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Abstract

Background: Single-nucleotide polymorphisms (SNPs) have become the genetic markers of choice in various
genetic, ecological, and evolutionary studies. Genotyping-by-sequencing (GBS) is a next-generation-sequencing
based method that takes advantage of reduced representation to enable high-throughput genotyping using a

large number of SNP markers.

Results: In the present study, the distribution of non-redundant SNPs in the parents of 12 rice recombination line
populations was evaluated through GBS. A total of 45 Gigabites of nucleotide sequences conservatively provided
satisfactory genotyping of rice SNPs. By assembling to the genomes of reference genomes of japonica Nipponbare,
we detected 22,682 polymorphic SNPs that may be utilized for QTL/gene mapping with the Recombinant Inbred
Lines (RIL) populations derived from these parental lines. Meanwhile, we identified polymorphic SNPs with large
effects on protein-coding and miRNA genes. To validate the effect of the polymorphic SNPs, we further investigated a
SNP (chr4:28,894,757) at the miRNA binding site in the 3'-UTR region of the locus Os4g48460, which is associated with
rice seed size. Os4g48460 encodes a putative cytochrome P450, CYP704A3. Direct degradation of the 3'-UTR of the
CYP704A3 gene by a miRNA (osa-miRf10422-akr) was validated by in planta mRNA degradation assay. We also showed
that rice seeds of longer lengths may be produced by downregulating CYP704A3 via RNAI.

Conclusions: Our study has identified the genome-wide SNPs by GBS of the parental varieties of RIL populations and
identified CYP704A3, a miRNA-regulated gene that is responsible for rice seed length.
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Background

Rice is the first crop plant from which a high-quality ref-
erence genome sequence from a single variety has been
produced. Single nucleotide polymorphisms (SNPs) may
be functionally responsible for specific traits or pheno-
types, or they may be informative in tracing the evolu-
tionary history of a species or the pedigree of a variety.
SNPs are rapidly replacing simple sequence repeats (SSRs)
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because these are more abundant, stable, amenable to
automation, efficient, and increasingly cost-effective [1].
SNPs have become the genetic marker of choice in the
analysis of partially or completely sequenced genomes
due to its ubiquity in the genome [2]. In rice, the pri-
mary sequencing data that led to the first whole-genome
SNP discovery was derived from the draft sequences of
the japonica cultivar Nipponbare and indica cultivar
93-11 [3, 4]. The SNP pools were mainly limited to two
varieties. Another SNP discovery set from the OryzaSNP
project has identified approximately 160,000 high-quality
SNPs and has provided more insights by detecting in-
formative SNPs across 20 diverse rice varieties [5]. Next-
generation sequencing at 19x coverage across 517 rice
varieties has identified over 3.6 million SNPs, of which
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167,000 SNPs were located within coding regions [6]. Re-
cently, rice re-sequencing projects have been conducted
for various germplasm [7-9].

The decreasing cost, along with the rapid advancement
of next-generation sequencing technology and related
bioinformatics resources, has facilitated the large-scale
discovery of SNPs in various plant species. Genotyping-by-
sequencing (GBS) is a next-generation-sequencing based
method that takes advantage of reduced representation to
enable high-throughput genotyping of a large number of
SNP markers. GBS has been applied in SNP genotyping
for quantitative trait loci (QTL) mapping and gene iden-
tification in rice [10-12]. The TASSEL-GBS pipeline
successfully fulfills the following key design criteria: (1)
Ability to run on the modest computing resources, includ-
ing desktop or laptop machines with only 8-16 GB of
RAM; (2) Scalability from small to extremely large studies,
in which hundreds of thousands or even millions of SNPs
can be scored; (3) Applicability in a fast-breeding context,
in which rapid genotyping is required due to the high fre-
quency of tissue collection [13].

A total of 12 parental lines were selected for GBS be-
cause of their specific characteristics, including grain
quality in rice breeding. Guichao2 and IR24 are two var-
ieties with indica rice characters such as seed type and
disease resistance [14]. Guichao2 was of interest because
of its wide range of adaptability, high yield potential, and
could be planted as an early, or middle, or late variety.
However, this particular variety was later excluded be-
cause of bad grain quality. Koshihikari and Asominori
are varieties from Japan, and USSR5 is a variety from
Russia that shows typical japonica rice characters such
as good quality, but is susceptible to rice strip virus dis-
ease (RSVD) [15]. Sasanishiki is a high-yielding indica
cultivar [16]. Habataki has very high yield potential and
a short, stiff stem, but is susceptible to cold during boot-
ing and early growth [17]. Kasalath harbors resistance
genes against standard differential blast isolates from the
Philippines and Japan [18]. Nanjing35 has superior grain
yield, but poor appearance. N22 possesses QTL/genes
related to dormancy [19]. RILs and NILs derived from
these parental varieties are currently under investigation
for genes controlling agronomic traits; therefore the
SNP database will be very useful for gene mapping and
isolation by using high-density SNP markers. The num-
ber of recombination events and the marker density of
parental varieties determine the resolution of gene map-
ping. By using the cost-effective GBS approach, we have
detected SNPs among the parents of 12 rice recombin-
ation line populations.

The P450s in biosynthetic pathways play critical roles
in the synthesis of lignins, pigments, defense compounds,
fatty acids, hormones, and signaling molecules [20].
CYP704 shows higher homology with CYP86, CYP94,
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CYP96 compared to the other P450s, and these are all
non A-type P450s belonging to CYP86 [21]. CYP704B2 is
involved in anther cutin biosynthesis and pollen exine for-
mation in rice [22]. CYP704A3 is a member of the CYP
family, and most of its family members are located in the
ER [20], including CYP78A13, which influences grain size
and yield in rice [23]. We herein report SNPs for the
parental varieties of mapping populations and a miRNA
regulated gene, CYP704A3, underlying rice seed size.

Results

Sequencing and variation calling

We identified a total of 22,682 polymorphic SNPs in 12
parental varieties and Nipponbare in relation to the ref-
erence genome (Additional file 1: Table S1). To explore
the genomic distribution of the patterns of DNA poly-
morphisms between the indica and japonica subspecies,
the SNP count based on our sample was plotted along
each chromosome (Fig. 1). SNP count (Fig. 1, solid line)
was defined as the number of SNPs in a 200-kb interval.
Non-random patterns of SNP distribution were observed,
with highly different SNP frequencies detected on all
chromosomes. These data support previous findings that
polymorphisms in the rice genome (from the indica-
japonica perspective) are non-randomly distributed [24].
Relatively low SNP polymorphisms were observed in the
regions highlighted in green bars (Fig. 1), which could be
due to stringent recombination restrictions, or lack of re-
striction enzyme sites or reads in these regions. More
markers need to be developed in these low-density SNP
regions for QTL/gene mapping.

We aimed to detect SNPs in the difference rice varieties
by using the TASSEL GBS pipeline. Furthermore, we vali-
dated 12 SNP genotypes (Additional file 2: Table S2) from
12 chromosomes, respectively, by using Sanger sequen-
cing on the ABI3730x] DNA sequencher (ABI, CA, USA)
with the BigDye V3.0 kit. The SNP database with a low
rate of missing data will be useful for QTL detection in
the populations derived from the 12 varieties.

The phylogenetic tree produced using the 22,682 SNPs
revealed three distinct groups, with japonicas clustered
into one group, and the other two groups together with
aus and indica types (Fig. 2a). Three distinct groups were
identified by principal component analysis with well-
separated lines, corresponding to indica, aus, and japonica
rice species (Fig. 2b). Consistent with the phenotyp-
ical classification, the varieties from China, Guichao2,
Nanjingll and Nanjing35 were grouped into the indica
type, together with IR36 and IR24 from IRRI; the var-
ieties from Japan, Sasanishiki, Koshihikari, Habataki,
and Asominori were grouped into japonica, together with
USSR5 from Russia; the varieties N22 and Kasalath from
India were grouped into aus. Based on this classification,
more SNP polymorphisms could be expected between the
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Fig. 1 Distribution of SNPs in 12 chromosomes of different rice varieties. The x-axis represents the physical distance along each chromosome,
which is split into 200-kb windows. The total size of each chromosome is shown in brackets. The y-axis indicates the number of SNPs. The regions
with relatively high and low density are labeled in red and green bars, respectively

parental lines with distinct relationships. Thus, germplasm We checked 12 SNP genotypes showing the same ge-
classification of the 12 rice varieties was properly con-  notypes within indica and japonica subgroups by using
ducted and the results were informative for further RIL or ~ Sanger sequencing on the ABI3730x] DNA sequencher
NIL construction. (ABI, CA, USA) using the BigDye V3.0 kit. Sequences
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Fig. 2 Genetic structure and population differentiation in 13 rice parental varieties. a Unweighted pair group method with arithmetic mean
(UPGMA) dendrogram based on 22,682 SNPs. b Principal component analysis for the entire set of RILs (n = 306)

generated by each primer pair were aligned using
Sequencher and SNPs were validated by visual inspection.

SNP annotations and large-effect SNPs

The SNPs were annotated and classified based on their
location in intergenic regions, introns, 5'-UTR, 3'-UTR
or exon (63.1, 85, 4.1, 4.8, and 194 %, respectively)
(Table 1). We analyzed the SNPs with potentially large
effects on gene expression and protein alterations.

The mutant of the cytochrome P450 gene CYP724B1
accumulates large amounts of mRNA; furthermore, its
seed is shorter than that of the wide-type [25]. In the
present study, we detected an A/T polymorphism be-
tween Asominori and IR24 that was associated with
short- and long-grain phenotypes respectively. The SNP
in the fourth exon (chr4:28,894,497) is predicted to re-
sult in the amino acid alteration of Aspartic acid to

Table 1 Summary of SNPs in the 12 varieties

All Intergene Intron 5'-UTR 3-UTR Exon
chrl 2703 1545 228 120 217 690
chr2 2205 1367 175 122 89 518
chr3 2099 1281 212 79 100 499
chr4 2033 1239 211 107 92 453
chr5 1626 1010 154 67 81 354
chré 1927 1232 128 76 1 406
chr7 1746 1092 148 60 67 408
chr8 1613 1057 148 83 49 292
chr9 1463 986 133 70 38 254
chr10 1471 994 131 35 72 287
chr11 1972 1213 148 63 119 490
chr12 1824 1303 117 42 65 327
All 22682 14319 1933 924 1100 4978

Valine. These findings suggest that CYP704A3 might be
associated with grain length. Thus, we decided to further
investigate a protein-altering A/T polymorphism located
in the exon of the cytochrome P450 gene, CYP704A3
(LOC_0Os04g48460).

We sequenced this gene that exhibited a total of four
SNPs, with two present in the exon and two within the
3'-UTR. A G/A SNP (chr4:28,894,757) in the 3'-UTR
was detected in the binding region between CYP704A3
and its miRNA gene, osa-miRf10422-akr (Fig. 3a).

We also observed the effects of CYP704A3 on grain
length in a population consisting 184 rice landraces by de-
veloping a SNP marker for G/A genotyping the CYP704A3
gene. The average seed length of plants with the IR24 al-
lele (8.40+0.1 mm) was longer than that harboring the
Asominori allele (7.76 £ 0.09 mm) (P < 0.01, Fig. 3b). Be-
cause of the positive seed length/SNP correlation and the
critical position of SNP in the binding region, we deduced
that the SNP mutation was crucial to grain size.

Seeds with CYP704A3 of IR24 allele genotype were lon-
ger than that of Asominori allele (Fig. 3b). We further
compared the expression levels of CYP704A3 in maturing
seeds of IR24 and Asominori with long and short seeds re-
spectively. The seeds of IR24 with longer size had relative
lower expression of CYP704A3 (Fig. 3d).

To verify the subcellular location of CYP704A3, we con-
structed a CYP704A3-GFP fusion expression vector, and
then transformed the recombinant expression vector into
rice protoplasts. Confocal microscopy showed that the
green fluorescent signals of CYP704A3-GFP co-localized
with the autofluorescence signals of the ER (Fig. 3f).

To further confirm the function of CYP704A3,
CYP704A3-RNAi transgenic rice plants were generated.
Several independently transformed plants showed a reduc-
tion in the level of expression of the CYP704A3 gene
(Fig. 4a). Three of these were selected to represent the
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Fig. 3 0sa-miRf10422-akr precursors and its putative target gene. a CYP/04A3 is a putative target of osa-miRf10422-akr. CYP704A3 structure and
mutation sites are labeled as SNPs (blue) and the changed amino acid residues (red). b Significant differences in grain length between SNP
genotypes of the CYP704A3 gene. **indicates a significance at P < 0.01. ¢ gRT-PCR analysis shows the expression of CYP704A3 in maturing seeds.
Asominori and IR24 were analyzed in terms of the expression of the CYP704A3 transcript. Seeds with longer lengths have lower levels of relative
expression, similar to the other members of subfamily CYP450 such as CYP724B1, of which its mRNA accumulates at higher levels in CYP724B1
mutants with shorter seed compared to that in the wide-type. d Subcellular localization of the CYP704A3Protein. GFP signals of the
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relative expression of CYP704A3 in relation to the trans-
genic negative control RNAi-4 (Fig. 4b). The reduced
expression of CYP704A3 caused various degrees of
elongation in grain length (Fig. 4c). Significant differ-
ence (P<0.01) in grain length (Fig. 4d) and length/
width ratio (P<0.01) (Fig. 4d) among the wild-type,
RNAi-4, and OsCYP704A3-RNAIi transgenic plants were
observed. These results further indicated that CYP704A3
negatively regulates grain length in rice.

Interaction between osa-miRf10422-akr and the CYP704A3
target gene

To validate that CYP704A3 is regulated by osa-miRf10422-
akr, a schematic representation of the reporters and the

effectors (Fig. 5a) was used in this assay. To examine
the ability of plant expression vectors to produce osa-
miRf10422-akr miRNAs in vivo, an Agrobacterium strain
harboring pCAMBIA1300-35S:0sa-miRf10422-akr or the
control pCAMBIA 1300 vector (35S) was infiltrated into
N. benthamiana leaves, together with the reporter gene
EGFP which was fused with the 3'-UTR of the rice
CYP704A3 gene, which contained the putative miRNA
target. When the effecter recognizes the miRNA target in
the reporter construct, the mRNA level of EGFP and the
fluorescence of EGFP are downregulated. The fluores-
cence of the agroinfiltrated leaves was taken at 2 dpi under
UV illumination. Fluorescence imaging showed that EGFP
and osa-miRf10422-akr were co-expressed (Fig. 5b) and
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Fig. 4 CYP704A3-RNAI transgenic plantsproduced longer grains. a The morphology of wild-type and RNAi-12 transgenic plants. Scale bar: 10 mm.
b Relative expression levels of CYP704A3 mRNA of the wild-type RNAI-4 (as a transgenic negative control) and T1CYP704A3-RNAI transgenic plants
which were determined by gRT-PCR. ¢ Grains of the wild-type, RNAi-4 (as a transgenic negative control), RNAi-12, RNAI-3 and RNAi-6. Scale bar: T mm.

together with miRNA target region in the 3'-UTR of the
CYP704A3 gene (Fig. 5¢c). Total RNA was extracted at 3
dpi, and quantitative EGFP mRNA analysis using the aver-
age measurements of three leaves utilized in each infiltra-
tion treatment (Fig. 5d). As expected, osa-miRf10422-akr
expression affected the CYP704A3 gene expression both
at the transcriptional and protein levels. These findings
therefore indicate that osa-miRf10422-akr participates in
seed size determination by directly regulating CYP704A3.

The CYP704A3 target gene underwent selection for seed
size improvement

To test whether the CYP704A3 target gene and the osa-
miRf10422-akr had undergone selection within the paren-
tal varieties, we calculated the linkage disequilibrium (LD)
of the two genes and its flanking regions on both sides

using our GBS data. LD analysis of the two genomic re-
gions, namely, osa-miRf10422-akr and its putative target
gene, CYP704A3, of these parental varieties, revealed dif-
ferent patterns of LD blocks (Fig. 6). The -values for the
miRNA osa-miRf10422-akr did not show any increase in
these parental varieties that are commonly used in rice
breeding. No LD blocks were detected in the osa-
miRf10422-akr region (~24,872 kb) on chromosome 3
(Fig. 6a). In contrast, the r*-values of the CYP704A3 gene
increased in these parental varieties. A strong LD block
was detected in the target gene LOC_0Os04g48460 on
chromosome 4 (Fig. 6b). The detection of a strong LD
block in CYP704A3 compared to that in the miRNA gene
indicated that the CYP704A3 target gene may have under-
gone selection within these parental rice varieties, al-
though additional investigations should be performed.
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was fused with the empty vector control (b) and miRNA target region in the 3-UTR of the CYP704A3 gene (c). Fluorescence imaging analysis of the
agroinfiltrated leaves at 2 dpi under UV illumination. Quantitation of EGFP mRNA as averaged from three leaves from each infiltration treatment (d)

Discussion and conclusions re-sequencing may be conducted during targeted SNP de-

De novo genome sequencing or re-sequencing generates
the gigabytes of data that need to be analyzed at a very
large scale. On the other hand, smaller subsets of SNP
data may be utilized for trait-marker analysis and genomic
selection for breeding selection. By simplifying genomic
data by using GBS, linkage and linkage disequilibrium
may be cost-effectively analyzed, and deep candidate gene

tection [26]. The genome can be significantly simplified by
restriction enzyme digestion. The SNPs can be detected at
restriction-associated sites. A higher number of short-read
alignments at regions of interest may help in more pre-
cisely resolving the real allele frequency of mutant alleles
in bulked DNA [26]. Therefore, GBS may be employed for
further gene fine-mapping and allele analysis.

a b

Rsquared 4526205765
4528205773
4528265159

090 4528310123

4528310148

4528310157

070 4528343708

4528368555

4528368550

050 4528380267
odp 9528438303

4528487164
030 4528513965
020 9528513966

4528518978
010 4528525192

000 4528558046
4528559958
4528611386

Pualie 428611380

001 4528877910
4528802960
4528894497
4528994721

001 4528894757
4528022000
4529977699
4520083636

pp1 4529084013

4520084781

4529084797

4529084798

4529084795

4520084799

4529084300

R squared

1.00
070
060
P value
»0.01

<0.001

3524646817 100
3524646818
3524646834
3524646835
3524548836
3524646830
3524646840
3524646843
3524646850
3524670105
3524647633
3524807009
3524834067
3524336005
3524861010
3524861920
3524861021
3524866032
3524868330
3524872418
3524872426
3524872438
3524872463
3524872464
3524872468
3524872470
3524872400
3524872680
3524872683
3524877767
3524877768
3524877772
3524877776
3524877777
3524877780

0.80

0.60

<0.0001 <0.0001

3 4
Fig. 6 Patterns of LD blocks in two genomic regions of osa-miRf10422-akr precursors and its putative target gene, LOC_Os04g48460. a No LD blocks

in the osa-miRf10422-akr region (~24,872Kb) on chromosome 3 were detected. b LD block in the big black block encompassing the LOC_Os04g48460
region (~28:892 kb in small black block) on chromosome 4. Red and white spots indicate strong (© = 1) and weak (¥ = 0) LD, respectively




Tang et al. BMC Plant Biology (2016) 16:93

SNP markers of CYP704A3 gene were developed for
genotyping a population consisting of 184 landraces, and
significant mean differences in the ¢-test suggested that
the gene may play roles in grain development. In rice, at
least five proteins have been identified through quantita-
tive genetic studies of seed size. Except for the identified
novel positive regulator, which is the putative serine car-
boxypeptidase encoded by GS5 [27], four other proteins
are required to limit final seed size and weight [28-31].
In the present study, we observed the upregulation of
the CYP704A3 gene in the short seed variety Asominori,
compared to the long seed variety IR24. This result was
in agreement with previous findings on the P450 gene
CYP724B1 [25]. CYP724B1 mRNA accumulated at higher
levels in d11 mutants with shorter seeds compared to the
wild-type plants [25].

In addition to the cytochrome P450 gene, CYP724B1,
in rice that controls seed growth, a gene encoding the
ortholog of KLUH, SIKLUH, a P450 enzyme of the CYP78A
subfamily in tomato (Solanumly copersicum), was reported
to affect fruit mass and size [32]. Here, we present evi-
dences indicating that another rice P450 gene, CYP704A3,
was associated with seed size. Interestingly, CYP704A3
was found and validated to be a target gene of osa-
miRf10422-akr. The mechanisms on whether and how the
interaction between osa-miRf10422-akr and CYP704A3
controls seed length require further investigation.

In conclusion, we detected a total of 22,682 DNA poly-
morphisms by high-throughput GBS of mapped reads by
assembling these using the reference genomes of japonica
Nipponbare. Detection of genome-wide DNA polymor-
phisms by high-throughput GBS enabled us to identify se-
quence diversity derived from rice differentiation and
genomic locations that were related to traits of agronomic
importance. We identified polymorphic SNPs in the rice
cytochrome P450 gene, CYP704A3, which was targeted by
a miRNA gene, osa-miRf10422-akr, and associated with
seed size.

Methods

Plant materials

A total of 184 rice accessions were used as study mater-
ial. The seeds of all accessions were collected, stored and
supplied by the State Key Laboratory of Crop Genetics
and Germplasm Enhancement of Nanjing Agricultural
University, Jiangsu, China. The 184 landraces are col-
lected from eight geographic regions. East China had the
most entries, accounting for 27.7 % of the study mater-
ial, followed by Southwest China (21.2 %), South China
(14.7 %), North China (7.6 %), Middle China (8.2 %),
Northeast China (5.4 %), Northwest (4.4 %), and Southeast
Asia (10.9 %). This study population, including the 12
landraces, was used in the association analysis of seed size.
In the past decades, these accessions have been widely
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used as parents in plant breeding. The 184 accessions were
planted from May to November in 2013 and 2014 at the
Tugiao Experimental Farm of Nanjing Agricultural Univer-
sity. For the field experiments, the accessions were grown
in a randomized complete block design using two repli-
cates. The space was 20 cm between rows and 17 cm be-
tween individuals, with standard agronomic management.

Sample preparation and sequencing

Genomic DNA was extracted from the 12 rice accessions,
including varieties originating from China (Guichao2,
Nanjing11, and Nanjing35), Japan (Sasanishiki, Koshihikari,
Habataki, and Asominori), India (N22 and Kasalath), and
IRRI (IR36 and IR24), and Russia (USSR5). DNA was ex-
tracted from leaf tissues using the DNeasy Plant Mini Kit
(Qiagen, Germany).

Sequencing library preparation and sequencing

RAD sequencing is one of several strategies recently de-
veloped to improve short-read sequencing by reducing
their complexity [33]. RAD sequencing reduces genome
complexity by resequencing only the stretches of DNA
adjacent to recognition sites of a chosen restriction
endonuclease and has been proven to be a powerful tool
for genetic analysis [34]. The RAD library of the 12 var-
ieties was prepared for single end-sequencing according
to Baird et al. [23] with some modifications. Briefly, bar-
codes were 6-bp long, being at least two mutational
steps separated from each other. A total of 2 ug genomic
DNA from each inbred was digested for 1 h at 37 °C in
a 50-pl reaction with 50 U of EcoRI (New England Bio-
labs). The RAD library was sequenced on an Ion Torrent
PGM and Illumina Hiseq2500. The raw reads that were
of high quality were used for the analysis of genetic vari-
ations in the 12 accessions.

Mapping of reads

A large number of reads were assembled based on the
genomic sequences of the japonica rice cultivars Nippon-
bare using TMAP3.6. SNPs were detected by comparison
alignment using the Nipponbare sequences as reference.
Parameters were set as default to classify whether mis-
matches were sequencing errors or genomic variations.

SNP detection and analysis

Reads were separated by barcode and trimmed at the 3’
ends. The RAD tags at the RAD clusters were screened
for SNPs and InDels using Oryza sativa L. cv. Nipponbare
(http://rapdb.dna.affrc.go.jp/download/irgspl.html) as ref-
erence. SNPs of each sample were collected using the
TASSEL pipeline [27]. Filtering and imputation proce-
dures were performed to call the first 64-bp of the high
quality reads with default parameters in the pipeline. A
phylogenetic tree was produced using the 22,682 SNPs to
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show the relationships among the 13 landraces. The SNP
cladogram-tree dataset was generated using the neighbor-
joining method as provided in TASSEL [35]. Three dis-
tinct groups were identified by principal component
analysis using TASSEL [35]. LD of the two genes and
its flanking regions on both sides was calculated using
our GBS data using TASSEL [35].

A dCAPs marker was developed for the SNP in the
binding region between CYP704A3 and its miRNA gene,
osa-miRf10422-akr. The average seed length of plants
with T identical to IR24 was compared to the A that was
identical to Asominori using the ¢-test, using a signifi-
cance level of P <0.01.

Polymorphism verification and dCAPs marker genotyping
Twelve polymorphic RAD clusters that were located in
the 12 chromosomes were randomly selected. Primers
were designed to flank the entire RAD cluster. The tar-
get sequence was amplified in all 12 varieties. The PCR
conditions were as follows: 94 °C for 3 min; followed
35 cycles of 94 °C for 30 s, 55 °C for 30 s, 72 °C for 30 s;
72 °C for 5 min, and then held at 4 °C. Sanger sequencing
of PCR products was conducted using an ABI3730x] DNA
sequencer, following standard protocols. Primers for
CYP704A3 were as follows: Forward 5'-CAAGGGCGG
CGCTGGTCTATT-3" and Reverse 5'-ATTTTCCTTTG
GTTATGTTTTGTA-3".

Real-time PCR and subcellular localization of the
CYP704A3 protein

Total RNA was isolated from maturing seeds using a
plant RNA purification reagent (Invitrogen). Synthesis of
¢DNA and real-time PCR were performed as described
elsewhere [36]. The rice Actin gene was selected as en-
dogenous reference. PCR specificity was examined by
3 % agarose gel electrophoresis using 5 pL of each reac-
tion to check the right product length and to make sure
that no primer dimers or non-specific amplicons were
generated. The primers for real-time PCR were as fol-
lows: Forward 5'-GTCGCCTTGTCGCTGCTGCTAC-
3" and Reverse 5'-CGGGCGGATACCTGCGTTTCT-3’
for the CYP704A3 gene.

For the subcellular localization of the CYP704A3 pro-
tein in rice protoplasts, the coding sequence of the
CYP704A3 gene was amplified and inserted into the
Bglll/Notl sites of the PA7 vector to form a translational
fusion with the C-terminus of the GFP. The transient
expression constructs were transformed into rice proto-
plasts as described elsewhere [37]. The fluorescence of
GEFP was observed using a confocal laser scanning micro-
scope (Leica TCS SP5). The primers used in subcellular
localization assays were as follows: Forward: 5'-ATGGAC
GAGCTGTACAGATCTATGGAGTCGCCGCT-3" and

Page 9 of 11

Reverse: 5'-GAACTGCAGCCGGGCGGCCGCTCACCG
GGCCAATG-3".

Rice transformation

To validate the function of CYP704A3, a CYP704A3-RNAi
vector was constructed and introduced to wild-type
plants. To construct the RNAi vector, a 316-bp fragment
within the CDS was amplified using the forward primer,
5'-GGGGTACCTCCGGCGGCGAAGG-3" and reverse
primer, 5'-CGAGCTCTTGCTCTCTGCTCATCTG-3’
with the Kpnl and Sacl enzyme digestion sites, and the
reverse sequence was amplified using the forward primer,
5'- GGTACGTATCCGGCGGCGAAGG-3’ and reverse
primer, 5'-AACTGCAGTTGCTCTCTGCTCATCTG-3’
with the SnaBI and Pstl enzyme digestion sites.

The rice plants examined under natural field condi-
tions were grown in normal rice growing seasons at the
Experimental Station of Nanjing Agricultural University,
Nanjing, China. Seeds were planted in a seedbed in mid-
May and transplanted to the field in mid-June 2015.
Field management, including irrigation, fertilizer applica-
tion, and pest control, was essentially performed using
standard agricultural practices. Harvested paddy rice was
air-dried and stored at room temperature prior to test-
ing. Fully filled grains from each plant were randomly
chosen (n = 100) for grain size evaluation.

Quantitative EGFP fluorescence and miRNA analysis

GFP fluorescence imaging of the coexpression of osa-
miRf10422-akr with the reporter gene EGFP fused with
the empty vector control and the miRNA target region
in 3'-UTR of the CYP704A3 gene was performed. The
fluorescence of the agroinfiltrated leaves was examined
at 2 dpi under UV illumination. Quantitative EGFP
mRNA of three leaves from each infiltration treatment
was also analyzed.

Availability of data and materials

The data sets supporting the results of this article are in-
cluded within the article and its additional files. All the
sequencing data produced in this study have been de-
posited in NCBI Short Read Archive (http://www.ncbi.
nlm.nih.gov/sra/) and can be accessed under the SRA
accession numbers: SRR3307074, SRR3307908, SRR330
8144, SRR3308415, SRR3308416, SRR3308417, SRR330
8419, SRR3308421, SRR3308737, SRR3310108, SRR331
0109, SRR3310110, SRR3310115, SRR3310157, SRR331
0158. SRR3310111, SRR3310156, and SRR3308736.

Additional files

Additional file 1: Table S1. 22,682 polymorphic SNPs among the 12
parental varieties and Nipponbare as the reference genome. (XLSX 1756 kb)
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Additional file 2: Table S2. Primers for 12 SNP genotypes from the 12
chromosomes respectively, using Sanger sequencing on the ABI3730xI
DNA sequencher (ABI, CA, USA). (PDF 95 kb)
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