldbronn, Germany). Libraries were finally normalised to
2nM and sequenced on the Miseq System (Illumina Inc.,
San Diego, USA) generating 150 bp length single end reads.

Transcriptomic analysis of OsFAD2 genes from published
databases

Six rice RNAseq libraries were down-loaded from Rice
Gnome Annotation Project [25] that contains RNAseq
databases from different tissues of Nipponbare rice. The
RNAseq libraries were named SRR352184, 352187,
352190, 342204, 352206 and 352207 and derived from
20 day leaves, post-emergence inflorescence, anthers, 25
DAA embryo, 25 DAA endosperm and 10 DAA grain
respectively. The read lengths were 40 or 35 bp and each
run produced about 25 million ‘clean’ reads.

Four rice FAD2 genes, OsFAD2-1 to OsFAD2-4, were used
as reference sequences to conduct gene mapping search
“Map to Reference” against the databases in Additional
file 6: Table S2 using a bioinformatic analysis program,
Geneious [52]. Parameters used were set as custom sensitiv-
ity (for sensitivity), and none (fast/read mapping) (for Fine
Tuning). Advanced settings were used with 10 % gap, 25 bp
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minimum overlap, 24 word length (words repeated more
than 8 times were ignored), 2 % maximum mismatches per
read, maximum gap 3, minimum overlap identity 80 %,
index word length 14 and maximum ambiguity 4.

Statistics analysis

Analysis of variation was performed using Genstat version
16 for lipid content and oleic acid content. All transcripto-
mics data of HO rice line and its null segregant was
analysed using Qiagen CLC Genomics Workbench ver-
sion 7.0.4. All statistical analysis was done using IBM SPSS
Statistics version 20 and CLC Baggerley’s test (CLC Bio-
Qiagen, Aarhus, Denmark). Details regarding the RNAseq
analysis are available online athttp://www.clcbio.com/sup
port/tutorials. For further verifying those differentially
expressed genes determined by the method above, the
read numbers for each cDNA were first converted to reads
per kilo base per million (RPKM), then the ratios of RNAi
and W, and finally log2 value of the ratios.

RNA extraction and quantitative real-time PCR (qRT-PCR)
Total RNA from endosperms at 10, 15 and 20 DAA was
extracted using NucleoSpin°RNA Plant Kit (MachereyNagel,
Duren, Germany) and quantified using Nanodropl000
(Thermo Fisher Scientific, Waltham, MA). A total of 0.5 pg
of RNA templates was used for the cDNA synthesis in a
50 pL reaction with ramp at 50 °C using Super Script III
reverse transcriptase (Thermo Fisher Scientific). The cDNA
template (100 ng) was used in a 10 pL. gRT-PCR reaction
with the annealing temperature at 58 °C. The primers for
ECH1 gene were ECHIF(5" GATGCTGGCGTTGCAAA-
GAT3’) and ECHIR (5'TCCCTGCTTCTCAGCAAAAC
A3’), for LACS gene were LACSF (5'TTGGCGAGGATG-
CACTGG 3) and LACSR (5 TGGAACTGATTGCAGG-
TAGCTT 3) which only amplified RT-PCR fragment in
c¢DNAs. The primers for the Tubulin gene in rice were
used as published [54]. The amplification was conducted
in a Rotor-Gene 6000 (Corbett Life Sciences, Sydney,
Australia) using Rotor Gene™ SYBR’Green PCR Kit
(Qiagen, Hilden, Germany). Comparative quantification
was analysed using Tubulin as a reference gene in the Real
Time Rotary Analyzer Software (Corbett Life Sciences,
Sydney, Australia). For each sample, triplicates of qRT-
PCR reactions were performed.
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