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Abstract

Background: Kernel weight and size are important components of grain yield in cereals. Although some
information is available concerning the map positions of quantitative trait loci (QTL) for kernel weight and
size in maize, little is known about the molecular mechanisms of these QTLs. gGW4.05 is a major QTL that is
associated with kernel weight and size in maize. We combined linkage analysis and association mapping to

fine-map and identify candidate gene(s) at gGW4.05.

Results: QTL gGW4.05 was fine-mapped to a 279.6-kb interval in a segregating population derived from a
cross of Huangzaosi with LV28. By combining the results of regional association mapping and linkage analysis,
we identified GRMZM2G039934 as a candidate gene responsible for gGW4.05. Candidate gene-based association
mapping was conducted using a panel of 184 inbred lines with variable kernel weights and kernel sizes. Six
polymorphic sites in the gene GRMZM2G039934 were significantly associated with kernel weight and kernel size.

Conclusion: The results of linkage analysis and association mapping revealed that GRMZM2G039934 is the most likely
candidate gene for gGW4.05. These results will improve our understanding of the genetic architecture and molecular

mechanisms underlying kernel development in maize.
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Background

The corn kernel serves as a storage organ for assimi-
lation products. Its yield directly influences food se-
curity. In agricultural production, maize vyield is
mainly composed of effective ear number, kernel
number per ear and kernel weight. Kernel weight is
the integrated embodiment of three elements: kernel
length, kernel width and kernel thickness. Thus, un-
derstanding the genetic and molecular basis of kernel
weight and kernel size is extremely important for the
breeding of high-yield maize.

Due to the rapid development of molecular biotech-
nology, comparative genomics, and bioinformatics, many
genes associated with maize flowering time, plant archi-
tecture and other traits, such as vgt1 [1], ZmCCT [2, 3],
spil [4], ZmCLA4 [5], Fea2 [6, 7] and tgal [8], have been
positionally cloned. However, genes directly related to
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kernel yield are rarely identified by natural genetic vari-
ation. Most genes associated with kernel yield are iso-
lated by making use of maize mutants, such as gini-3,
ginl-4, rgfl, shl, sh2, dekl, and incw2 [9-13]. These
genes identified by mutant analysis have facilitated the
characterization of kernel development and its regula-
tion. However, the genetic architecture and molecular
mechanisms underlying natural quantitative variation in
kernel yield have not been completely elucidated.

The genetic basis of quantitative traits can be recog-
nized more clearly through QTL mapping. Many QTLs
related to kernel traits have been identified in the maize
genome [14—18], but few have been positionally cloned
because 1) the maize genome is large and has many
transposable elements and repetitive sequences [19-23]
and 2) most complex traits such as kernel yield and
kernel size are controlled by many genes with small
effects [24-29]. QTLs identified in different genetic
backgrounds across multiple environments have a
higher chance of being positionally cloned. A QTL
cluster on bin 4.05 of the maize genome has been
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repeatedly associated with kernel size and weight in
different populations in previous studies. Doebley et
al. (1994) identified a major QTL for kernel weight in
BNL5.46 - UMC42A and UMC42A - UMC66 on bin
4.05 that explained 12.82 and 15.71 % of the pheno-
typic variance in two F, populations developed from
maize and teosinte, respectively [30]. Ajnone-Marsan
P et al. (1995) identified a QTL associated with grain
yield on bin 4.05 using the F, population from a
cross of B73 and A7 [31]. Peng et al. (2011) identified
a QTL conferring kernel size and weight on bin
4.04—4.05 of the maize genome using two F,.3 popula-
tions [32]. These results demonstrate the importance
of bin 4.05 for kernel size and weight and provide a
target region for fine-mapping and positional cloning.

We previously identified a QTL cluster designated
qGW4.05 that is associated with kernel-related traits on
bin 4.05 in the maize genome in different recombinant
inbred line (RIL) populations across multiple environ-
ments [33]. The greatest effect of gGW4.05 on kernel
weight, kernel length and kernel width (23.94, 21.39 and
10.82 %, respectively) was observed in the RIL popula-
tion of LV28 x HZS. These effects imply that this region
carries a pleiotropic gene or several closely linked genes
that affect both kernel size and weight. In this study, we
used the excellent inbred line Huangzaosi (HZS) which
plays an important role in Chinese maize breeding and
has more than 70 inbred progeny lines and 80 important
hybrids [34] and the RIL families from the cross of LV28
and HZS to develop a new mapping population. Then,
we combined linkage analysis and regional association
mapping to 1) re-evaluate the genetic effect of gGW4.05
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in the new population; 2) fine-map gGW4.05; and 3)
infer potential candidate genes responsible for gGW4.05.

Results

Confirmation of gGW4.05

HZS and LV28 are elite inbred lines in Chinese maize
breeding. HZS has a higher hundred kernel weight
(21.30 g) than LV28 (18.10 g), a shorter 10-kernel length
(8.20 c¢cm) than LV28 (9.40 cm) and a wider 10-kernel
width (7.40 ¢cm) than LV28 (6.30 cm) (Fig. 1). To con-
firm the QTL on bin 4.05, we developed 20 new poly-
morphic markers (Additional file 1: Table S1) between
LV28 and HZS on chromosome 4 and identified the
genotype of all RIL families from LV28 x HZS. Subse-
quent re-mapping of gGW4.05 to the interval bnlg490 -
umcl511 on bin 4.05 explained 23.61, 20.52, and 10.0 %
of the phenotypic variance in hundred kernel weight
(HKW), 10-kernel length (10KL) and 10-kernel width
(LOKW), respectively (Fig. 2, Table 1). Using a flanking
marker of gGW4.05 to screen all RIL families, we deter-
mined that those RIL families harbouring the gGW4.05-
HZS allele have greater kernel weight and longer and
wider kernels than those harbouring the gGW4.05-LV28
allele (Fig. 1). This result is consistent with previous
work [33] and indicates that gGW4.05-HZS plays a posi-
tive role in producing a larger kernel.

Subsequently, we crossed the RIL family of G184, which
harbours the gGW4.05 allele from LV28, with HZS to pro-
duce an RIL-F, population. Using these 1333 F, plants in
2012, gGW4.05 was mapped to the UMC2061-BNLG1217
interval (Additional file 1: Table S1). The allele of HZS
displays partial dominance over the allele of LV28. The
locus gGW4.05 explained 5.17, 3.01, and 2.98 % of the
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Fig. 1 Phenotypic comparison among Huangzaosi, LV28 and the RIL families that harbour the Huangzaosi/LV28 allele on gGW4.05. HZS has a
higher 100-kernel weight (21.30 g) than LV28 (18.10 g), a shorter 10-kernel length (8.20 cm) than LV28 (9.40 cm), and a wider 10-kernel width
(740 cm) than LV28 (6.30 cm). The RIL families harbouring the gGW4.05-HZS allele have greater kernel weight and longer and wider kernels than
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Fig. 2 The location of gqGW4.05 on the different genetic maps. a
The genetic map constructed in 2013 and b the new genetic map
constructed in this study. gGW4.05 was located at MZA13478-33-
MZA4935-17 in 2013, and it was re-mapped in the bnlg490-umc1511
region in this study

phenotypic variance in kernel length, kernel width and
kernel weight, respectively (Additional file 2: Table S2).
These results confirmed that the UMC2061-BNLG1217
interval contains a functional unit controlling kernel size
and weight in maize.

Fine-mapping of qGW4.05

To improve the accuracy of the fine-mapping, we devel-
oped Indel (insertion and deletion) markers to replace

Table 1 QTLs detected in the different linkage map
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the initial simple sequence repeat (SSR) markers; the ini-
tial SSR markers have a fuzzy physical location around
qGW4.05 on chromosome 4 (30-40 Mb) of the maize
genome (Additional file 1: Table S1). Using the new
Indel markers to genotype the RIL-F, population,
qGW4.05 was further mapped to the ND16-ND19 inter-
val by QTL analysis (Fig. 3a). gGW4.05 explained 7.70,
8.88, and 7.34 % of the phenotypic variance in kernel
length, kernel width and kernel weight, respectively, ac-
cording to the results of the re-analysis (Table 2). This
result is consistent with the QTL mapping using the ini-
tial SSR markers, indicating that the physical locations
of these markers are the same. We then identified five
recombinant types using the new markers on the 1332
F, individuals in 2012, among which F2-Recl to F2-Rec2
carried the LV28 allele in the ND16-ND19 interval,
whereas F2-Rec3 to F2-Rec5 carried the HZS allele in
the corresponding interval (Fig. 3b). The 100-kernel
weight of F2-Recl to F2-Rec2 was distinctly less than
that of heterozygotes in this region and less than that of
F2-Rec3 to F2-Rec5 (Fig. 3b), indicating that the ND16-
ND19 interval may contain a QTL for kernel weight.
Similar performance in kernel length and kernel width
was observed (Fig. 3b), suggesting that the ND16-ND19
interval might contain a pleiotropic QTL.

A larger segregating population with 8000 F; individ-
uals was developed from the F, plants, which are het-
erozygous in the ND16-ND19 interval, and used to
fine-map gGW4.05 in summer 2013. Furthermore, new
markers were developed to identify recombinants in the
ND16-ND19 interval. Using the same analytical
method, we successfully narrowed gGW4.05 to the
NO4-ND4M26 interval in the maize genome, which is
279.6 kb long (Fig. 3c). There was no significant differ-
ence in kernel weight between LV28 and F3-Rec3 to
F3-Rec5 carrying the LV28 allele in the NO4-ND4M26
interval on the maize genome (Fig. 3c). In addition, the
kernel weight of F3-Recl to F3-Rec2 carrying the HZS
allele in the NO4-ND4M26 interval was greater than
that of LV28 (Fig. 3c). The kernel width of F3-Recl to
F3-Rec2 was greater than that of LV28, and F3-Rec3 to

Linkage map Trait Chromosome Position (cM)® Marker interval® LODS PVE (%) Add*®
Linkage map 2011 HKW 4 26 MZA11305-13 - MZA4935-17 10.86 23.94 -132
10KL 4 25 MZA13478-33 - MZA11305-13 10.06 21.39 -0.24
10KW 4 26 MZA11305-13 - MZA4935-17 508 10.82 -0.15
New linkage map 2012 HKW 4 36 MZA11305-13-umc2061 1030 23.60 =131
10KL 4 34 bnlg490-MZA11305-13 9.82 2051 -0.23
10KW 4 52 MZA14055-6-umc1511 478 9.97 -0.15

Notes: Position?, the genetic location of the QTL; Marker interval®, the flanking marker interval of the QTL; LODS, Logarithm of odds for each QTL; PVE (%),
percentage of phenotypic variance explained by a QTL; A®, additive values (a positive value indicates that the additive effect was derived from LV28, and a

negative value indicates derivation from Huangzaosi)
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Fig. 3 The process of map-based cloning of gGW4.05. a Location of gGW4.05 on chromosome 4, mapped using the F2 population in 2012. b
and ¢ The genotypes and phenotypes of different recombination types selected from the F2 population in 2012 and 2013. These recombinants
of the two F2 populations were both classified into seven types. The genetic structure for each type is depicted as black, white, or grey rectangles,
representing homozygous Huangzaosi/Huangzaosi, homozygous LV28/LV28, and heterozygous Huangzaosi/LV28, respectively. The tables on the
right show the variations in 100-kernel weight, 10-kernel length and 10-kernel width of each recombinant type between different genotypes, and
the total number (NO.) of plants refers to all plants of a given recombinant type in the F2 populations. **, significantly different at P < 0.01; NS no
significant difference at the P < 0.01 level. These findings suggested that the gGW4.05 allele from Huangzaosi can increase the 100-kernel weight,
10-kernel length and 10-kernel width. The interval of gGW4.05 could be narrowed down from an ~1.08-Mb to an ~279.60-Kb region that was
flanked by the markers NO4 and ND4M26

F3-Rec5 carrying the LV28 allele in the interval were
closer to LV28 than were F3-Recl and F3-Rec2 carrying
the HZS allele of gGW4.05. However, the kernel length

Table 2 qgGWW4.05 location in the F2 population in 2012
Trait  Chromosome Marker interval® LOD® PVE (%) Add® Dom¢

T0KL - 4 ND16-ND19 863 770 -003 001 yyqg the same between F3-Recl to F3-Rec3 and F3-Rec4
T0KW 4 ND16-ND19 993 88 003 001 to F3-Rec5 (Fig. 3c). The unexpected kernel size per-
HKW 4 ND16-ND19 812 733  -230 048 formance can be attributed to the strong environmental
Notes: Marker interval®, the flanking marker interval of the QTL; LOD®, influence on kernel-related traits. In conclusion, we

Logarithm of odds for each QTL; PVE (%), percentage of phenotypic variance confirmed that there is a gene controlling kernel weight

explained by a QTL; A9, additive values (a positive value indicates that the . . .
additive effect was derived from LV28, and a negative value indicates that also hkely affects kernel length and kernel width in

derivation from Huangzaosi); D¢, dominant values SpeCifiC environments.
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Validation of gGW4.05 in the RIL population

We next determined whether the restricted interval
(NO4-ND4M26) is present in the RIL population
from the cross of HZS and LV28 and has significant
genetic effects on phenotypes. Kernel weight and ker-
nel size were evaluated in six different environments
[33]. We used the markers NO4 and ND4M26 to
genotype the RIL population. Among the RILs, 68
and 79 families were homozygous for HZS and LV28,
respectively. Kernel weight and kernel width differed
significantly (P<0.01) between the RILs homozygous
for HZS and LV28 in all six environments (Fig. 4,
Additional file 3: Figure S1), and kernel length differed sig-
nificantly (P <0.01) in all but the Xinjiang 2010 environ-
ment (Additional file 4: Figure S2). These findings suggest
that the QTL in the interval of NO4-ND4M26 can affect
kernel weight and kernel size in the RIL population, which
is in agreement with our previous fine-mapping results.

Regional association mapping

We used the strategy of regional association mapping to
further narrow down gGW4.05 and identify candidate
genes. An association mapping panel that contains 541
inbreed lines was field evaluated at three locations in 2
years. We selected single-nucleotide polymorphisms
(SNP) markers in an interval (30—40 Mb) containing the
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sequence of UMC2061-BNLG1217 on chr4 of the maize
genome. Using the mixed linear model, we identified
one SNP, SYN4401, that was associated with the vari-
ation in kernel weight and 10-kernel width and ex-
plained 6.31 and 4.76 % of the phenotypic variation in
kernel weight and kernel width, respectively (Fig. 5).
However, no marker was identified that was significantly
associated with kernel length.

Prediction of candidate genes

The NO4-ND4M26 interval on the B73 genome is
279.6 kb long and contains only two genes
(GRMZM2G702403 and GRMZM2G039934) and some
transposable elements annotated in B73 reference gen-
ome v2.0 assembly (B73 RefGen_v2). Previous studies
have demonstrated that GRMZM2G702403 is not
expressed in developing kernels [35, 36]. The SNP
SYN4401, which was identified by regional association
mapping, is located in the gene GRMZM2G039934. We
therefore considered this gene a candidate gene con-
trolling kernel weight and size. GRMZM2G039934 en-
codes a putative leucine-rich repeat receptor-like
protein kinase family protein. Sequencing revealed 18
SNPs and one Indel in the exons of this gene between
HZS and LV28. These variations in the coding region
cause eight amino acid substitutions (Table 3). SIFT
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Fig. 4 Validation of qGIW4.05 for hundred kernel weight (HKW) in the RIL population in six different environments. The RILs were genotyped by
using the markers NO4 and ND4M26. The distributions and mean values for HKW are shown for the two homozygous genotypes, Huangzaosi
and LV28, at six experimental sites. Compared with the RIL families with the LV28 homozygous genotype at the qGW4.05 region, the RIL families
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analysis, which assesses whether an amino acid substi-
tution affects the structure of a protein or its function,
revealed that one of the eight substitutions was predicted
with high confidence to result in the loss of protein func-
tion of GRMZM2G039934 (Table 3). The threonine
encoded by the HZS allele is hydrophilic, whereas the iso-
leucine encoded by the LV28 allele is hydrophobic. This
amino acid substitution may result in different protein
functions that underlie the differences in 100-kernel
weight and kernel size between HZS and LV28.

Table 3 Polymorphic sites causing amino acid changes in the
protein of GRMZM2G039934

Gene ID Amino acid substitution  PROVEAN  Prediction
(Huangzaosi/LV28)? score” (cutoff = —2.5)
GRMZM2G039934  R42C -043 Neutral
T55I -372 Deleterious
Q371R -0.82 Neutral
1375L 016 Neutral
M380V 026 Neutral
N386K -0.09  Neutral
K387I -1.16  Neutral
D388N —0.65 Neutral

Notes: °Amino acid substitution format is X#Y, where X is the original amino
acid, # is the position of the substitution, and Y is the new amino acid. °A
delta alignment score is computed for each supporting sequence. The scores
are then averaged within and across clusters to generate the final PROVEAN
score. If the PROVEAN score is equal to or below a predefined threshold (e.g.,
—2.5), the protein variant is predicted to have a “deleterious” effect. If the
PROVEAN score is above the threshold, the variant is predicted to have a
“neutral” effect; “for maximum separation of the deleterious and neutral
protein variants, the default score threshold is currently set at —2.5 for

binary classification

Association mapping of the candidate gene and
haplotype analysis

To determine the sites responsible for the differences in
kernel size and kernel weight between HZS and LV28,
the allelic variations of 19 sequence polymorphisms
(Additional file 5: Figure S3) identified in HZS and LV28
were exclusively analysed in 184 inbred maize lines. The
alleles in each polymorphic site with minor allele fre-
quency >0.05 were used for association mapping using
the mixed linear model (MLM), controlling for population
structure (Q) and kinship (K) (MLM Q+K). The results re-
vealed that one polymorphism (S453) in the coding region
and two polymorphisms (S881and S891) in the intron were
associated with kernel length, three polymorphisms (5527,
S782 and S1031) in the coding region were associated with
kernel width, and two polymorphisms (S782 and S1031) in
the coding region were associated with kernel weight at
the P < 0.01 level (Fig. 6). However, none of these polymor-
phisms generates an amino acid substitution.

Haplotype analysis suggested that S453, S881 and S891,
which are associated with kernel length, might classify the
population into two types. The two haplotypes differed
significantly in kernel length at the P < 0.05 level (Fig. 7),
but both the HZS and LV28 alleles belong to haplotype 2.
S527, S782 and S1031, which are significantly associated
with kernel width, may divide the panel into four haplo-
types. The phenotypes of haplotype 1, haplotype 2 and
haplotype 3 did not differ significantly but were signifi-
cantly wider than haplotype 4 (Fig. 7). The kernel width
for haplotype 1, which corresponds to the HZS genotype,
was significantly higher than that of haplotype 4, which
corresponds to the LV28 genotype, consistent with the
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kernel width difference between HZS and LV28. S782 and
S$1031, which are related to 100-kernel weight, form three
different haplotypes (Fig. 7). The phenotype of haplotype
3, which corresponds to the LV28 genotype, had a smaller
kernel weight than those of haplotypes 1, and haplotype 2
which corresponds to the HZS genotype.

Discussion

Comparison of gGW4.05 and other major QTL for kernel
weight and size

Kernel weight and size, as yield components, are typ-
ical quantitative traits that are controlled by multiple
genes and sensitive to environmental impacts. The
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Fig. 7 Phenotypic comparisons of different haplotypes for different traits. Different fetters indicate statistically significant differences (P < 0.05),
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development of molecular markers has led to the
identification of 200 QTL related to kernel weight
and size distributed in the entire genome according
to data in the MaizeGDB (http://www.maizegdb.org).
In bin4.05, multiple QTL associated with yield com-
ponents have been found: gcobd8 for cob diameter
[37], qgyldi2 for grain yield [31], gkrow7 for kernel
row number [37] and gkw24 for kernel weight [30].
Peng et al. (2011) identified a QTL cluster for kernel
weight and kernel length in bin4.05 with two Fj3
populations [38]. Li et al. (2011) and Wang et al.
(2013) both identified a metaQTL associated with
yield components by meta-analysis in bin4.05 [39, 40].
These results implied that gGW4.05 with these QTL
formed a core cluster for QTL controlling different kernel
related traits.

Prado et al. (2014) have found multiple QTL related to
kernel weight, located in bins 1.01, 1.05, 1.11, 3.06, 5.05,
9.05 and 10.03 [41]. Liu et al. (2014) identified 6, 16 and
15 QTL related to kernel length, kernel width and kernel
weight, respectively [16]. Zhang et al. (2014) found 42
main-effect QTL related kernel weight and size [14].
Only a few of these QTL can be found in different gen-
etic background and different environments. Among
these QTL, digenic interactions involving multiple loci
over the whole genome have been shown to be related
to kernel weight and size. Like these QTL, gGW4.05 can
explain 23.94, 21.39 and 10.82 % of the phenotypic vari-
ance in hundred-kernel weight, 10-kernel length and 10-
kernel width, respectively. Compared with the above
QTL, gGW4.05 can be found in many different popula-
tions including the F, populations from the cross of
maize and teosinte [30], the F, population from a cross
of B73 and A7 [31], the F,3 populations from Huang-
zaosi and Qi319, the RIL population from Huangzaosi
and other inbred lines [33, 38]. Based on the genetic
linkage map constructed using 2091 bins as markers, we
don’t found the digenic interaction between gGW4.05
and other quantitative trait loci (data unpublished).
These results suggested that the genetic bases of kernel
weight and size are very complex and that positional
cloning of these QTL will be very difficult. Compared
with these QTL, gGW4.05 may allow more efficient pos-
itional cloning of the candidate gene.

qGW4.05 is an important and pleiotropic locus

High-throughput SNP genotyping analysis of elite maize
germplasm in China identified bin 4.05 as one of the
conserved regions transmitted from Huangzaosi, an im-
portant foundation parent, to its descendants [42]. The
locus gGW4.05 is present across multiple environments
and different genetic backgrounds such as Huangyesi3,
LV28, QI319, Huobai and Duo229. Among the different
populations, gGW4.05 is related to multiple kernel traits.
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In the above populations, gGW4.05-HZS is positive for
kernel-related traits, whereas other parents are negative
for these traits. These results suggest that gGW4.05 is
very important for HZS and HZS-derived lines and is a
positive QTL for kernel-related traits.

Many previous studies have indicated that yield and
kernel-related traits are controlled by a set of QTLs,
some of which are QTL clusters [9, 17, 18, 30, 32, 33,
38, 43—-47]. The distribution of these QTL clusters can
be explained by a pleiotropic QTL or multiple tightly
linked QTLs. When a high-resolution map has been
constructed, a QTL cluster can be resolved into many
minor effect QTLs. QTL analysis in maize has clearly
demonstrated that many complex traits controlled by
QTL clusters, such as the grain yield, kernel size and other
agronomic traits, can be broken down into many QTLs
once the linkage map has been improved [33, 48, 49].
However, a QTL cluster may contain only one major
QTL that controls multiple related traits and thus has
pleiotropic effects. In the present study, QTL mapping
in the RIL families restricted gGW4.05 to a 10-Mb
interval and revealed its relationship to both kernel size
and kernel weight. When the interval was further nar-
rowed to 1 Mb, gGW4.05 remained associated with the
three traits. This finding suggests that gGW4.05 may be
a pleiotropic locus that affects kernel size and kernel
weight in maize.

GRMZM2G039934 is involved in the development of
maize kernels via a different mechanism than in rice

In this study, we successfully fine-mapped gGW4.05 to a
297.2 kb interval. Previous studies have indicated that
only GRMZM2G039934 is expressed in this interval in
kernels of maize [18, 19]. Regional association mapping
revealed that the SNP SYN4401, which is located in
GRMZM2G039934, is significantly associated with
100-kernel weight and 10-kernel width. We therefore
propose that GRMZM2G039934 is a candidate gene
related to the development of maize kernels. In rice,
a 1-bp deletion in GW2 results in a premature stop
codon. The loss of function of GW2 leads to an in-
creased cell number, a wider spikelet hull and an ac-
celerated grain milk-filling rate, which increases grain
width, weight and yield [50]. Like GW2, a single SNP
in exon2 of GS3 results in a premature stop codon.
The shorter protein is associated with a longer grain
length and larger grain weight [44]. A 1212-bp dele-
tion in GWS5 is associated with increased grain width
in rice [45]. However, we did not identify any deletion
or SNP changes resulting in a premature stop codon
in GRMZM2G039934 in maize. Thus, the mecha-
nisms underlying kernel development and regulation
may differ between maize and rice.
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GRMZM?2G039934 encodes a putative leucine-rich
repeat receptor-like protein kinase family protein. The
protein product of the candidate gene is in the same
family as dwarf61, which is involved in the brassinos-
teroid (BR) biosynthesis network and influences grain
size development in rice [51]. Studies in Arabidopsis
and rice have demonstrated that brassinosteroids play
an important role in seed development [51-56]. Many
BR-deficient mutants of Arabidopsis (dwf5, shkI-D)
and rice (brd2, dwfll, d61) have a common pheno-
type that includes dwarfism, short organs, and small
grains. Moreover, overexpression of BR biosynthesis-
related genes increases grain size and the number of
grains. These results suggest that BRs play a key role
in normal seed development. However, the detailed
mechanisms of BR regulation of seed development re-
main unclear. The rice dwarf mutant d61 has a
phenotype of smaller grains and lower kernel weight
compared to wild type due to loss of function of the
rice brassinosteroid insensitivel orthologue OsBRII
[51]. The mutants have higher biomass than wild type
under high planting density. Moreover, the partial
suppression of OsBRI1 can increase grain yield by
regulating the brassinosteroid biosynthesis network in
transgenic rice plants. GRMZM2G039934 may be in-
volved in the same biosynthetic process in maize. De-
tailed studies are necessary to reveal the mechanisms
by which GRMZM2G039934 regulates kernel develop-
ment in maize.

qGW4.05 for maize breeding

Maize is the most widely grown crop in the world, and
to improve the grain yield has always been a top priority
[57]. Identifying useful QTLs related to grain yield such
as kernel weight, kernel size and kernel number is im-
portant for genetic manipulation to increase production
via maize breeding. There are many successful examples
of the introduction of useful QTLs. For example, the
introduction of gHSRI, which is a QTL related to head
smut in head smut—susceptible lines via marker-assisted
selection, has significantly reduce disease incidence over
time in maize [58, 59]. gGW4.05 has been identified in
different populations and in different environments [33].
In this study, the presence of gGW4.05 was confirmed
using two F, populations of various sizes and regional
association mapping analysis in a panel of 541 inbreed
lines. Therefore, gGW4.05 may be utilized in maize
breeding by marker-assisted selection. The LV28 allele at
qGW4.05 decreases 100-kernel weight and kernel size
relative to the HZS allele; thus, it may be feasible to use
lines carrying the HZS allele to improve lines carrying
the LV28 allele in gGW4.05. In particular, the two SNP
sites S782 and S1031, which are associated with kernel
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weight and kernel width, could help breeders to select
wider and heavier kernels of maize in the future.

Conclusions

We combined linkage analysis and association mapping
to fine-map and identify candidate gene(s) at gGW4.05,
a major quantitative trait locus (QTL) associated with
maize kernel weight and size. QTL gGW405 was
fine-mapped to a 279.6-kb interval in a segregating
population derived from a cross of Huangzaosi with
LV28. We identified GRMZM2G039934 as the candi-
date gene responsible for gGW4.05. Furthermore, six
polymorphic sites in the gene GRMZM2G039934
were significantly associated with kernel weight and
size. These results will improve our understanding of
the genetic architecture and molecular mechanisms
underlying kernel development in maize, which are
important components of grain yield.

Methods

Plant materials used for fine-mapping of qGW4.05
qGW4.05 controlling 100-kernel weight and kernel size
was previously mapped to bin 4.05 of chromosome 4
using the RIL population from the cross of HZS and
LV28 [33]. In the present study, we used G184, an RIL
family from the above cross that harbours the LV28 al-
lele of gGW4.05, to develop RIL-F, with HZS. A total of
1332 RIL-F, individuals were used to confirm the accur-
ate physical location of gGW4.05. We then selected het-
erozygous individuals using markers flanking gGW4.05
for self-pollination to develop the RIL-F; population.
The RIL-F3 population, which contained approximately
8000 individuals, was used to fine-map qGW4.05. Indi-
viduals containing recombination breakpoints within the
QTL interval were selected from the RIL-F3 population
for self-pollination to conduct a progeny test. Moreover,
an association mapping panel (AP) with 541 inbred
maize lines covering a wide range of genetic variation
was used for regional association mapping. All plant ma-
terials in this study were conserved in our experiment
lab and we declare that all plant materials in this study
comply with the ‘Convention on the Trade in Endan-
gered Species of Wild Fauna and Flora'.

Field design and phenotypic evaluation

The RIL population was field evaluated previously [33].
The RIL-F, and RIL-F3 populations were planted in
summer 2012 and 2013 in Beijing (39.48° N, 116.28° E,
in northern China). The progeny were tested in summer
2014 in Beijing. The association panel was field evalu-
ated for the target phenotypes in nine environments:
Changchun in Jilin province in 2011 (43.88° N, 125.35°
E, in northeastern China), Beijing in 2011 and 2012,
Tai’an in Shandong province in 2011 and 2012 (36.11° N,
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117.08° E, in eastern China), Xinxiang in Henan prov-
ince in 2011 and 2012 (30.77° N, 106.10° E, in central
China), and Nanchong in Sichuan province in 2011 and
2012 (43.88° N, 125.35° E, in southwestern China). The
institute of crop science belonging to the Chinese
Academy of Agricultural Sciences has set up experi-
mental field bases at all the above locations. The in-
stitute of crop science was approved for field
experiments, and the field studies did not involve en-
dangered or protected species.

The field experiment methodology and the evaluation
of kernel-related traits for the populations used in this
study were identical to those described in a previous
study [33]. The populations were arranged in a random-
ized complete block design, and each genotype was
grown in a single row 3 m in length with 0.6 m between
adjacent rows, with 12 individual plants per row. The
field management followed normal agricultural practices.
After harvest, the kernels were threshed from the middle
part of the ears to determine the 100-kernel weight
(HKW, g), 10-kernel width (10KW, c¢cm) and 10-kernel
length (10KL, cm), which were estimated from the aver-
age of three measurements.

Molecular marker development

The SSRs used for the RIL population were selected
from MaizeGDB (http://www.maizegdb.org). According
to re-sequencing information regarding HZS and LV28
provided by Professor Jinsheng Lai of China Agricultural
University [60], PCR-based Indel markers and sequence-
based SNP markers in the interval of the gGW4.05 re-
gion were designed using Primer Premier 5.0 (PREMIER
Biosoft International, USA) with a product size <300 bp.
All markers are listed in Table 1 and were used to iden-
tify the genotype of the RIL-F, and RIL-F3 populations.
Of 56,110 SNPs derived from the MaizeSNP50 BeadChip
within the confidence interval of gGW4.05, 256 SNPs
were selected for association analysis of the association
mapping panel (AP).

Genotyping and QTL analysis

Genomic DNA was extracted from fresh maize seedling
leaves using the cetyltrimethylammonium bromide
(CTAB) method [61]. A marker linkage map was con-
structed using the Kosambi function of MAPMAKER/
EXP version 3.0 [62]. A mixed model based on the com-
posite interval mapping method was used to conduct
QTL analysis by QTL IciMapping V3.3 [63, 64]. The
threshold for indicating the existence of a significant QTL
for 100-kernel weight and kernel size in each generation
was obtained by 1000 permutations at a significance level
of P =0.05. The significance of the phenotypic differences
for different recombinant types relative to LV28 or
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heterozygosis was evaluated using Student’s ¢ test in SAS
(SAS Institute, Inc., Cary, NC).

Regional association mapping

Both the kinship matrix and the principal component ana-
lysis (PCA) were calculated using allelic data from 4544
SNP markers of 56,110 derived from the MaizeSNP50
BeadChip that were evenly distributed across the whole
maize genome. Alleles of each polymorphism with minor
frequency >0.05 were used for association mapping using
the mixed linear model (MLM) controlling for population
structure (Q) and kinship (K) (MLM Q+K). Significant
marker-trait associations were declared for LOD>4. All as-
sociations were analysed with TASSEL5.0 [65, 66]. LD
analysis within the target region was performed using the
software Haploview [67].

Candidate gene sequencing and association mapping
The genomic DNA sequences of candidate genes from
HZS and LV28 were obtained by polymerase chain
reaction (PCR) amplification using the primers N37F
and N37R. PCR was performed using high-fidelity LA
Taq Mix (Takara, http://www.clontech.com/takara).
The purified PCR products were cloned into pLB-
Vector (TIANGEN, http://www.tiangen.com) according
to the manufacturer’s instructions. Three positive clones
were sequenced for each sample. Sequence contig assem-
bly and alignment were performed using DNAMAN ver-
sion 5.2.2 (LynnonBiosoft, http://www.lynnon.com).

A subset of 184 inbred lines from the regional associ-
ation mapping panel were used for candidate gene-based
association mapping. The primers N37F/R were used to
amplify the candidate gene’s coding region. The PCR
products of three repetitions were directly sequenced.
Initial alignment and manual refinement of the align-
ment were performed using BioEdit software [68]. Sites
with allelic frequency >0.05 were used for subsequent
analysis. Association mapping was performed with TAS-
SEL 2.1 using an MLM Q+K model [65, 66].
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qGW4.05-LV28 allele. (TIF 99 kb)
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