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Abstract

Background: Blueberry is an economically important fruit crop in Ericaceae family. The substantial quantities of
flavonoids in blueberry have been implicated in a broad range of health benefits. However, the information
regarding fruit development and flavonoid metabolites based on the transcriptome level is still limited. In the
present study, the transcriptome and gene expression profiling over berry development, especially during color
development were initiated.

Results: A total of approximately 13.67 Gbp of data were obtained and assembled into 186,962 transcripts and
80,836 unigenes from three stages of blueberry fruit and color development. A large number of simple sequence
repeats (SSRs) and candidate genes, which are potentially involved in plant development, metabolic and hormone
pathways, were identified. A total of 6429 sequences containing 8796 SSRs were characterized from 15,457
unigenes and 1763 unigenes contained more than one SSR. The expression profiles of key genes involved in
anthocyanin biosynthesis were also studied. In addition, a comparison between our dataset and other published
results was carried out.

Conclusions: Our high quality reads produced in this study are an important advancement and provide a new
resource for the interpretation of high-throughput data for blueberry species whether regarding sequencing data
depth or species extension. The use of this transcriptome data will serve as a valuable public information database
for the studies of blueberry genome and would greatly boost the research of fruit and color development,
flavonoid metabolisms and regulation and breeding of more healthful blueberries.
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Background

Blueberry (Vaccinium corymbosum) is an economically
important small fruit crop and a member of Ericaceae
family which includes many species, such as blueberry,
cranberry (V. macrocarpon), lingonberry (V. vitis-idaea),
rhododendron, and more than 400 other species [1, 2].
Three major types of blueberry are harvested commer-
cially including lowbush (Vaccinium. angustifolium),
highbush (V. corymbosum), and rabbiteye bluberry (V.
ashei or V. virgatum). Although mostly originated in
North America, many blueberry species are widely
grown in Asia, Europe, South America, Africa, Australia
and New Zealand owing in part to their high level of
vitro antioxidant capacities [3, 4]. Blueberry is becoming
a major crop in China, cultivated widely from temperate
area to subtropical region. There are currently three
major areas for blueberry cultivation in China, the Jilin
and Liaoning provinces, the Shandong provinces and the
areas of the Yangtze River [5].

Demand and consumption worldwide of blueberry has
greatly increased in recent years for its beneficial influ-
ence on human health. These positive effects are gener-
ally due to the high levels of flavonoid [6], which have
been linked to improve night vision, prevent macular de-
generation, and decrease the heart disease [7, 8]. There-
fore, it is crucial to elucidate the molecular mechanisms
that trigger biosynthesis and accumulation of anthocya-
nin metabolites during fruit and color development. The
blueberry genome is large (600 Mb/haploid genome)
and genomic information is limited compared to some
plants like grape, for example [9], which restrains the
dissection of blueberry. Over the past decades, more at-
tention has been focused on the analysis of plant cold
resistance, cultivation, and effects on human health [10,
11]. Since massive amounts of information can be ob-
tained from genome-scale expression data, RNA sequen-
cing has become a powerful technology to profile the
transcriptome [12]. To date, RNA sequencing has been
reported in bilberry (Vaccinium myrtillus) and cranberry
[13, 14]. Recently, transcriptome sequences of blueberry
were analyzed during cold acclimation and at different
development stages of fruit by ESTs sequencing or RNA
sequencing [2, 15]. So far, transcriptome sequences have
been generated using next generation sequencing so far
from northern highbush [2], half-high [16], and southern
highbush blueberry [17]. However, the information is
still limited regarding the control of horticultural traits
such as the molecular regulation mechanisms of blue-
berry maturation and flavonoid metabolism.

In order to gain new insights into molecular mechan-
ism at transcriptome level, we performed transcriptome
sequencing and gene expression profiling for the north-
ern highbush blueberry variety ‘Sierra’ over berry devel-
opment with Illumina sequencing technique. A total of
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more than 13.67 Gbp of data were generated and assem-
bled into 186,962 transcripts and 80,836 unigenes. Large
numbers of simple sequence repeats (SSRs) and candi-
date genes, which are potentially involved in plant
growth, metabolic and hormone pathways, were identi-
fied. In addition, RNA-Seq expression profiles and func-
tional annotations have been made publicly available
(accession number: SRR2910056). We believe that this
study provides a new and more powerful resource for in-
terpretation of high-throughput gene expression data for
blueberry species.

Results and discussion

Sequence analysis and de novo assembly

The high quality Illumina sequencing data produced
from Vaccinium corymbosum ‘Sierra’ during fruit and
color development has been deposited in NCBI SRA
database under accession number: SRR2910056. Three
independent cDNA libraries were constructed from
RNA samples of green fruit (G, 30d), pink fruit (P, 50d)
and blue fruit (B, 75d), respectively. In total, after re-
moving adaptor sequences, ambiguous nucleotides and
low-quality sequences, 67,689,734 independent reads
(13.67 Gbp) with more than 92 % Q30 bases were se-
lected using Illumina HiSeq™ 2000 from the three sam-
ples (Table 1). The GC content of the three samples was
approximately 46 %.

Using the Trinity de novo assembly program [18], we
assembled the short read sequences from the three sam-
ples into 186,962 transcripts. An overview of the assem-
bled transcripts and unigenes are exhibited in Tables 2
and 3. The N50 value of the three sample assemblies
was 1688 bp, and 66, 855 (36.95 %) transcripts were lon-
ger than 1 kb. The transcripts were subjected to cluster
and assembly analyses, resulting in 80,836 unigenes
(N50 value = 1204 bp), among which 15,457 (19.13 %)
genes were greater than 1 kb. This is about 10 times
greater than that in a previous report where a 17,134
ESTs resulted in a total of 8500 unigenes from two sam-
ples by Sanger sequencing [15]. Li et al. reported 57,331
unigenes in half-high blueberry from their two fruit sam-
ples (pulp and skin) [16]. Gupta et al. produced around
60,000 gene models from five stages of berry fruit devel-
opment and ripening [17]. Therefore, we believe that the
13.67 Gbp of data generated and 186,962 transcripts and
80,836 unigenes assembled in this study are an import-
ant advancement and new resource for interpretation of
high-throughput data for blueberry species whether re-
garding sequencing data depth or species extension. It is
noteworthy that we have compared our dataset with the
previously published Illumina dataset [17]. Compared
with the previously published dataset, our dataset has a
higher amount of data (Nucleotide), better data quality
(Q20% or Q30%), and better assembly results (Average
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Table 1 Sequencing the blueberry transcriptome at different stages of fruit development

Read

Sample length No.of Reads  Data (bp) GC% Q20 (%) Q30 (%)
. G 100+100 18,300,030 3,696,331,638 46.48 98.41 93.20
. P 100+100 23,977,031 4,842,888,286 46.69 98.38 92.83
. B 100+100 25,412,673 5,132,859,474 46.25 98.41 92.93

Fruits at developmental stages of green, pink, and blue were sampled for transcriptome sequencing

length and N50) (Additional file 1: File S1). There is no
doubt that we now have a more powerful information
database with higher capacity for gene expression ana-
lysis in Vaccinium, especially for fruit development and
maturation, flavonoid metabolism and regulation and
breeding for more healthful blueberries.

Similarity analysis

In order to better evaluate the similarity between blueberry
and other organisms, blueberry unigenes were submitted
to the non-redundant (Nr) NCBI database for BLASTx
similarity analysis. The results showed that Vaccinium cor-
ymbosum unigenes hit a wide range of plant species in-
cluding Vitis vinifera, Populus trichocarpa, Prunus avium,
Ricinus communis, Fragaria vesca, Jatropha curcas, Sola-
num lycopersicum, Solanum lycopersicum, Camellia sinen-
sis, Gossypium hirsutum, Brassica rapa, Vaccinium
macrocarpon, etc. (Fig. 1). Among them, interestingly,
10,280 (12.72 %) unigenes showed a significant homology
with sequences of Vitis vinifera, and 1654 (2.05 %) and
1183 (1.46 %) unigene sequences had a high similarity with
those of Populus trichocarpa and Prunus avium, respect-
ively. The high similarity of unigenes between Vaccinium
corymbosum and Vitis vinifera suggests the possibility of
using Vitis vinifera transcriptomes and genomes as a refer-
ence sequence for Vaccinium corymbosum. In contrast,
only 242 (0.29 %) unigenes had a high similarity with se-
quences of Vaccinium macrocarpon, probably owing to
the insufficient number of sequences in Genebank.

Table 2 The transcripts of blueberry

Transcripts of length Total number Percentage
200-300 39,000 21.55 %
300-500 35,561 19.65 %
500-1000 39,546 21.85 %
1000-2000 41,360 22.86 %
2000+ 25495 14.09 %
Total number 180,962

Total length 186,855,896

N50 length 1688

Mean length 1032.57

Sequence annotation

To annotate the assembled sequences, several comple-
mentary approaches were utilized. The unigenes were
annotated by aligning with the deposited ones in diverse
protein databases (Nr, Nt, Swiss-Prot, KEGG, COG, GO
and TrEMBL) and the best one was selected from the
matches with an E-value of less than 107°. The overall
functional annotation is described in Table 4. Among
the 80,836 unigenes, 10,263 (12.70 %) and 21,870
(27.05 %) unigenes had significant matches in the COG
and GO database, 26,902 (33.28 %) in the Nt database,
and 21,447 (26.53 %) in the Swiss-Prot database. The
34,006 (42.07 %) unigenes were annotated in the Nr, Nt,
Swiss-Prot, KEGG, COG, GO and TrEMBL databases.

GO, COG, KEGG annotation

Gene Ontology (GO) enrichment analysis was carried out
to classify gene functions of the unigenes identified. The
majority of the GO terms (68,355, 49.58 %) were assigned
to biological process, and 35,683 (25.89 %) and 33,840
(24.54 %) were assigned to the molecular function and the
cellular component, respectively (Fig. 2). It was noteworthy
that cells and organelles are highly represented in category
of cellular components, while binding and catalytic activity
are highly typical in molecular functions category. For bio-
logical processes, genes implicated in metabolic processes
and cellular processes are the most represented category
followed by the response to stimulus and biological regula-
tion (Fig. 3). These data suggest that the active synthesis of
substance and energy and metabolic process are present in

Table 3 The unigenes of blueberry

Unigenes length Total number Percentage
200-300 29,377 36.34 %
500-1000 14,140 17.49 %
1000-2000 9665 11.96 %
2000+ 5792 717 %
Total number 80,836

Total length 56,528,444

N50 length 1204

Mean length 699.2978871
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Fig. 1 Species distribution of the top BLAST hits in Nr database. Values were number of unigenes in Vaccinium corymbosum homologous with
those in other species such as Vitis vinifera, Populus trichocarpa, Prunus avium, Ricinus communis, Fragaria vesca, Jatropha curcas, Solanum
lycopersicum, Solanum lycopersicum, Camellia sinensis, Gossypium hirsutum, Brassica rapa, Vaccinium macrocarpon
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a wide variety of organelles and associated with fruit devel-
opment and in response to stress during fruit ripening.

Furthermore, all blueberry unigenes were searched
against the COG database for functional prediction and
classification. Overall, 80,836 unigenes were assigned to
the COG classification (Fig. 3). The largest group was the
cluster for general function prediction (2502, 17.84 %),
followed by translation, ribosomal structure and biogenesis
(1297, 9.25 %), replication, recombination and repair (1262,
9.00 %), transcription (1160, 8.27 %), posttranslational
modification, protein turnover and chaperones (1071,
7.64 %), signal transduction mechanisms (942, 6.72 %), and
carbohydrate transport and metabolism (868, 6.19 %).
However, small clusters were for cell motility and nuclear
structure (13 and 2 unigenes, respectively). In addition, no
unigene was assigned to extracellular structures.

Table 4 Annotation of blueberry unigenes

Anno_Database Annotated_Number  300< = Length> =
length <1000 1000
COG_Annotation 10,263 3241 5421
GO_Annotation 21,870 8701 9422
KEGG_Annotation 7616 2829 3188
Swissprot_Annotation  2,1447 8068 9503
TrEMBL_Annotation 21447 8068 9503
nr_Annotation 3,1576 12,244 13,059
nt_Annotation 2,6902 9769 12,015
All_Annotation 3,4006 13,457 13,343

To characterize the active biological pathways in
blueberry, KEGG pathway tool was used as an alterna-
tive approach to analyze the pathway annotations of
unigene sequences. The 7616 unigenes were assigned
to 119 biological pathways (Additional file 2: File S2).
These predicted pathways are responsible for growth
and development probably via compound biosynthesis,
degradation, utilization, and assimilation. These results
suggest that a large number of metabolic activities are
occurring during fruit development and coloring of
blueberry.

EST-SSR discovery

As highly informative markers, SSRs have developed into
powerful molecular markers for comparative genetic
mapping and genotyping among species within genera
[19, 20]. To date, SSRs are most widely applied in genet-
ics, evolution and breeding.

To explore EST-SSR profiles in the unigenes of blue-
berry, 15,457 unigene sequences were submitted to
search for SSRs. A total of 6429 sequences containing
8796 SSRs were identified from 15,457 unigenes, with
1763 unigene sequences containing more than one SSR
(Table 5 and Additional file 3: File S3). Di-nucleotide
motifs and tri-nucleotide motifs were the most abundant
with 75.11 % (4426) and 23.81 % (1403), respectively.
The most abundant repeat type was AG/CT (4069),
followed by AAG/CTT (388), AGG/CCT (227), and
ACC/GGT (225). Because SSRs within genes are likely
to be subjected to stronger selective pressure than other
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Fig. 2 Functional annotation of assembled sequences based on gene ontology (GO) categorization. A total of 80,836 unigenes with BLAST match
to known proteins were assigned to three main categories: 68,355 (49.58 %) were assigned to biological process, and 35,683 (25.89 %) and 33,840
(24.54 %) were assigned to the molecular function and the cellular component, respectively
Analysis of gene regulation in anthocyanin biosynthesis

genomic regions, these SSRs probably represent different
putative functions [21]. Therefore, the unigenes yielded
from blueberry are a larger resource for SSR mining
than ever and the SSR profiles which we explored are a
powerful platform for research in genetics, evolution

and molecular marker-assistant breeding, etc.

pathway using the assembled unigenes
In this study, we analyzed all unigene annotation in

blueberry. Some genes responsible for anthocyanin bio-
synthesis were screened for further analysis. Anthocya-

nins are a large class of flavonoids which are responsible
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Table 5 Frequency of EST-SSRs in blueberry

Motif ~ Repeat numbers Total Percent
lenght "7 8 9 10 >0

Di - 1027 838 917 983 554 107 4426 7511
Tri 867 392 131 10 2 0 1 1403 2381
Tetra 37 8 1 0 0 0 0 46 078
Penta 10 2 0 0 0 0 0 12 0.20
Hexa 2 3 0 1 0 0 0 6 0.10
Total 916 1432 970 928 985 554 108 5893

% 1554 2430 1646 1575 1671 940 183

for the colors of flowers, fruits and other tissues [22]. A
simple anthocyanin biosynthesis pathway is shown in
Fig. 4. In most of the pathway, more than one unique se-
quence was annotated as encoding the same enzyme, es-
pecially the final step involving 3-glycoside formation by
UFGT (UDP Glc-favonoid 3-O-glucosyl transferase)
(Additional file 4: File S4).

The relative expression levels of candidate unigenes and
the content of anthocyanins during blueberry fruit and
color development

To validate the results from the bioinformatics analysis,
the expression profile of 9 differentially expressed genes
of anthocyanin biosynthesis pathway such as PAL, C4H,
4CL, CHS, CHI, F3H, DFR, ANS, and UFGT were tested
by RT-qPCR using cDNA templates from different fruit
growth stages (Fig. 5). The number of unigenes assumed
to be involved in anthocyanin biosynthesis pathway is
shown in Additional file 4: File S4 and the specific
primers used for RT-qPCR reactions are listed in Table 6.
Among them, five candidate genes covered over 10 uni-
genes. The transcripts of some genes such as CHS, CHI,
F3H, DFR, DFR, ANS, and UFGT increased with fruit

Phenylalanine

l PAL(13)

Cinnamate

‘lC4H(7)

P-coumaric acid

l4CL(11)

anthocyanins

UFGT (73)

anthocyanindins

ANS (1)

Leucoanthocyanindins

T DFR (5)

P-coumaroyl-CoA Dihydroflavonols
lCHS(13) T F3H (9)
Nanngenin chalcone Naringenin

| CHI (4) T

Fig. 4 A schematic representation of anthocyanin biosynthesis pathway
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Fig. 5 Expression levels of the color-related genes and the content
of anthocyanins in blueberry. Total RNA was extracted from green,
pink and blue fruits, respectively. Each value is the mean + SE of
three independent biological determinations

coloring (stage 4) and reached the highest level at red
fruit stage (stage 5), then slightly declined with fruit mat-
uration (stage 5 and 6). CHS showed significant increase
in expression at the stage of fruit coloring (stage 4),
about a 19-fold increase compared with green fruit

Table 6 Primers used for RT-qPCR reactions

Gene  Forward Primer (5-3) Reverse Primer (5'-3)

UBC28  CCATCCACTTCCCTCCAGATTATCCAT  ACAGATTGAGAGCACCTTGGA
PAL ATGGGTTGCCTTCAAATCTCTC CGAGCGAGTTCACATCTTGG
C4H TGGTAGAGTGCTTCATAATGTGC GGTGTCGGTAGGAGGAGTTG
4CL CTGGCGACATAGGCTACATTG ATCTTTCATCCCGACAACTGC
CHS TTACTAACAGCGAGCACAAGG GAATTTCCACAACCACCATATCC
CHI ATGGAAGGGTAAATCAGGAAAGG  TTATCATCCGCAGCCAATCG
F3H TCACCTATTTCTCATACCCACTTC TTTCCAAACCCATTGCCTCAG
DFR ACTGGAGCGACTTGGATTTTG TGGGATGTASGGCATAATGAAGG
ANS CGTCTGCTTGGGATTGGAAG TGTGGAGGATGAAGGTGAGG
UFGT  TGAAGAACTAGACCCCGAACTC CCAAAGGCGATATAGGCAACG
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(stage 3), whereas only 3 -fold increase was observed for
ANS at the stage of red fruit (stage 4). On the contrary,
the expression level of PAL, C4H, and 4CL changed little
with fruit development. Jaakola et al. reported the ex-
pression level of CHS, F3H, DFR, and ANS, detected by
northern-blotting, to increase dramatically at stage 5
(red fruit) in bilberry [16]. This is consistent with our re-
sults. Zifkin et al. characterized the expression level of
DFR, ANS, ANR, and LAR in blueberry and found that
the expression of DFR, ANS increased at the S6 stage
(red fruit) [16].

The anthocyanin content was next quantified at differ-
ent developmental stages to test if anthocyanins accu-
mulate in accordance with the pattern of gene
expression. As expected, at green berry stage, anthocya-
nins were detected at low levels, only 0.5 mg/g FW. In
accordance with the deep coloration, in mature fruits
(blue fruit) the levels of anthocyanin peaked dramatic-
ally. Analysis of expression and anthocyanin accumula-
tion indicated that there was a significant correlation
between the expression profile of candidate genes and
the accumulation of anthocyanins.

Conclusions

In the present study, the transcriptome and gene expres-
sion profiling over fruit development and coloring of
blueberry were initiated by means of Illumina sequen-
cing. A total of approximately 13.67 Gbp of data were
obtained and assembled into 186,962 transcripts and
80,836 unigenes from three stages of blueberry fruit. A
large number of simple sequence repeats (SSRs) and
candidate genes were identified. A total of 6429 se-
quences containing 8796 SSRs were identified from
15,457 unigenes, and 1763 unigenes containing more
than one SSR. Compared with the previously published
data, our dataset has a higher amount of data (Nucleo-
tide), better data quality (Q20 or Q30%), and better as-
sembly results (Average length and N50). Therefore, our
high quality reads produced in this study are an import-
ant advancement and a new resource for interpretation
of high-throughput data for blueberry species regarding
from sequencing data depth or species extension.

Methods

Plant materials and RNA extraction

Blueberry (Vaccinium corymbosum ‘Sierra’) fruits were
harvested from an organic blueberry farm (Tianshuo
Farm in Hebei Province, China) during the 2013 to 2015
growing season. The tissues at three different develop-
mental stages including green fruit (G, 30d), pink fruit
(P, 50d) and blue fruit (B, 75d), were randomly sampled
in the field from 4- or 5-year-old healthy blueberry
plants. The plants had been propagated by tissue culture,
thus all came from the same mother plant. All samples
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intended for RNA extraction were flash-frozen in liquid
nitrogen immediately after collection and stored at —80 °C
until use. Fifty fruits were collected at each time point and
combined for RNA extraction. RNA was extracted
using the Plant total RNA Kit (TIANGEN, Beijing,
China). The purified RNA quality and quantity was
evaluated using a spectrophotometer (Thermo Scientific,
Waltham, MA, USA) and an Agilent 2100 Bioanalyzer
(Agilent Technologies, Santa Clara, CA, USA).

mRNA-seq library construction for lllumina sequencing
The mRNA-seq library was constructed following the
[lumina’s mRNA-seq Sample Preparation Kit (Illumina
Inc., San Diego, CA, USA) from three stages of fruit de-
velopment, separately. Briefly, the mRNA was purified
from total RNA samples using oligo (dT) magnetic
beads, and then broken into small pieces by divalent cat-
ion under an elevated temperature. Taking these RNA
fragments as templates, the first strand cDNA was syn-
thesized by reverse transcriptase and random primers,
while the second strand ¢cDNA was synthesized using
DNA Polymerase I and RNase H. The cDNA fragments
were blunt-ended and ligated to sequencing adaptors.
The fragments (200 =25 bp) were then separated by
agarose gel electrophoresis and selected for PCR amplifi-
cation. Finally, the mRNA-seq libraries were sequenced
by the Illumina HiSeq™ 2000 sequencing.

Sequence data analysis and assembly

The high-quality clean read data for assembly was sepa-
rated from adapters and low-quality. Reads with more
than 10 % Q30 bases were removed. De novo assembly
of transcriptome was done using the Trinity method
with an optimized k-mer length of 25 [18]. The contigs
were clustered and further assembled according to
paired-end information. The longest transcripts in the
cluster units were defined as unigenes. EMBOSS Getorf
Software was used to predict coding regions (http://
emboss.bioinformatics.nl/cgi-bin/emboss/getorf).

Sequence annotation

The assembled sequences were searched against the
public protein databases, such as the NCBI Nr and Nt
databases (National Center for Biotechnology Information
(NCBI) nonredundant protein (Nr) database, non-
redundant nucleotide sequence (Nt) database), Swissprot,
KEGG (Kyoto Encyclopedia of Genes and Genomes,
http://www.genome.jp/kegg/kegg2.html), COG, (Cluster
of Orthologous Groups of proteins) and TrEMBL using
BLASTX with an E-value<107°. Gene ontologies (GO)
were assigned to each unigene using Blast2GO (Conesa
et al, 2005, http://wego.genomics.org.cn/cgi-bin/wego/
index.pl).
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EST-SSR detection

The EST-SSRs were detected among the 15,457 blue-
berry unigenes which were longer than 1 kb using the
Simple Sequence Repeat Identification Tool (SSRIT,
http://www.gramene.org/db/markers/ssrtool). The param-
eters were adjusted to identify perfect di-, tri-, tetra-,
penta- and hexa- nucleotide motifs with a minimum of six,
five, four, four and four repeats, respectively [23, 24].

Gene validation and expression analysis by quantitative
RT-qPCR

The expression of potential candidate genes of anthocya-
nin biosynthesis pathway in blueberry such as PAL,
C4H, 4CL, CHS, CHI, F3H, DFR, ANS and UFGT were
examined by RT-qPCR. Specific primers used for RT-
qPCR reactions were listed in Table 6 according to the
open reading frames of the target genes. Real-time qPCR
reactions were carried out in a StepOnePlus Real-time
PCR system (ABI, USA) using SuperRealPreMix (SYBR
Green) kit (TIANGEN BIOTECH, Beijing, China) ac-
cording to the manufacturer’s instructions. L/BC28 gene
was used as an internal control for normalization, and
each sample was assayed in triplicate. Relative transcript
levels were calculated and normalized as described pre-
viously [25].

Extraction and assay of anthocyanin

The pH differential method was used [26] with minor
modification. The fruits at different growth stages were
harvested from multiple healthy plants and fully ground
in liquid nitrogen. Briefly, aliquots of 1.0 g ground fruit
tissue was dissolved in 20 mL of 60 % methanol (pH 3.0),
and then kept at 40 °C for 2 h. The extracts was collected
through vacuum pump filter followed by decompression
concentration in the rotary evaporation apparatus. Next,
aliquots of 1 ml of extract was taken in duplicate and di-
luted to 25 ml in buffer A (0.2 mol.L'KCL:0.2 molL™*
HCl = 25:67,v:v,pH1.0) and buffer B (1 molL™
NaAc:1 mol.L.™" HCL:H20 = 100:60:90,v:v,pH4.5), respect-
ively. The absorbance value at 520 nm was measured via
UV-600 ultraviolet and visible spectrophotometers.

The content of anthocyanins was calculated using the for-
mula. The formula is C (mg/g) = (A0-Al) x V x N x M/
(e x m). Among them, A0 and A1 was the light absorption
value of anthocyanins at pH 1.0 and pH 4.5, respectively.
V means the total volume of the extract, N is the dilution
ratio, M is 449 for the standard molecular weight marker
anthocyanins, e is 29,600 for standard extinction coeffi-
cient, m is 1 g of the sample weight. The assays were re-
peated three times along with three independent
repetitions of the biological experiments and the means of
the three biological experiments were calculated for the
total anthocyanin levels in each of the samples.
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