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Abstract

Background: Molecular markers associated with relevant agronomic traits could significantly reduce the time and
cost involved in developing new sugarcane varieties. Previous sugarcane genome-wide association analyses (GWAS)
have found few molecular markers associated with relevant traits at plant-cane stage. The aim of this study was to
establish an appropriate GWAS to find molecular markers associated with yield related traits consistent across
harvesting seasons in a breeding population. Sugarcane clones were genotyped with DArT (Diversity Array
Technology) and TRAP (Target Region Amplified Polymorphism) markers, and evaluated for cane yield (CY) and
sugar content (SC) at two locations during three successive crop cycles. GWAS mapping was applied within a novel
mixed-model framework accounting for population structure with Principal Component Analysis scores as random
component.

Results: A total of 43 markers significantly associated with CY in plant-cane, 42 in first ratoon, and 41 in second
ratoon were detected. Out of these markers, 20 were associated with CY in 2 years. Additionally, 38 significant
associations for SC were detected in plant-cane, 34 in first ratoon, and 47 in second ratoon. For SC, one marker-trait
association was found significant for the 3 years of the study, while twelve markers presented association for

2 years. In the multi-QTL model several markers with large allelic substitution effect were found. Sequences of four
DArT markers showed high similitude and e-value with coding sequences of Sorghum bicolor, confirming the high
gene microlinearity between sorghum and sugarcane.

Conclusions: In contrast with other sugarcane GWAS studies reported earlier, the novel methodology to analyze
multi-QTLs through successive crop cycles used in the present study allowed us to find several markers associated
with relevant traits. Combining existing phenotypic trial data and genotypic DArT and TRAP marker
characterizations within a GWAS approach including population structure as random covariates may prove to be
highly successful. Moreover, sequences of DArT marker associated with the traits of interest were aligned in
chromosomal regions where sorghum QTLs has previously been reported. This approach could be a valuable tool
to assist the improvement of sugarcane and better supply sugarcane demand that has been projected for the
upcoming decades.
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Background

Sugarcane, the highest tonnage crop among cultivated
plants, plays a substantial role in the global economy.
Nowadays, this crop has gained great importance not
only for its traditional use as food (80 % of world’s sugar
is produced from sugarcane) but also for ethanol and
biomass production. The production of alternative en-
ergy sources as well as the establishment of the biorefin-
ery concept has also increased sugarcane world demand
rapidly [1]. In order to supply this continuous increasing
requirement, the development of new varieties with high
biomass and sugar yield is essential.

The modern sugarcane cultivars are interspecific hy-
brids derived essentially from early crosses between Sac-
charum officinarum (2n = 80, x = 10), a species with high
sugar content stalks, and Saccharum spontaneum (2n =
40-128, x =8), a wild and vigorous species resistant to
several sugarcane diseases. The initial interspecific hybrids
were repeatedly backcrossed to S. officinarum clones or to
other hybrids in order to recover high sugar content, a
process known as “nobilization”. These modern cultivars
are highly polyploid and often aneuploid, with chromo-
some numbers ranging from 100 to 130 [2]. Due to this
genetic complexity, the application of both conventional
and molecular breeding is a challenge in sugarcane.

Most of sugarcane production regions have their own
breeding programs to develop and improve local var-
ieties adapted to their specific environments and agricul-
tural practices. Developing a new sugarcane variety takes
on average 12 years [3]. Molecular markers associated
with relevant agronomic traits could significantly reduce
the time and cost involved in developing new varieties
because they could aid in selecting the best parents as
well as accelerating the rate of genetic gain in the breed-
ing program. In that sense, association mapping has be-
come widely used to identify molecular markers
associated with relevant traits in several crops [4-9].
This method is based on the linkage disequilibrium (LD)
between molecular markers and quantitative trait loci
(QTL) [10]. The resolution and applicability of associ-
ation mapping depends on the extent of LD within the
population under consideration. The breeding history of
sugarcane, consisting of a strong foundation bottleneck
followed by a small number of cycles of intercrossing
and vegetative propagation, suggest that LD should be
extensive, thus a high density of markers may not be
needed to detect marker—trait associations [11]. In 1999
[12], and more recently in 2008 [13], the persistence of
high LD in modern sugarcane cultivars was confirmed.

The forces generating and/or conserving LD are those
that produce allele frequency changes, i.e. population
stratification, genetic relatedness, selection, mutation,
genetic drift and linkage [10]. With the exception of
linkage, all the genetic forces may cause false positive
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correlation between markers and traits in population-
based association mapping approaches. The effects of a
structured population in association mapping studies have
been well documented and identified as one of the main
causes of spurious associations [14—16]. For that reason
and considering the often complex relationships among
genotypes in breeding populations, it is extremely import-
ant to control for population structure in order to effect-
ively decrease type I error rates (i.e. false positives) [17].
For this purpose, a range of statistical methodologies have
been developed that include some sort of population or
relatedness control using mixed models [16—-19].

In addition to controlling for population structure, the
availability of both accurate phenotypic data and molecular
markers distributed across the genome are critical require-
ments for the success of association mapping. One of the
advantages of this mapping method for plants compared to
classical QTL analysis based on balanced mapping popula-
tions is that association mapping allows the use of historical
phenotypic data sets collected by the breeding programs
[5]. Typically, this data come from multiple trials across dif-
ferent environments and years, therefore, statistical analysis
such as mixed models are necessary to obtain phenotypic
values that best represent the performance of each geno-
type. Malosetti et al. [19] extended the standard phenotypic
analysis of multiple trials by mixed models to arrive at
models suitable for association mapping by introducing
marker genotype information as random covariates to
model the correlation between genotypes.

The recently developed technology of DArT in sugar-
cane [1] makes it possible to have genome-wide scans of
this genetically complex crop, capturing genomic profiles
with many thousands of polymorphic markers of several
kinds (INDELs, SNPs, methylation changes) [20]. An-
other molecular marker system recently developed that
could also be convenient to detect markers associated
with desirable traits is Target Region Amplification Poly-
morphism (TRAP). These dominant markers enable the
identification of polymorphisms in coding regions in-
volved in specific pathways as sucrose metabolism or
drought tolerance among others [21, 22].

Information of the marker sequences for DArT is
available and could be anchored to the sugarcane gen-
ome if sequenced. Several efforts are still ongoing in
order to sequence the sugarcane genome which has a
high genetic complexity due to its ploidy level. How-
ever, considering that i) sugarcane monoploid genome
estimated on 930 Mb is similar to the sorghum gen-
ome (2n=2x=10) estimated on 730 Mb [23]; ii) sugar-
cane and sorghum both belong to the Poaceae family and
the same sub-tribu Saccharinae, and iii) their high degree
of colinearity [24, 25]; the available sequence of sorghum
genome becomes an important tool for the analysis of re-
gions of interest in sugarcane.
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The goal of this research was to establish an appropri-
ate genome-wide association analysis (GWAS) tool in a
sugarcane breeding population, and to find molecular
markers associated with high yield of both biomass and
sugar stable through successive crop cycles. Therefore, a
GWAS mapping within a mixed-model framework fol-
lowing Malosetti et al. [19] was used. Spurious associa-
tions were minimized while the power to detect true
associations was maximized by considering the possible
population structure. A Principal Component Analysis
(PCA) from a genotype data set was performed [26] and
values obtained from the significant axes for each geno-
type were used as covariates in the model. In contrast
with others sugarcane GWAS studies reported earlier in-
volving yield related traits [27, 28] where analyzes were
conducted at plant-cane stage, the novel methodology to
analyze multi-QTLs through successive crop cycles used
in the present study allowed us to find several markers
associated with relevant traits. Results highlighted that
this approach could be a valuable tool to assist the im-
provement of sugarcane and better supply the sugar and
biomass demand that has been projected for the upcom-
ing decades.

Methods

Plant material and phenotyping

The experimental population consisted on sugarcane
clones from the selection panel (Infield Variety Trials,
IVT) of the sugarcane breeding program of “Estacién
Experimental Agroindustrial Obispo Colombres” (SCBP-
EEAOQOC) (i.e. 88 clones, Table 1). IVT are the fourth step
of selection of SCBP-EEAOC, where in 2008 a total of
100 clones were planted and thoroughly evaluated in
2009 in order to select potentially new varieties at the
following steps. This breeding population consists in ge-
notypes obtained from crosses between the best parents,
i.e. with highly productive offspring. To avoid the over-
representation of any family, out of the 100 clones, 14
full-sibs were removed to assemble the panel suitable for
association mapping. Only some full-sib clones were
conserved for not reducing the number of genotypes of
the population. The first and second more planted var-
ieties in Tucuman (Argentina) LCP 85-384 and TUCCP
77-42, respectively [29], were also included in the associ-
ation panel. The IVT were conducted at two locations in
Tucumdan, Argentina (Additional file 1) during three
successive crop cycles. Within each trial, a randomized
complete-block design with three replications was used.
The individual plot size was 3 rows x 10 m, with an
inter-row spacing of 1.6 m. Cane yield (CY) (kg plot™)
was evaluated directly by weighing stalks from the full
plot in the field during the harvesting season 2009 (plant
cane), 2010 (first ratoon), and 2011 (second ratoon).
Even though CY was measured in kg plot” in the
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present GWAS study, final effects were converted to t
ha™ for a better interpretation. In May of each year,
sugar content (SC) was estimated from ten randomly
chosen stalks from each plot by determining Brix°® (per-
centage of soluble solids, mostly sugars, minerals, and
organic acids) and Pol (level of sucrose in stalk juice de-
termined by polarimetry) [30, 31]. SC was determined at
the millroom of an EEAOC’s laboratory by using Brix®
and Pol, according to the following equation:

SC% = 0.98 x pol % - 0.28 x brix %
[32]

Statistical analysis for the phenotypic data
Field trials were analyzed for each harvesting season in-
dependently using the following mixed model:

Yik = n+ G+ Sj+ Bk(j) + GS(,]‘) + ik

where vy is yield of genotype i at location j and
block k; p is the overall mean; G; is the i-th genotype
fixed effect with i=1,...,g; S; is the j-th location ran-
dom effect with j=1,...,s and S;~N(0, 03); By is the
k-th block random effect at location j with k=1,....n
and By ~N(0, o3); GS(; is the genotype i by loca-
tion j interaction random effect with GSg) ~N(O,
04g); and g;« is the random error associated with ob-
servation y;;. Comparison through harvesting seasons
is particularly interesting since dynamics and charac-
teristics of plant-cane bud sprouting and growth are
different from those of ratoon crop [33]. Therefore,
different genome regions would be implied in yield of
both cane and sugar, through different crop ages. The
estimated means (Best Linear Unbiased Estimator,
BLUE) obtained from this model for CY and SC of all geno-
types were used for the association mapping analysis. The
analysis was performed using PROC MIXED in SAS soft-
ware 9.0 (SAS Institute 2004). A mixed model for associ-
ation mapping was used later (described below) and
therefore, BLUEs instead of BLUPs were used as genetic
values for the accessions to avoid double-shrinking [34—38].
Pearson correlation of genotypic means was estimated be-
tween traits in R software [39]. Broad-sense heritability
(H?) at an experimental level was calculated on a genotype
mean basis for each trait and at each location as the ratio of
genotypic to phenotypic variance, using the components of
variance obtained from a model adjusted as follows:

2
2 Je

ok +or

where 0% is the genetic variance, o2 the residual variance
and r the number of replicates [40].
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Table 1 Sugarcane accessions and their parents used in the genome-wide association study of cane yield and sugar content

Accession Female parent Male parent Accession Female parent Male parent
1. TUC 01-39 LCP 85-384 LCP 82-90 45. TUC 03-17 Unknown Unknown
2. TUC 01-40 TUC 89-5 HOCP 91-552 46. TUC 03-18 Unknown Unknown
3. TUC 01-41 HOCP 85-845 $89-P28 47. TUC 03-19 Unknown Unknown
4. TUC 01-42 TUC 84-31 HOCP 91-552 48. TUC 03-20 LCP 85-376 HOCP 91-552
5. TUC 01-43 CP 79-318 HOCP 91-552 49. TUC 03-21 HOCP 92-648 TUC 77-42
6. TUC 01-44 CP 79-318 HOCP 91-552 50. TUC 03-22 HOCP 92-648 TUC 77-42
7. TUC 01-45 TUC 90-5 HOCP 94-856 51. TUC 03-23 HOCP 91-555 TUC 91-11
8. TUC 01-46 HOCP 91-555 TUC 89-30 52. TUC 03-24 LCP 81-281 TUC 77-42
9. TUC 01-47 HOCP 92-624 HOCP 91-552 53. TUC 03-25 L 95-466 TUC 72-16
10. TUC 01-48 HOCP 93-746 TUC 77-16 54. TUC 03-26 TUC 89-28 TUC 91-2
1. TUC 02-27 HOCP 92-631 TUC 93-16 55. TUC 03-27 HOCP 91-559 HOCP 91-552
12. TUC 02-29 HOCP 92-675 LCP 82-89 56. TUC 03-28 CP 65-350 HOCP 93-754
13. TUC 02-30 TUC 89-32 CP 57-617 57. TUC 03-29 L 94-433 CP 88-2377
14. TUC 02-31 FAM 89-604 LCP 85-384 58. TUC 01-49 Unknown Unknown
15. TUC 02-32 RA 89-60 LCP 85-384 59. TUC 02-63 Unknown Unknown
16. TUC 02-34 TUC 87-2 TUC 77-42 60. TUC 02-64 CP 88-1162 LCP 85-384
17. TUC 02-35 HOCP 91-555 HOCP 92-64 61. TUC 02-65 CP 88-1162 LCP 85-384
18. TUC 02-36 HOCP 93-746 TUC 87-5 62. TUC 02-67 HOCP 94-806 TUC 89-30
19. TUC 02-37 TUC 87-2 L 91-264 63. TUC 02-68 HOCP 94-806 TUC 89-30
20. TUC 02-38 TUC 87-2 L 91-264 64. TUC 02-69 HOCP 94-806 LCP 85-384
21. TUC 02-39 HOCP 91-555 TUC 93-1 65. TUC 02-70 LCP 85-384 HOCP 83-750
22. TUC 02-40 HOCP 94-806 TUC 89-30 66. TUC 03-30 L 89-113 LCP 85-384
23. TUC 02-41 LCP 85-384 HOCP 83-750 67. TUC 03-31 TUC 92-3 HO 94-856
24. TUC 02-42 TUC 91-1 LCP 85-384 68. TUC 03-32 TUC 92-3 HO 94-856
25. TUC 02-43 LCP 82-89 HOCP 94-806 69. TUC 03-33 TUC 92-3 HO 94-856
26. TUC 02-44 L 90-178 TUC 93-1 70. TUC 04-1 Unknown Unknown
27. TUC 02-45 HOCP 85-845 HOCP 95-961 71. TUC 04-2 Unknown Unknown
28. TUC 02-46 HOCP 85-845 HOCP 95-961 72. TUC 04-3 TUC 77-42 LCP 85-384
29. TUC 02-47 HOCP 85-845 HOCP 95-961 73. TUC 04-4 TUC 93-87 TUC 77-42
30. TUC 02-48 HOCP 85-845 HOCP 95-961 74. TUC 04-5 TUC 93-8 LCP 85-384
31. TUC 02-49 HOCP 85-845 HOCP 95-961 75. TUC 04-6 TUC 93-98 TUC 87-3
32 TUC 02-50 Unknown Unknown 76. TUC 04-7 LCP 85-384 TUC 77-42
33. TUC 02-51 Unknown Unknown 77. HOCP 00-950 HOCP 93-750 HOCP 92-676
34. TUC 02-52 Unknown Unknown 78. TUC 01-55 HOCP 92-624 TUC 72-716
35. TUC 02-53 Unknown Unknown 79. TUC 01-56 HOCP 85-845 HOCP 92-631
36. TUC 02-54 Unknown Unknown 80. TUC 02-71 TUC 89-29 HOCP 92-631
37. TUC 02-55 Unknown Unknown 81. TUC 03-34 L 89-113 TUC 87-3
38. TUC 02-56 Unknown Unknown 82. TUC 03-35 HOCP 92-631 TUC 72-16
39. TUC 02-57 Unknown Unknown 83. TUC 03-36 TUC 93-98 RA 89-604
40. TUC 02-58 RA 87-2 L 91-264 84. TUC 03-37 TUC 92-3 HO 94-856
41. TUC 02-59 TUC 89-32 LCP 82-89 85. TUC 03-39 HOCP 92-648 TUC 87-5
42. TUC 02-60 LCP 94-806 LCP 85-384 86. TUC 03-43 HOCP 92-675 TUC 71-7
43. TUC 02-61 HOCP 91-555 TUC 95-23 87. LCP 85-384 CP 77-310 CP 77-407
44. TUC 02-62 TUC 89-28 L 94-424 88. TUCCP 77-42 CP 71-321 us 72-19
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Genotyping

DNA was extracted from frozen leaf tissue following the
Diversity Arrays Technology (DArT) Pty Ltd (Yarralumla,
Australia) protocol [41]. The quality and quantity of DNA
were verified on a 0.8 % agarose gel. All clones were geno-
typed using DArT [1] and TRAP markers [21, 22]. DArT
genotyping of the population mapping was carried out by
DArT Pty Ltd with the Sugarcane High Density 1.0 array.
This service involves two methods of complexity reduc-
tion (both based on PstI-based methyl filtration) against
the array containing 7680 probes. TRAP genotyping was
carried out according to [22] with minor modifications.
All PCR reactions were carried out in our lab and per-
formed in a Bio-Rad My clycler Termalcycler (Hercules,
CA, USA) in 5 pl reaction containing 50 ng DNA sample,
10X reaction buffer (Fermentas, Spain, EU), 2.5 mM
MgCl, (Fermentas), 0.088 mM of each dATP, dTTP and
dGTP, 0.072 mM of dCTP, 0.16 pM of each primer
(Table 2), and 0.5 U of Taqg DNA polymerase (Fermentas).
Different concentrations of Cy5.5-dCTP (GE Healthcare,
Buckinghamshire, UK) were included in the reaction de-
pending on the primer combination (Table 2). Amplifica-
tions were performed by initially denaturing the template
DNA at 94 °C for 2 min, followed by five cycles at 94 °C
for 45 s, 35 °C for 45 s, and 72 °C for 1 min, 35 cycles at
94 °C for 45 s, 50 °C for 45 s, and 72 °C forl min, and a
final extension step at 72 °C for 7 min. Loading dye was
added and 0.3 pl PCR products were separated on a
25 cm polyacrylamide gel (Amersham Biosciences)
(0.25 mm thick) in a LI-COR 4300 DNA Analyzer (LICOR
Biosciences, Lincoln, NE, USA) according to manufac-
turer’s instructions. Images were captured with slow scan
laser at 700 nm and analyzed with the SAGA™ software
(LICOR Biosciences). The product sizes were determined
by comparison with molecular weight marker LI-COR
IRDye 50-700 bp Size Standard (LICOR Biosciences).
TRAP markers, classified as 1 (presence) or 0 (absence),
and the binary data from DArT were used for association
analysis. All markers with a minor allele frequency (MAF)
lower than 0.1 were excluded from the GWAS analysis.

Genetic diversity and population structure

All polymorphic DArT and TRAP markers scored on
the 88 sugarcane accessions were used to estimate gen-
etic relationship among clones. Genetic dissimilarities
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between all pairwise combinations of clones were calcu-
lated using the Dice index [42]. Then, a Neighbor Join-
ing tree was built from the matrix of pairwise
dissimilarities using the Darwin software V.5.0.158 [43].

In order to detect and correct for population structure,
a PCA was carried out using a subset of 107 DArT
markers. All the available markers were not included in
this analysis mainly because using the same markers to
estimate population structure and then including them
in the model to test for an association could create a de-
pendency among terms in the model absorbing some of
the QTL effects [44]. The markers used for PCA were
sampled according to their position on different Linkage
Groups of the Homology Groups of a sugarcane map re-
cently published [45].

GWAS analysis

A mainstream mixed model GWAS analysis was con-
ducted following [19] and [46]. Associations between mo-
lecular markers and quantitative traits were determined
following the general linear mixed model for each year:

Y=X+Qu+e

where Y is the phenotypic means vector (i.e. BLUEs from
field analysis), X is the incidence matrix of molecular
markers, B is the vector of parameters related to the
simple regression of the markers on the phenotypes, Q
are the eigenvectors of the significant axes of the PCA
matrix, v is a vector of predicted values of population
structure, and e is the vector of random errors. The
PCA scores were used in the model as random compo-
nents following [19] and [46]. Modeling population
structure as random effects not only does the relatedness
matrix capture population structure, but also encodes a
wider range of structures, including cryptic relatedness
and family structure [36, 47, 48]. The significant PC axes
included in the model were determined with the Tracy-
Widom statistic [46]. The analyses were performed using
R-code developed by the author’s with modifications
from the emma [49] and GAPIT [50] packages and re-
cently published [40] using the R software 3.0.0. The
code will be uploaded to the R-Cran repository as
mmQTL package [51]. Briefly, a two-step approach was
followed to arrive to a multi-QTL model. First, a

Table 2 Conditions for sugarcane TRAP genotyping used in the GWA study of sugarcane breeding population

TRAP Primer forward Primer reverse “Cy5.5-dCTP [uM]
Name Sequence (3'-> 5" Name Sequence (3->5)

T4 SuPS/ Sucrose phosphate synthase CGACAACTGGATCAACAG Arbi-2 GACTGCGTACGAATTGAC 0.8

T15 SuPS/ Sucrose phosphate synthase CGACAACTGGATCAACAG Arbi-3 GACTGCGTACGAATTTGA 0.5

T17 DirH/ Dirigent protein TGGAGATTTTTGGAGGAAC Arbi-2 GACTGCGTACGAATTGAC 05

“Final concetration of Cy5.5-dCTP in reaction
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marker-by-marker scan of the genome was conducted to
identify significant marker-trait associations with a false-
discovery rate (FDR) (a=0.05) to control for multiple
testing. Since a large number of significant marker-trait
associations were found, and to report the more relevant
QTL, a second pruning of markers with a more strin-
gent FDR P-value (0.01) was conducted. Second, all sig-
nificant markers were fitted in a single final multi-QTL
model adding markers at a time in a stepwise-forward
selection manner to control for residual QTL and to
identify QTL following [52—-54]. The Wald statistic with
a liberal P-value <0.01 following [19, 36] was used for
this model.

QQ-plots assuming a uniform distribution of P-values
under the null-hypothesis of no-QTL (i.e., Schwederand
Spjetvoll plots; [55]) were used to evaluate the models.
Briefly, the observed P-values values are plotted against
the expected theoretical values (i.e. cumulative density
function) for a uniform distribution. This is standard
methodology to evaluate the models ability to control
for spurious association [17, 36, 56]. These analyses were
also performed in R statistical software.

Analysis of sugarcane DArT marker sequences associated
to important traits

Sequences from sugarcane DArT markers significantly
associated with CY or SC at least in 2 years of study and
DArT markers significantly associated with a trait in the
multi-QTL model that resulted in highest Allelic Substitu-
tion Effect (ASE) were used to determine their similarity
and position on the sorghum genome. This was con-
ducted by using BLASTN 2.2.22 [57] on non-redundant
databases of sorghum sequences with different algorithms.
First, “Megablast” was employed to identify query se-
quences. In the cases where no significant similarity was
found, a second algorithm “Discontiguous megablast” was
chosen since it uses an initial seed that ignores some bases
and is intended for cross-species comparisons. Finally,
when no significant similarity was found using the second
algorithm, BLAST was performed using “blastN”.

Results

Phenotypic data, molecular markers, panel diversity and
population structure

The 88 sugarcane clones used in this study were pheno-
typed by SCBP-EEAOC for CY and SC during 2009,
2010 and 2011 and genetically characterized by DArT
and TRAP markers. The BLUE values obtained with the
adjusted model, described above, were 48 to 85 t ha™ for
CY and 9.2 to 10.9 % for SC (Table 3 and Additional file
2). The genetic correlations observed between years for
CY were 0.60 for 2009 and 2010, 0.78 for 2010 and
2011, and 0.50 between 2009 and 2011. Meanwhile, gen-
etic correlations observed between years for SC were
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Table 3 Descriptive statistics of cane yield (CY) and sugar
content (SC) from field trial of all genotypes evaluated in the
GWA study

CY(tha™) SC (%)

Mean (V. Mean V.
Plant-cane (2009) 47.70 0.20 922 0.08
First ratoon (2010) 75.14 0.13 1062 0.06
Second ratoon (2011) 84.95 0.12 10.88 0.06

CV coefficient of variation

0.40 for 2009 and 2010, 0.72 for 2010 and 2011, and 0.46
between 2009 and 2011. There were low correlations be-
tween CY and SC across years (-0.06, -0.24 and -0.14 for
2009, 2010 and 2011, respectively), being only significant
(P-value <0.05) correlation among CY 2010 and SC 2010
(Additional file 3). Results of broad-sense heritability for
both trait and location are presented in Table 4. CY was
under strong genetic control, since estimates of broad-
sense heritability were high, ranging from 0.51 to 0.84. Es-
timates of H? for SC were also high (from 0.55 to 0.80),
with the only exception for SC 2010 with a moderate
value of H? of 0.30. This high estimates of heritability indi-
cated that the field trials produced good-quality data for
the association study.

Out of the 7680 probes evaluated in the DArT array,
1642 markers were informative (i.e. polymorphic, with a
MAF higher than 0.10). Out of the 177 TRAP markers
evaluated, only 103 markers were included in the GWAS
and 74 were excluded because the MAF was lower than
0.1. Among the 1642 informative DArT markers, 258
were mapped on the recently published sugarcane gen-
etic map [45].

Diversity analysis using all the informative TRAP and
DArT markers revealed no particular structure in the
mapping population (Fig. 1 and Additional file 4; http://
dx.doi.org/10.5061/dryad.mv88m). The most closely
related clones (parent—descendant or full-sib) were
grouped in the same area of the neighbor-joining tree.
However, they do not form outstanding branches. Sur-
prisingly, there were two exceptions where full-sib

Table 4 Broad-sense heritability (H?) at each location and at
each crop cycle for Cane Yield and Sugar Content

Crop Traits Location

cycle Cerco Represa Santa Ana

Plant Cane Yield 2009 0.747 0.513
Sugar Content 2009 0.666 0618

Ratoon 1 Cane Yield 2010 0.758 0.649
Sugar Content 2010 0.553 0.301

Ratoon 2 Cane Yield 2011 0.699 0.835
Sugar Content 2011 0.800 0.596
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Fig. 1 Neighbour-joining tree based on the Dice dissimilarity index calculated from 1745 polymorphic markers data (103 TRAP and 1642 DArT)
assembling the 88 sugarcane genotypes

clones were located in different branches, i.e. TUC 02-
38 and TUC 02-37 whose genealogical records indicate
that they are descendant from the same parents; and
TUC 03-32 that would be full-sib with TUC 03-31, TUC
03-33, TUC 03-37 and TUC 04-4, and grouped separ-
ately from the rest. At the most distant branch, located

at the lower right portion of the tree, grouped LCP 85-
384 and most of the clones derived from this variety. At
the lower center position of the tree, clones derived from
HOCP 85-845 were grouped. Then, at the lower left por-
tion of the tree, TUCCP 77-42 and clones derived from
this variety were located. On the other hand, the first three
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axes of the PCA using 107 DArT markers distributed
across the sugarcane genome were significant following
the Tracy-Widom statistic. The PCA scores for each geno-
type at each axes were included as random covariates in
the GWAS model to model the variance-covariance
matrix among genotypes. The first two axes explained
7.47 and 4.99 % of the total variation, respectively (Fig. 2).
The first axis could be associated to filial relations; where
two groups seems associated to LCP 85-384 offspring
(right side of the PC1 axis) and non-LCP 85-384 offspring
(left side of the PC1 axis). At PC2 level, TUCCP 77-42
variety was distant from the rest of the genotypes. Results
showed at Fig. 2 are congruent with those previously men-
tioned in Fig. 1, since clone descendant from LCP 85-384
were detached from the rest of genotypes.

GWAS analysis

GWAS analysis was conducted by using 1638 discrete
markers (1535 DArT and 103 TRAP). QQ-plots of P-
values showed that population structure was properly
accounted for by using a stratified selection of markers
to correct for population structure as random effect
(Additional file 5). In the present study, 43, 42 and 41
markers significantly associated (FDR a = 0.01) with CY
in 2009 (cane plant), 2010 (first ratoon) and 2011 (sec-
ond ratoon), respectively, were found. In addition, 38, 34
and 47 significant marker-trait associations for SC were
detected, in 2009 (cane plant), 2010 (first ratoon) and
2011 (second ratoon), respectively (Additional file 6).
Certain stability across crop-cycles was observed since
twenty markers were found to be associated with CY in
2 years of study, being the coincidence between 2010
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and 2011 (first and second ratoon) more frequent. For
SC, one marker-trait association was found significant
for the 3 years of study, while twelve markers presented
association for 2 years. These association were also more
frequent when 2010 and 2011 years were involved
(Table 5). Mostly markers associated with one trait were
not associated with the other; however, four markers
were associated with both traits (M54 for CY-2010, CY-
2011 and SC-2011; M58 for CY-2010, CY-2011 and SC-
2011; M173 for CY-2010, SC-2010 and SC-2011; and,
M188 for CY-2010, SC-2010 and SC-2011).

A multi-QTL model by year was constructed with
markers significantly associated with each trait. Consid-
ering the 3 years, 23 markers were significant in the
multi-QTL for CY while 21 remained significant in the
multi-QTL for SC (Table 6). For CY, markers M100,
M120, M140, M200 and M202 had allelic substitution
effect (ASE) larger than 8.33 t ha™. For SC, M28, M51
and M171 had ASE larger than 0.70 %. Marker M64 was
detected in more than 1 year in the multi-QTL model
(SC 2010 and 2011). The effect of this marker was the
same in the 2 years of association and 57 % of the geno-
types analyzed had the favorable allele for this marker.

Sugarcane DArT markers sequences on sorghum genome
The 27 available sequences of DArT markers signifi-
cantly associated with a trait in at least 2 years of study
were blasted to the sorghum genome sequence database
(Table 5). When the sequences of sugarcane DArT
markers were analyzed, three of them were found to
present the same nucleotide sequence. This was useful
as internal control because genotypes presented the
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Fig. 2 The top two axes of variation of 88 sugarcane clones studied resulting of Principal Component Analysis by using 107 DArT markers
distributed across the genome. The percentage of variation represented by each component is in parentheses. Accessions are colored according
to their parentage with LCP 85-384. Progeny of LCP 85-384 are in black triangle (A); the remaining genotypes are in empty circles (O)




Table 5 Summary of results found for markers associated with traits of interest at least in two years of study and comparison with sorghum genome

Locus  Cane Yield Sugar Content DAIT BLAST Result from Identity Expect Locus tag Sorghum GenBank ID

2009 2010 2011 2009 2011 ;ezc;u(%r;c)e 2lgor|thm ZIfngr/wsfment with S. chromosome
M151 * 748 blastn hypothetical protein 49/64(77 %) 0.001 Sb01g041060 1 XM_002468130.1
M97 * * 456 m blast hypothetical protein  419/459(91 %) 9.00E-173  Sb02g004780 2 XM_002461519.1
M41 ** 263 blastn hypothetical protein 45/58(78 %) 0.25 $b02g028450 2 XM_002460412.1
M91 * * 404 dm blast hypothetical protein 68/68(100 %) 1.00E-27 Sb03g004640 3 XM_002457229.1
M64 * * 291 m blast hypothetical protein  287/291(99 %) 6.00E-143  Sb03g035700 3 XM_002456357.1
M78 * * 474 m blast hypothetical protein 79/83(95 %) 4E-30 Sb04g025280 4 XM_002452369.1
M125 * * 1048 dm blast hypothetical protein 87/121(72 %) 9E-08 Sb05g000890 5 XM_002448838.1
M95 * * 545° dm blast hypothetical protein 122/146(84 %) 2E-37 Sb06g014780 6 XM_002447689.1
M50 * * 5452 dm blast hypothetical protein 122/146(84 %) 2E-37 Sb06g014780 6 XM_002447689.1
M120 * * 457 m blast hypothetical protein  407/435(94 %) 0 Sb069g000450 6 XM_002445961.1
M57 xxx 60 blastn hypothetical protein 20/21(95 %) 0.34 Sb06g000690 6 XM_002445988.1
M189 * * 355 blastn hypothetical protein 18/18(100 %) 12 Sb06g025190 6 XM_002448276.1
M46 * * 371° m blast hypothetical protein 119/121(98 %) 4E-54 Sb07g020840 7 XM_002444326.1
M30 * ** 384P m blast hypothetical protein 119/121(98 %) 4E-54 Sb07g020840 7 XM_002444326.1
M71 * * 425 blastn hypothetical protein 59/73(81 %) 3.00E-09 Sb08g022800 8 XM_002443601.1
M58 ** * * 566° m blast hypothetical protein  354/371(95 %) 7E-168 Sb09g002270 9 XM_002439164.1
M54 ** * * 566° m blast hypothetical protein  354/371(95 %) 7E-168 Sb09g002270 9 XM_002439164.1
M168 * 384 m blast hypothetical protein  368/384(96 %) 7E-176 Sb09g015250 9 XM_002440847.1
M59 * * 468 blastn hypothetical protein 23/25(92 %) 0.13 Sb09g007900 9 XM_002439437.1
M193 * ** 604 blastn hypothetical protein 18/18(100 %) 2.1 Sb09g014225 9 XM_002439535.1
M153 * 753 dm blast hypothetical protein 85/87(98 %) 6E-35 Sb10g006890 10 XM_002437984.1
M14 * 427 blastn hypothetical protein 23/24(96 %) 043 Sb10g010770 10 XM_002438218.1
M188 * * 578 blastn hypothetical protein 29/34(85 %) 0.59 Sb10g023910 10 XM_002437224.1
M45 x* * 749 blastn alpha kafirin 79/98(81 %) 3.00E-18 unassigned Y17556.1
M181 ** * 749 blastn alpha kafirin 46/46(100 %) 5E-16 unassigned Y17556.1
m108  * * 488 m blast alpha kafirin 61/62(98 %) 7E-23 unassigned Y17556.1
M173 * * 662 blastn alpha kafirin 39/41(95 %) 5E-09 unassigned Y17556.1
M5 * na
M86 * na
M32 * * na

T 191 (910T) Abojoig 1upjd DN ‘|p 12 Opadey

91 Jo 6 abeyd



Table 5 Summary of results found for markers associated with traits of interest at least in two years of study and comparison with sorghum genome (Continued)

M198  * * na
M197  ** * na
M203  * * na

na not available sequence

FDR P-values: * p < 0.01; ** p <0.001; and *** p <0.0001
2 b Sndicate same nucleotide sequence for two diferent DAIT marker
4megablast (m blast), discontiduous mega blast (dm blast) or blastn

Data in bold = more significant alignment i.e. larger sequence size with high identity and lower Expected value

T 191 (910T) Abojoig 1upjd DN ‘|p 12 Opadey
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Table 6 Significant markers associated to cane yield and sugar content and their allelic substitution effect (ASE) in the multi-QTL

model for the sugarcane GWAS panel

Cane VYield

2009 2010

locus ASE® P- value® locus ASE®

M155 411 0.00859 M120 -8.70

M17 535 0.00114 M140 991

M185 7.18 0.00012 M188 419

M200 -8.36 0.00001 M189 552

M30 -4.41 0.01525 M197 7.29

M35 -6.00 0.00464 M59 -4.71
M72 -8.22

Sugar Content

2009 2010

locus ASE® P- value® locus ASE®

M147 03 0.04552 M103 -03

M156 -0.54 0.00011 M124 -0.31

M181 0.55 0.00011 M153 042

M28 -0.81 0.00005 M171 -0.76
M177 -0.38
M183 -0.23
M206 0.33
M5 04
M64 -048

2011
P- value® locus ASE® P- value®
0.00001 M100 8.69 0.00013
0.00002 M105 -4.78 0.00692
0.01031 M131 6.36 0.00028
0.01048 M145 -4.19 0.02756
0.00007 M166 4.17 0.01292
0.00441 M193 -4.71 0.01644
0.00002 M202 892 0.00001
M47 551 0.00361
M98 -747 0.00694
M99 6.65 0.01779
2011
P- value® locus ASE® P- value®
0.00728 M101 -0.53 0.00001
0.00873 M15 042 0.00293
0.01627 M150 -0.22 0.04433
0.0000002 M194 0.29 0.01277
0.00374 M205 -0.38 0.00293
0.06801 M51 0.71 0.00006
0.01723 Moe4 -048 0.00017
0.00181 M86 0.25 0.02331

0.00003

2Allele Substitution Effect. Values for cane yield were transformed from Kg plots™ to t ha™ after of the analysis for a better depiction. Values for Sugar Content are

expressed in %. Negative sign indicate that the absence of the marker is the desirable allele

bp-value of individual markers in the multi-QTL model

same configuration (absence or presence) for markers
with the same sequence. Most of alignments involved se-
quences of hypothetical proteins of sorghum showing a
high identity and low e-values. Noticeably M120 showed
a high identity (94 %) with a sorghum sequence located
on chromosome 6 with an e-value of 0, indicating that
there is no probability of alignments with scores equiva-
lent to or better in a database search by chance.
Similarly, sequences of DArT markers significantly as-
sociated with a trait in the multi-QTL model that re-
sulted in highest ASE value (M100, M120 and M140 for
CY; M28, M51, M64 and M171 for SC) were blasted to
the sorghum genome sequence database. Results are
shown in Table 7, markers M120 and M64 were not in-
cluded since they were already shown in Table 5. Other
markers with highest ASE value that were not blasted
since no sequence information is available, were TRAP
markers M200 and M202, which derive from T15 and
T17 amplifications respectively (see Table 2). Interestingly,

some DArT markers, mainly associated with SC, showed
high identity with an alpha kafirin protein that it is in-
volved in the storage of nutritious substrates.

Discussion

In the last decade, several approaches tested in plant
genetics have allowed the precise identification of “desir-
ables” alleles at molecular level. In the most recent years,
the development of association mapping for this purpose
has gained large importance. In this work, association
mapping was used in sugarcane to identify molecular
markers associated with both sugar and biomass yields.
The quantitative nature of both traits and the polyploid
genome of this crop make the use of association map-
ping a great challenge compared to other studies con-
ducted for crops with less complex genomes. Even
considering that, in the present study we were able to
detect QTL for both traits, which are consistent across
harvesting seasons.
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Table 7 Results of alignments of markers associated with cane yield and sugar content with higher value of allelic substitution
effect (ASE) in the multi-QTL model for the sugarcane GWAS panel against Sorghum bicolor sequences

Trait Marker DAIT sequence  BLAST algorithm?  Result from alignment with |dentity Expect  Sorghum Accesion N°
size (pb) S. bicolor chromosome

CY 2010 M140 487 blastn Sorghum bicolor clone BAC ~ 100/132 (76 %) 7.00E-18 8 AY661656.1
88 M4, complete sequence

CY 2011 M100 318 blastn Sorghum bicolor putative 73/95 (77 %) 2.00E-10 1 AF466201.1
cytochrome P450-like protein

SC 2009 M28 470 dm blast alpha kafirin 59/62 (95 %) 1.00E-19  unassigned Y17556.1

SC 2010 M171 711 m blast alpha kafirin 74/86 (86 %) 5.00E-21  unassigned Y17556.1

SC 2011 M51 579 dm blast Sorghum bicolor 74/94 (79 %) 200E-14 6 XM_002448117.1

hypothetical protein,

mMRNA

@ megablast (m blast), discontiduous mega blast (dm blast) or blastn

Population mapping

Several studies suggest that the use of elite germplasm
could be useful for association mapping [58-60], al-
though there are only a few approaches conducted with
this type of population in plant crops (see [60] for a re-
view). In order to take advantage of the available large
phenotypic data accumulated from replicated field
experiments over locations and years for the SCBP-
EEAOQOC, association mapping was conducted over acces-
sions of its current elite breeding pool (genotypes of the
advanced vyield trails). All genotypes characterized in the
present study were planted and evaluated at the same
time obtaining both balanced data across environments
and an extensive phenotyping. Therefore, although
population sizes are relatively small, the high quality ex-
tensive phenotyping provides a reasonable foundation
for the GWAS study. Small population sizes would re-
sult in decreased power to detect QTL [61, 62] and in-
creased false-positive rate [63, 64]. However, assembling
large populations in sugarcane could be a challenge
mainly because of the phenotyping requirements and
the relative size of the breeding programs. Furthermore,
exploring diverse germplasm not adapted to local condi-
tions and with strong population structure could hinder
the QTL detection due to the additional challenge of
modeling such population structure [65]. Additionally,
the mapping approach (i.e., candidate-gene or genome-
wide), the relatedness of the individuals, the extent of
LD, and the number of markers will determine the opti-
mal population size in GWAS studies [60]. Finally,
population sizes close to 100 have been used elsewhere
as a first approach to QTL mapping in other species
[66-70]. Recent sugarcane GWAS studies included 189
and 183 individuals [27, 71]. However, since the experi-
mental population in the present study was a representa-
tive sample of the population to which inference is
desired, it is expected that the information obtained
from the association study will be useful and readily ap-
plicable to local crop improvement [6].

Controlling population structure
The presence of subpopulations in the mapping population
creates a challenge for association studies. Several methods
have been proposed for dealing with false positives related
to population structure [16—18]. In that sense, many stud-
ies conducted especially with small datasets and diploid or-
ganisms implemented the method proposed in the freely
available software Structure [16]. However, in the case of
sugarcane considering its complex polyploid genome, sev-
eral assumptions are not fulfilled for the use of Structure;
therefore, the applicability of this algorithm may be limited
in sugarcane [72]. For example, in a previous study in sug-
arcane [73], when population structure was taken into ac-
count by using Structure, arbitrary subpopulations of the
genotypes were observed; however, as there were no clear
discontinuities in the population, this algorithm failed to
conclusively group the population [28]. In the present
study a GWAS mapping was applied within a mixed-
model framework according to [19] and [46]. Spurious as-
sociations were controlled while the power to detect true
associations was maximized by using a PCA as a random
component to control for population structure [19, 36,
46-48]. When PCA as a random component is included
in the analysis, the large population structure is captured
with the first few axes that account for most of the vari-
ation while the more subtle relationships among individ-
uals are captured by the remaining significant axes.
Population structure was inferred with an independent
set of markers to avoid dependency among terms in the
model and to prevent the structure from absorbing the
QTL effects from the model [44, 46]. A sub-set of avail-
able markers to infer population structure has been used
in other studies [44], including sugarcane [27]. Gouy et
al. [27] used a sub-set of the available markers to ensure
genome coverage and avoid over-representation of gen-
omic regions. The sugarcane DArT-based map recently
published [45] was used to sample independent markers
of each linkage group. Furthermore, QQ-plots of P-
values showed that population structure was properly
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accounted for by using a stratified selection of markers
to correct for population structure as random effects
(Additional file 5). On the other hand, using a random
selection of markers without accounting for marker pos-
ition failed to properly account for population structure
(data not shown). Additionally, the grouping observed at
PC1 has a biological interpretation, reflecting genetic
variation among progeny (Fig. 2). For instance, the right-
hand side of the plot includes cv. LCP 85-384 and its
progeny; while the left-hand side represents the
remaining genotypes. This was also found in other stud-
ies, where LCP 85-384 was genetically more distant to
modern varieties [74—76]. Cultivar LCP 85-384 is a BC,
derived line of S. spontaneum US 56-15-8 and therefore
have a strong wild genetic component [74]. TUCCP 77-
42, another variety with a strong wild genetic compo-
nent (BC; of S. spontaneum SES 147B), was distant from
the rest of the genotypes at PC2 level (Fig. 2). These re-
sults showed enough evidence of the ability of these few
markers (107) used in the PCA to reveal the genetic
background of genotypes. Furthermore, most of the
structure found in these genotypes seems to come from
subtle kinship relationships more than large-scale popula-
tion structure. Our method properly accounted for these
relationships.

Sugarcane GWAS

Association studies are becoming a popular strategy for
unraveling the genetic underlying complex traits. The
first association mapping studies conducted in sugarcane
have focused on genome-wide approaches attempted at
looking for associations between disease resistance and
molecular markers [27, 71, 73, 77, 78]. Few reports were
found [27, 28] involving associations between molecular
markers and traits related with cane and sucrose yield
and/or yield components. Wei et al. [28] conducted a
study where field-data for cane yield (t ha') and com-
mercially extractable sucrose content were obtained in
plant-cane. However, one of the major concerns in order
to find markers contributing to yield during several ages
is the repeatability of the marker—trait associations
across harvesting seasons (mainly for ratoons). Another
study including sucrose yield and yields components,
among other traits, was carried out by Gouy et al. [27],
obtaining plant-cane phenotypic data from trials planted
during different season or years and locations. However,
only a few marker-trait associations were detected for
the traits analyzed. In that sense, in the present study
several markers (20) were found to be associated with
CY in at least 2 years, being more frequent the coinci-
dence among first and second ratoon. Sequences of four
markers (M58, M54, M97 and M120) showed very high
similitude and low e-value with coding sequences of
Sorghum bicolor. Sequences of M58 and M54 were
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found to be the same, and they presented high identity
and low e-value with a sequence located on chromo-
some 9 from Sorghum bicolor, where QTLs for plant
height and tiller number were previously found [79]. Se-
quence of M97 was located on chromosome 2 of Sor-
ghum bicolor, were QTLs for stem diameter and plant
height were previously reported [80] and validated later
[79]. Regarding M120 marker, whose effect was
8.70 t ha™ in the multi-QTL model, the sequence of this
marker presented high similitude with a Sorghum bicolor
sequence located on chromosome 6, where QTLs for
stem biomass yield, plant height and tiller number were
reported in different studies (see [79]).

For SC, one marker-trait association was found signifi-
cant for the 3 years of study. This marker, M64, showed
high identity (99 %) and low e-value (6,00 E-143) with a
sequence located in chromosome 3 from Sorghum bi-
color, where several QTL related to sugar content were
previously reported (Glucose content [80]; Sugar content
[81]; Brix°, Juice Sugars g L' and Juice Sucrose g Lt
[82]) and validated [79]. Moreover, in our multi-QTL
model, M64 showed the same marker effect (-0.48 %) in
two consecutive years (2010 and 2011), indicating that a
negative selection for this marker could increase SC.

The highly conserved sequences found in the sorghum
genome confirm the usefulness of this database to study
regions of interest in sugarcane genome. Sequence of
marker M120 presented 407 identical nucleotides with
an e-value of zero, suggesting that this is a region shared
by sugarcane and sorghum. Other sugarcane sequence
markers were also significantly similar to sorghum,
which is in agreement with previous studies [24, 25, 83]
that reported a high gene microlinearity between sor-
ghum and sugarcane.

Even though this GWAS study is mostly focused on
exploring the entire genome with DArT makers, also
TRAP markers that targeted to coding regions were
employed. This information resulted useful in finding re-
gions controlling traits of interest since three of the 103
TRAP markers used for association analysis were signifi-
cantly associated with CY in 2 years of study.

It is important to highlight the challenge in finding
strong marker-trait associations in complex polyploid spe-
cies using dominant markers. It is well known that this
type of markers are less informative than co-dominant
ones, especially in polyploids, because copies of homolo-
gous chromosomes “dilute” the polymorphisms. When
the markers are evaluated with a binary system, they are
scored as O for the absence of the allele, or 1 for the pres-
ence of at least one copy of the allele. This constitutes one
intrinsic limitation of the method that is associated
with overlooking ploidy level [84]. In that sense, fur-
ther research need to be conducted to investigate the
establishment of associations between continuous data
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obtained from DArT markers and allele dosage, instead of
binary data. This would probably increase the number of
markers associated with characteristics of interest. More-
over, considering that the study was carried out on a panel
of sugarcane varieties and elite lines, most favorable alleles
would probably be fixed; however, no single variety has all
favorable alleles giving an opportunity to accumulate
those alleles and thus achieve crop improvement.

Conclusions

This study demonstrated that association mapping in elite
germplasm seems to have a clear potential for improving
sugarcane, especially for complex traits such as CY and SC,
for which measurements are costly and time consuming.
Combining existing phenotypic trial data and genotypic
DArT and TRAP marker characterizations within an LD
approach using PCA as a random component to control
for population structure may prove to be highly successful
to find molecular markers significantly associated with the
measured traits. Two aspects were key to obtain the results
shown here: the high quality of phenotypic data from the
EEAOC-SCBP collected in successive crop cycles and
under the same environmental conditions for all genotypes;
and the adequate selection of markers to be used in the
analysis of population structure, since the choice of markers
that do not adequately reflect the presence of such struc-
ture could hinder the detection of QTLs of interest. Add-
itionally, sequences of DArT marker associated with trait of
interest were aligned in chromosomal regions where sor-
ghum QTLs has been previously reported. The whole role
of these regions will need to be further investigated.

Even though the small size of the population could
affect the power of the GWAS and increase false positive
rate [85], findings reports here must be considered early
evidence about the genome regions and markers associ-
ated with the genetic control of yield-related characteris-
tics in sugarcane and should be further validated.
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Additional file 1: Table S1. Sites, geographic coordinates, and
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Additional file 2: Table S2. Dataset of BLUE values obtained for each
genotype from model adjusted as described in Methods Section.

CY = Cane Yield; SC = Sugar Content. Table S3. Marker dataset for each
genotype. (XLSX 520 kb)

Additional file 3: Figure S1. Scatterplot matrix and genetic correlation
(upper diagonal) between traits. CY = Cane Yield; SC = Sugar Content.
(JPG 5656 kb)

Additional file 4: Table S4. Dataset of 1745 polymorphic DArT and
TRAP markers scored on the 88 sugarcane accessions and used to
estimate genetic relationship among clones. Table S5. Dice distances
matrix. Table S6. Ultrametric distances matrix. (XLSX 596 kb)

Additional file 5: Figure S2. Quantile-quantile plots for the P-values
achieved in the genome-wide association studies (GWAS). (JPG 94 kb)
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Additional file 6: Table S7. Significant marker-trait associations found
in the GWA study on a sugarcane breeding population considering a
false-discovery rate (FDR, a=0.01) to control for multiple testing. Markers
associated to more than one trait are in bold. CY = Cane Yield; SC = Sugar
Content. (DOCX 26 kb)
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