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Abstract

Background: Brachypodium distachyon is a promising model plants for grasses. Infections of Brachypodium by
various pathogens that severely impair crop production have been reported, and the species accordingly provides
an alternative platform for investigating molecular mechanisms of pathogen virulence and plant disease resistance.
To date, we have a broad picture of plant immunity only in Arabidopsis and rice; therefore, Brachypodium may
constitute a counterpart that displays the commonality and uniqueness of defence systems among plant species.
Phytohormones play key roles in plant biotic stress responses, and hormone-responsive genes are used to
qualitatively and quantitatively evaluate disease resistance responses during pathogen infection. For these purposes,
defence-related phytohormone marker genes expressed at time points suitable for defence-response monitoring
are needed. Information about their expression profiles over time as well as their response specificity is also helpful.
However, useful marker genes are still rare in Brachypodium.

Results: We selected 34 candidates for Brachypodium marker genes on the basis of protein-sequence similarity to
known marker genes used in Arabidopsis and rice. Brachypodium plants were treated with the defence-related
phytohormones salicylic acid, jasmonic acid and ethylene, and their transcription levels were measured 24 and 48 h
after treatment. Two genes for salicylic acid, 7 for jasmonic acid and 2 for ethylene were significantly induced at
either or both time points. We then focused on 11 genes encoding pathogenesis-related (PR) 1 protein and
compared their expression patterns with those of Arabidopsis and rice. Phylogenetic analysis suggested that
Brachypodium contains several PR1-family genes similar to rice genes. Our expression profiling revealed that
regulation patterns of some PRT genes as well as of markers identified for defence-related phytohormones are
closely related to those in rice.

Conclusion: We propose that the Brachypodium immune hormone marker genes identified in this study will be
useful to plant pathologists who use Brachypodium as a model pathosystem, because the timing of their
transcriptional activation matches that of the disease resistance response. Our results using Brachypodium also
suggest that monocots share a characteristic immune system, defined as the common defence system, that is
different from that of dicots.
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Background

To counteract various pathogens in the field, plants
mainly protect themselves with a two-layered immune
system. Using cell surface-localised receptors, plants rec-
ognise pathogen- or microbe-associated molecular pat-
terns (PAMPs or MAMPs), which are structurally
conserved molecules in a broad range of microorgan-
isms, that may include products of housekeeping genes
or cell wall components and induce the expression of
defence-related genes. This system provides basal resist-
ance called PAMP/MAMP-triggered immunity (PTI/
MTI) [1]. For the successful infection of host plants,
pathogens use a few dozen effector proteins as a weapon
to suppress PTL Plants can directly or indirectly sense
these effectors by cytoplasmic nucleotide-binding do-
main- and leucine-rich repeat-containing (NLR) immune
sensors and activate a strong resistance response called
effector-triggered immunity (ETI) that is effective against
pathogens [2]. ETI is often accompanied by hypersensi-
tive responses including programmed cell death of in-
fected regions containing pathogens. In a battery of
these immune responses, the phytohormone salicylic
acid (SA) plays important roles in mediating signal
transduction. Another phytohormone, ethylene (ET), is
also required to maintain the level of pattern-
recognition receptors in PTI [3]. This defence system ef-
fectively functions to block biotrophic or hemibiotrophic
pathogens. Plants have another defence system relying
on the phytohormones jasmonic acid (JA) and ET to
combat necrotrophic pathogens and insects [4].

To characterise plant responses to a given pathogen,
the production of phytohormones may be appropriate
indicators in addition to the phenotypic observation of
lesion formation. However, in rice and barley, endogen-
ous SA levels are not increased, even in response to in-
compatible pathogens, unlike the case of well-studied
dicotyledonous model plants such as Arabidopsis thali-
ana and tobacco [5-7]. Alternatively, phytohormone
production can be substituted with the expression profil-
ing of phytohormone-responsive marker genes. This ap-
proach provides information about the time, strength
and kind of responses provoked in plants. For example,
PATHOGENESIS-RELATEDI (PR1) and PDF1.2 (PLANT
DEFENSIN1.2) are used as markers for SA and JA or ET,
respectively, in Arabidopsis [8, 9]. In model plants, genes
considered to be involved in phytohormone biosynthesis
or signalling are also used as markers [9, 10].

Brachypodium distachyon (purple false brome) is a
grass plant of the Pooideae subfamily, which includes
economically important crops such as wheat, barley, rye
and oats. Owing to its small stature, short lifecycle, self-
fertility and small diploid genome, Brachypodium can be
an experimental model plant for studies of grasses in-
cluding cereals and biomass crops [11]. A whole-
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genome sequence of B. distachyon cultivar Bd21 was ob-
tained [12] and a database of full-length cDNA
(FLcDNA) is available [13]. Recently, the superiority of
this plant as a model for Triticeae crops has been shown
by the similarities of morphological property and by the
commonalities of metabolic profile [14]. For investiga-
tion of immunity as one of the important traits in
agriculture, infectivity on Brachypodium of various path-
ogens threatening world crop cultivation has been veri-
fied so far [15]. For example, Fusarium graminearum
and Magnaporthe oryzae, causal fungi of wheat Fusar-
ium head blight and rice blast, respectively, are patho-
genic to Brachypodium [16, 17]. Bacterial pathogen
Xanthomonas oryzae pv. oryzae and a pathogenic virus
Panicum mosaic virus are also virulent to Brachypodium
[18, 19]. Thus, Brachypodium may be a useful platform
for investigating both crop pathogen virulence and plant
immune response at the molecular level.

Several phytohormone marker genes have been used
to date to characterise resistance responses in Brachypo-
dium, but the number of markers is still limited and
inadequate. Most recently, a comprehensive transcrip-
tome analysis of various phytohormones in Brachypo-
dium using RNA-seq technology was performed and
phytohormone-responsive genes were identified [20]. In
that study, hormone treatment was for 1 h for JA and
ET and 3 h for SA using young seedlings. For investiga-
tions of plant—microbe interaction, for each immune
phytohormone, several sets of marker genes up-
regulated at appropriate time points during infection
process are needed.

For the present study, we chose candidates for Brachy-
podium genes responsive to SA, JA and ET based on the
similarity of protein sequences to known marker genes
used in Arabidopsis and rice and analysed their tran-
scriptional activation by each hormone at 24 and 48 h
after treatment. As a result, we identified at least 2
marker genes for each hormone. In addition, we com-
pared the constitutions and expression profiles of PRI
family genes from Arabidopsis, rice and Brachypodium,
finding that B. distachyon possesses immunity mecha-
nisms similar to those of rice but not of Arabidopsis.

Results and discussions

Identification of candidates for marker genes responsive
to defence-related phytohormones in Brachypodium

We selected candidates for phytohormone-responsive
genes in Brachypodium, based on the similarities to
experimentally validated markers in rice, barley and
Arabidopsis. For BATARLI and BATARL2 genes in B.
distachyon, their responsiveness to 1-aminocyclopropane
-1-carboxylic acid (ACC), a precursor of ET, has already
been demonstrated [21]. The protein sequences of these
selected genes were used as queries in a BLAST search
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against the RIKEN Brachypodium FLcDNA database,
and the resulting hits with high similarity were identified
as potential markers [13, 22]. Twenty-three genes were
tested for transcriptional inductions during treatment
with SA, JA or ET (Table 1).

Whole Brachypodium seedlings were treated with
water as a mock treatment, 1 mM sodium salicylate,
100 uM methyl jasmonate (MeJA) or 100 pM ethephon
for 24 or 48 h. Total RNAs were extracted from the fro-
zen leaf samples and subjected to cDNA synthesis. The
mRNA levels of the candidate genes were analysed by
quantitative reverse-transcription polymerase chain reac-
tion (qRT-PCR) using specific primers designed with the
Primer3 program [23]. The responsiveness of each gene
is summarised in Table 2. Among these genes, 8 were
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significantly induced by a phytohormone, whereas the
remaining 15 genes showed no change in expression.

To obtain SA markers in Brachypodium, we focused
on genes encoding WRKY-domain containing transcrip-
tion factors. In rice, OsWRKY45, 62 and 76 genes were
induced by SA treatment, and all of them were shown to
participate in the immune response [24-26]. Among
them, OsWRKY45 plays a central role in SA signalling,
together with OsNPR1, and mediates SA-induced disease
resistance [24]. Using RNA-seq technology in rice, tran-
scriptional upregulation of OsWRKY45 was detected at
24 h after inoculation of both compatible and incompat-
ible strains of M. oryzae [27]. Its induction by SA was
also observed 12 h after SA treatment [24]. In Brachypo-
dium, two genes, Bradi2g30695 and Bradi2g44270, were

Table 1 Candidate marker genes selected in this study for SA, JA and ET in Brachypodium

D Name Description in database Rice homolog Arabidopsis homolog Ref
SA-related genes
Bradi2g05870 ~ NPR1 Regulatory protein NPR1-like OsNPR1:0s01g0194300 NPR1 : At1g64280 [24]
Bradi2g30695  WRKY45-1 Uncharacterized protein OsWRKY45-1 : 050590322900  AtWRKY70 : At3g56400 [24]
Bradi2g44270 ~ WRKY45-2  WRKY transcription factor 70-like OsWRKY45-1 : 050590322900  AtWRKY70 : At3g56400 [24]
Bradi4g35356  SAGT1 UDP-glycosyltrasferase 74 F1-like OsSGT1 : 0s0990518200 UGT superfamily : At1g05675 [29]
Bradi2g22410  AGA Alanine-glyoxylate aminotransferase 2 Osh36 : 050590475400 AtPYD4 : At3g08860 [29]
homolog 3
Bradilg53527  UGT76-1 UDP-glycosyltrasferase 76C2-like no symbol : 0s07g0241500  UGT76B1 : At3g11340 [30]
Bradilg53540  UGT76-2  UDP-glycosyltrasferase 76C2-like no symbol : 0s07g0241500  UGT76B1 : At3g11340 [30]
Bradilg53550  UGT76-3  UDP-glycosyltrasferase 76 F1-like no symbol : 0s07g0241500  UGT76B1 : At3g11340 [30]
Bradi4g41410  UGT76-4  UDP-glycosyltrasferase 76C2-like no symbol : 0s07g0241500  UGT/6B1 : At3g11340 [30]
Bradilg11940  UGT74-1  Indole-3-acetate beta-glucosyltransferase-like  OsIAGLU : Os03g0693600 UGT74F2 : At2G43820 [30]
Bradi4g35350  UGT74-2  UDP-glycosyltrasferase 74 F2-like no symbol : 0s09g0517900  UGT74F2 : At2G43820 [30]
Bradi5g03380  UGT74-3  UDP-glycosyltrasferase 74 F2-like no symbol : Os04g0206500  UGT74F2 : At2G43820 [30]
JA-related genes
Bradilg69330  AOS Allene oxide synthase 2-like OsAOS2 : 050390225900 AtAOS2 : At5g42650 [32-34]
Bradilg11670  LOX Linoleate 9S-lipoxygenase 4-like OsLOX1 : 050390700700 AtLOX5 : At3922400 [32-34]
ET-related genes
Bradi2g52370  ERF Ethylene-responsive transcription factor 4-like  OsERF3 : Os01g0797600 AtERF9 : At5g44210 [43]
Bradilg63780  EIN3 Ethylene insensitive 3-like no symbol : 0s03g0324300  AtEIN3 : At3g20770 [42]
Bradilg49966 ~ ACC Aminotransferase ACS10-like OsACS6 : Os06g0130400 AtACS10 : At1962960 [44]
Bradi2g34400  TAR1 Trﬁ)tophan aminotransferase-related protein  OsTART : Os05g0169300 AtTAR2 : At4g24670 [21]
2-like
Bradi2g04290  TAR2 TrT/Etophan aminotransferase-related protein  OsTART : Os05g0169300 AtTAR2 : At4g24670 [21]
2-like
Bradi3g37300  4CL 4-Coumarate:CoA ligase 5-like Os4CL5 : 00890448000 At4CLT : At1g51680 [35, 37-39]
Bradi3g48840  PAL Phenylalanine ammonia-lyase-like OsPALT : 050290627100 AtPALT : At2g37040 [35,37-39]
Bradilg33540  PR5 Thaumatin-like protein-like no symbol : Os06g0691200  no symbol : At1g73620 [45, 47]
Bradi4g05040  PBZ1 Major allergen Api g 1-like PBZ1-like : Os12g0555000 no hit [45, 47]

Twenty-three Brachypodium genes were identified by similarity search using known phytohormone marker genes of rice or Arabidopsis as queries. Gene IDs,
relationships to phytohormone, expedient names without functional confirmation, descriptions in the database, corresponding homologs in rice or Arabidopsis,

and references are listed
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Table 2 Transcriptional responses of tested genes to SA, JA and

ET

Inducibility in Brachypodium
D Name SA JA ET
Bradi2g05870 NPR1 - - -
Bradi2g30695 WRKY45-1 ++ - -
Bradi2g44270 WRKY45-2 ++ + (48 h) + (48 h)
Bradi4g35356 SAGTI1 - - -
Bradi2g22410 AGA - - -
Bradilg53527 UGT76-1 - - -
Bradi1g53540 UGT76-2 - - -
Bradilg53550 UGT76-3 - - -
Bradi4g41410 UGT76-4 - - +
Bradilg11940 UGT74-1 - - -
Bradi4g35350 UGT74-2 - - -
Bradi5g03380 UGT74-3 - - -
Bradi1g69330 AOS - ++ -
Bradilg11670 LOX - + -
Bradi2g52370 ERF - - -
Bradi1g63780 EIN3 - - -
Bradilg49966 ACC - - -
Bradi2g34400 TART - - -
Bradi2g04290 TAR2 - - +
Bradi3g37300 4CL + (48 h) ++ + (48 h)
Bradi3g48840 PAL - ++ -
Bradilg33540 PR5 - - -
Bradi4g05040 PR1O(PBZ1) - - -

Expression of 23 Brachypodium candidate genes was evaluated in 3-4 week-
old plants at 24 and 48 h after treatment with SA, JA or ET, and the results are
summarised. The expression levels of each gene were determined by qRT-PCR
analysis. ++, genes significantly induced more than 10-fold compared to mock
treatment; +, genes significantly induced more than 2-fold compared to mock
treatment, —, not induced. Experiments were performed at least three times
with similar results and a representative result is shown

found, whose deduced protein sequences showed high
similarity (49 and 50 % identity, respectively) to
OsWRKY45 throughout their lengths (Additional file 1:
Figure S1). As shown in Fig. 1, transcription of these
genes was upregulated by SA at 24 h after treatment and
their expression levels were more increased at 48 h.
Kakei et al. also reported that Bradi2g44270 and Bra-
di2g30695 were induced at 3 h after treatment with
100 uM SA [20]. For Bradi2g44270, 9.9- and 4.8-fold ex-
pression changes were also detected at 48 h following
treatment with JA and ET, respectively, although their
induction levels were lower than those with SA.
OsWRKY62 and 76 are negative regulators of disease re-
sistance responses in rice [25, 26], and no Brachypodium
homologs for OsWRKY62 were found, whereas three
genes, Bradi4g30360, Bradilg30870 and Bradi3g06070,
showed similarity to OsWRKY76. In the RNA-seq results
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Fig. 1 Expression patterns of SA-responsive genes. Expression levels of
WRKY45-1(Bradi2g30695) and WRKY45-2(Bradi2g44270) were determined
by gRT-PCR analyses at 24 (upper panel) or 48 h (lower panel) after
treatment with the indicated phytohormones. Data are presented as
means of relative expression values of three independent treatments
compared to mock treatment. M, mock treatment; S, SA treatment; J, JA
treatment; E, ET treatment. Error bars represent standard error (n = 3).
Asterisks above the bars indicate significant differences compared to
mock treatment at P < 0.05 (Student’s t test). Experiments were
performed at least three times with similar results, and a representative
result is shown

by Kakei et al., only Bradi4g30360, the gene most similar
to OsWRKY76 among the Brachypodium homologs, was
induced (with a log, ratio of 3) at 3 h after SA
treatment.

During disease resistance response in Arabidopsis, SA
is biologically synthesized to induce defence responses
and is subsequently metabolised to reset the immunity
mode. One of the major SA metabolism pathways is gly-
cosylation, in which SA glucosyltransferase (SAGT) con-
jugates a glucose moiety to SA to produce SA-O-(-D-
glucoside (SAG) using UDP-glucose as a donor. SAG is
an inactive form of SA [28]. In Arabidopsis and rice, SA
treatment leads to increased expression of SAGT genes
[29, 30]. Under the hypothesis that SAGT is an SA
marker, Brachypodium SAGT genes were retrieved from
the cDNA database. Four and three Brachypodium ho-
mologs of Arabidopsis UGT76B1 and UGT74F1, re-
spectively, showing identities of >40 % in their amino
acid sequences, were identified. One homolog with the
highest similarity to OsSGT1 was also selected. In Bra-
chypodium, no induction by SA was detected for these 7
SAGT genes (Table 2). Instead, we found that
Bradi4g41410 was induced by ET (Fig. 3). It is not clear
whether the genes used in this study function as SAGT,
given that more than 170 predicted UGT genes were
found in the Brachypodium genome and sequence simi-
larity using whole length does not always reflect
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functional identity. Other studies are needed to identify
the players involved in SA metabolism in Brachypodium.

Allene oxide synthase (AOS) and lipoxygenase (LOX)
are required for JA biosynthesis [31]. Positive feedback
regulation in transcription of these enzyme-encoding
genes by JA is well understood and they are used as JA
markers in various plant species. In Arabidopsis, expres-
sion of AtAOS2 and AtLOX2 were upregulated by JA
[32]. In rice, induction of OsAOS2 and OsLOXI was de-
tected at 6 h after JA treatment, according to the rice
global expression profile database RiceXPro [33]. In bar-
ley, JA responsiveness of AOS (contig3096_s_at) and
LOX (contig2306_s_at) was validated by microarray ana-
lysis and semi-quantitative RT-PCR [34]. Four Brachypo-
dium genes, Bradilg69330, Bradilg07480, Bradi3g08160
and Bradi3g01110, were identified as homologs of
OsAOS2 by blastp search, and Bradilg69330, with the
highest score, was used in this study. Its deduced protein
sequence also shows high similarity to barley AOS. We
detected strong induction of this Brachypodium AOS
gene at 24 h after JA treatment, and its level was dou-
bled at the 48 h time point (Fig. 2). For LOX, 10 genes
(Bradilgl1670, Bradilgl1680, Bradilg09260, Bra-
dilg09270, Bradi3g59710, Bradi5gl11590, Bradilg72690,
Bradi3g39980, Bradi3g07010 and Bradi3g07000) were
found as OsLOXI (Os03g0700700) homologs. The most
similar Bradilgl1670 gene has been shown to be
expressed after infection by the fungal pathogen Scleroti-
nia homeocarpa in the resistant Brachypodium accession
208126 [35]. We accordingly checked its response to JA.
As shown in Fig. 2, 3.0- and 4.7-fold expression changes
were observed at 24 and 48 h, respectively, after hor-
mone treatment. These results suggest that both genes
would be useful JA markers.
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During the disease resistance response, plants use
phenylpropanoid compounds for the biosynthesis of lig-
nin, flavonoids, and phytoalexins, which are required for
the fortification of cell walls and production of antimi-
crobials [36]. 4-Coumarate:CoA ligase (4CL) and
phenylalanine ammonia lyase (PAL) are key enzymes in
this metabolic pathway, and the transcriptional upregu-
lation of PAL and 4CL after elicitor treatment and
pathogen inoculation have been reported in Arabidopsis,
rice and Brachypodium (35, 37-39]. In Brachypodium,
three 4CL homologs, Bradi3g37300, Bradi3g05750 and
Bradilg31320, were identified by blastp search using the
protein sequence of Arabidopsis Atlg51680 as a query
(E value=0). Similarly, Bradi5g15830, Bradi3g48840,
Bradi3g49280, Bradi3g49260, Bradi3g49270, Bra-
di3g47110, Bradi3g47120 and Bradi3g49250 were found
as homologs of AtPAL1 (At2¢37040). Bradi3g37300 as a
representative of 4CL and Bradi3g48840 for PAL were
markedly induced at 24 h after JA treatment, with
further-increased levels at 48 h (Fig. 2). We checked the
expression of rice OsPAL1 and Os4CL5 using the RiceX-
Pro database [33] and found that they were also induced
within 6 h after JA treatment, in accord with our result.
In our study, expression of Brachypodium 4CL was also
detected by both SA and ET at 48 h. These Brachypo-
dium 4CL and PAL genes have also been reported to be
induced by JA (log, ratio=1.59 and 1.96, respectively)
1 h after 30 pM MeJA treatment [20].

Tryptophan  aminotransferase of Arabidopsis 1
(TAA1I)-related (TAR) is required for the biosynthesis of
indole-3-pyruvic acid from L-tryptophan in Arabidopsis
[40] and its expression is upregulated by ET [41]. In Bra-
chypodium, the expression levels of two TAR homologs,
BATARLI (Bradi2g34400) and BATARL?2 (Bradi2g04290),
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Fig. 2 Expression patterns of JA-responsive genes. Expression levels of two JA-inducible genes at 24 h (upper panel) or 48 h (lower panel) after
treatment with phytohormones. Transcript levels were determined by gRT-PCR analyses, and relative expression levels compared to mock treatment
are presented. M, mock treatment; S, SA treatment; J, JA treatment; E, ET treatment. Error bars represent standard error (n = 3 independent treatments).
Asterisks above the bars indicate significant differences compared to mock treatment at P < 0.05 (Student's t test). The experiment was performed at
least three times with similar results, and a representative result is shown
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have been shown to be increased at 3 h after ACC treat-
ment (Table 2) [21]. Under our experimental conditions,
transcription of BATARL2 but not BATARLI was signifi-
cantly induced at both 24 and 48 h after ethephon treat-
ment (Fig. 3). BATARL2 may have been expressed
continuously by ET from 3 to 48 h after the treatment.
Because genes involved in biosynthesis and signalling of
ET are often transcriptionally activated by ET in Arabi-
dopsis, we selected ACS (ACC SYNTHASE) (Bra-
dilg49966), ERF (ETHYLENE RESPONSIVE FACTOR)
(Bradi2g52370) and EIN3 (ETHYLENE-INSENSITIVE3)
(Bradilg63780) as candidate ET-responsive genes. They
were the closest homologs to the corresponding rice
genes (Table 1) [42—44]. In our study, their transcription
did not respond to ET (Table 2). In Brachypodium, we
found a single homolog of EIN3, but there were 4 ACS
homologs and over 100 homologs of AP2/ERF family
genes. Thus, it is still possible that there are ET-
responsive ACS and ERF in the genome. RNA-seq ana-
lysis at 3 h after ACC treatment identified only an EIN4
homolog (Bradi5g00700) as an ET-responsive gene [20].
In rice, pathogenesis-related genes PR5 and PRI10
(PBZ1; PROBENAZOLE-INDUCED PROTEINI) are in-
duced by ET or chitin, typical PAMPs [45, 46]. They be-
long to multigene families in rice, and we found 32 and
5 homologs in Brachypodium for PR5 and PRI0, respect-
ively. The expression levels of Bradilg33540 and
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Fig. 3 Expression patterns of ET-responsive genes. Expression levels
of two ET-inducible genes at 24 h (upper panel) or 48 h (lower panel)
after treatment with phytohormones. Transcript levels were determined
by gRT-PCR analyses, and relative expression levels compared to mock
treatment are presented. M, mock treatment; S, SA treatment; J, JA
treatment; E, ET treatment. Error bars represent standard error (n =3
independent treatments). Asterisks above the bars indicate significant
differences compared to mock treatment at P < 0.05 (Student’s t test).
The experiment was performed at least three times with similar results,
and a representative result is shown
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Bradi4g05040 as marker candidates for PR5 and PRIO,
respectively, were evaluated because they are the homo-
logs most similar to OsPR5 and OsPRI10, and Bra-
dilg33540 has already been shown to be induced by
pathogens [19]. However, no induction by phytohor-
mone treatment could be detected under our conditions
(Table 2).

In summary, we successfully identified 2, 4 and 2
marker genes for SA, JA and ET, respectively. They may
be useful tools for the characterisation of defence re-
sponses induced in Brachypodium in various host-
parasite interactions.

Characterisation of the phytohormone responsiveness of
the BdPR1 gene family in Brachypodium

SA is used for plant defence mainly against biotrophic
pathogens, and JA and ET are mainly used against
necrotrophic pathogens [47]. In Arabidopsis, SA and JA
exert an antagonistic effect on each other [48]. For in-
stance, SA treatment suppresses JA-inducible genes such
as PDF1.2, VSPI, LOX2, AOS, AOC2 and OPR3 [49]. Re-
cently, a genome-wide transcriptional analysis in rice
using microarray revealed that more than half of 313
genes upregulated by benzothiadiazole (BTH), a func-
tional analogue of SA, are also induced by JA, although
a third of them were suppressed by JA [50]. This gene
set, positively regulated by both SA and JA, is defined as
a common defence system that is possibly used in re-
sponse to various biotic and abiotic stresses in rice [50,
51]. OsWRKY45 and several OsPRI genes are examples
of genes belonging to this group with their expression
levels increased by both SA and JA [52, 53].

On the other hand, this common defence system is
not found in tobacco and Arabidopsis. In tobacco, PR1-
family proteins consist of acidic and basic groups regu-
lated by SA and JA, respectively, and the induction of
each gene was antagonistically suppressed by the other
hormones [54]. In Arabidopsis, only AtPR1 (At2¢14610)
among 22 PRI-family genes is responsive to SA and
pathogen inoculation based on microarray data [55], al-
though AfPRBI was shown to be weakly induced by
MeJA and ET in root [56]. These situations may depend
on differences between rice and dicots in the SA signal-
ling cascade [57]. We accordingly speculate that this
common defence system is a characteristic feature of
monocots. However, rice contains a high level of en-
dogenous SA under normal conditions, unlike other
monocots such as barley and Brachypodium [6, 58]. To
determine whether this common defence system is spe-
cific to rice and arose during domestication or is shared
by all monocots, we characterised the response nature of
PRI-family genes in Brachypodium and compared it
with those of rice and Arabidopsis.
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A blastp search of the protein sequence of AtPR1
against the database of RIKEN Brachypodium
FLcDNA clones, to identify Brachypodium PR1 homo-
logs, yielded 11 genes, defined as the BdPRI family,
with high similarities in their deduced protein se-
quences (E value <1E-10). Among them, 5 and 4
genes were located on chromosomes 1 and 3, respect-
ively, and the remaining 2 genes were found on chro-
mosomes 2 and 4. According to rice PRI gene
nomenclature [52], these BAPRI1 genes were also des-
ignated based on their chromosomal locations. The
order of precedence depends on both chromosome
number and position from the 5" end. For example,
the 5 BAPRI members on chromosome 1 were named
BdPR1-1, BdPRI-2, BdPR1-3, BdPRI-4 and BdPRI-5
in order from 5" to 3'. The gene on chromosome 2
was named BdPRI-6.

Page 7 of 11

We designed primers for specific detection of each
BdPRI gene in qRT-PCR experiments and evaluated
their expressions at 24 and 48 h after treatment with SA,
JA, or ET (Fig. 4). According to their expression pat-
terns, BdPR1 members were classified into three groups.
Group A contains five BAPRI genes whose transcrip-
tions were not upregulated by any phytohormone
(Fig. 4a). Instead, their expressions were significantly or
likely suppressed at 24 or 48 h after treatment with these
phytohormones. Such suppression was similarly ob-
served for BdPRI-1, BAPRI1-6 and BdPRI-8, which are
categorised into other groups, at 24 h after phytohor-
mone treatment. Two genes were in group B, members
of which were responsive to only a single phytohormone,
JA (Fig. 4b). BAPRI-2 was induced at both 24 and 48 h,
whereas BdPR1-6 was upregulated only at 48 h. Group
C comprises 4 genes induced by more than two

BdPR1-3 BdPR1-7 BdPR1-9 BdPR1-10 BdPR1-11
(Bradi1g57540) (Bradi3g53630) (Bradi3g60230) (Bradi3g60260) (Bradi4g38910)
2675 2.4 1.5
] 2.0F
o) 1.0
>
24h @ 1.0 05
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P
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€
< 2.0
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© 1.5
1.
48h & 1.0 05 0.1 1.0 0
0.0s| 0-5 05
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M S J E
b BdPR1-2 BdPR1-6 C BdPR1-1 BdPR1-4 BdPR1-5 BdPR1-8
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Fig. 4 Expression patterns of BdPRT gene family after treatment with phytohormones. Expression levels of BdPRT genes at 24 or 48 h after
phytohormone treatment were determined by gRT-PCR analyses. Transcript levels relative to those in mock treatment are presented. a, not
inducible genes; b, genes only induced by JA; ¢, genes induced by multiple phytohormones. M, mock treatment; S, SA treatment; J, JA treatment;
E, ET treatment. Error bars represent standard error (n =3 independent treatments). Asterisks above the bars indicate significant differences
compared to mock treatment at P < 0.05 (Student's t test). The experiment was performed at least three times with similar results, and a
representative result is shown
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phytohormones (Fig. 4c). Transcription of BdPR1-1 and
BdPR1-8 was induced by JA and ET at 48 h after treat-
ment. BAPR1-5 expression responded to JA at 24 h and
its level was further increased at 48 h. A weak response
of this gene to SA was also detected at 48 h. As for
BdPRI1-4, its transcription was induced by all of the
tested phytohormones. Its induction was especially sen-
sitive to JA, and massive transcription was detected at
48 h.

Our results revealed that some of the Brachypodium
PRI genes were induced by multiple phytohormones, as
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reported in rice [52]. Using the predicted protein se-
quences of 11, 12 and 22 PR1 families of Brachypodium,
rice and Arabidopsis, respectively, a phylogenetic tree
was constructed by the UPGMA (Unweighted Pair
Group Method with Arithmetic mean) method (Fig. 5).
Protein sequences of the rice OsPR1 and the Arabidopsis
AtPR1 family were obtained from the MSU Rice Gen-
ome Annotation Project and the Arabidopsis Informa-
tion Resource (TAIR), respectively. The resulting tree
illustrates that Brachypodium and rice contain similar
sets of PRI family genes apart from Arabidopsis, and it

Transcriptional responses
ID Name SA JA ET
LOC 0s07g3710  OsPRT#074 (OsPR1a) ++ -+ ++
Bradi1g57870 BdPR1-4 + ++ +
LOC_0s10g11500 OsPR1#101 + + ++
Bradi1g57590 BdPR1-5 + ++ -
LOC_0s01928450  OsPRT#011 (OsPR1b) + =
LOC_0s01928500 OsPR1#012 + + +
Bradi1g57540 BAPR1-3 s s =
LOC_0s07g3279 OsPR1#071 - ++ =
Braditg12360 BAPR1-2 = + =
27 LOC_0s07903590 OsPR1#073 - + -
99 At1950050 = o -
At1950060 - = -
= At3g19690 - - -
4 100 At4g33710 - _ _
st At5g26130 - - -
37 At4g33720 - = o
54 At2914580 AtPRB1 - +(root) +(root)
99 At2g14610 AtPR1 ++ - -
4 At4g33730 - R R
LOC_0s02g 0 OsPR1#021 - +- -
Bradi3g53630 BAPR1-7 = =
Bradi3g53637 BdPR1-8 - oF i
At4g25790 - - -
At5957625 - = o
At4g30320 = = o
At4g25780 - = o
Loc_0s02g OsPR1#022 = = =
Bradi3g60260 BdPR1-10 - - -
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LOC_0s07g03580 OsPR1#072 - - -
At1901310 - - -
At3g09590 - - -
At5g02730 - - -
Bradi4g38910 BdPR1-11 - - -
At2919990 = = =
At2919970 - - -
At2g19980 = = =
LOC_0Os12g43700 OsPR1#121 °F -
LOC_0s05951660 OsPR1#051 + ++ ++
At4931470 - - -
LOC_0s05951680 OSsPR1#052 +- o o
Bradi2g14240 BdPR1-6 - +
Bradi1g09637 BdPR1-1 - ++ +
0 - - -
At4g07820 - - -
0 Iqo 0 "25 020 0 ‘15 0.10
Fig. 5 Phylogenetic analysis of PR1 gene families in Arabidopsis, rice and Brachypodium. A phylogenetic tree of PRT gene families of Arabidopsis,
rice and Brachypodium was constructed with MEGA software (http://www.megasoftware.net/) using the UPGMA method with bootstrap values
(1000). Phytohormone inducibilities of BdPRT family analysed in this study and those of the AtPR1 family and OsPR1 family reported in van Loon
et al. (2006) and Mitsuhara et al. (2008), respectively are summarised in the right column [52, 55]. Induction status is presented as follows: ++,
significantly induced more than10-fold compared to the mock treatment; +, significantly induced more than 2-fold compared to the mock
treatment; —, not inducible; +—, gene whose induction or expression was not clear
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suggests the difference between monocots and dicots in
constitution of PRI family proteins. In the right columns
of Fig. 5, we summarise the phytohormone responsive-
ness of these Brachypodium PRI genes as revealed in
this study and the reported information for rice OsPR1
and Arabidopsis AtPRI genes. In AtPRI genes, only two
genes (At4g25780, At5g66590) were classified into the
same clade of monocot PRI genes, whereas remaining
20 genes, which contained phytohormone responsive
AtPRI and AtPRBI, formed independent clades. Some of
the PRI genes from Brachypodium and rice classified
into the same clade showed similar expression response
patterns to the phytohormones. For example, BdPR1-4
and OsPRI1#074 (OsPRIa) or BdPRI-5 and OsPRI1#101
responded to multiple phytohormones, whereas BdPRI-
7, BAPRI-9, BAPR1-10, OsPR1#021 and OsPRI#022 were
not induced by any phytohormones. BdPRI-2 and
OsPR1#071 were induced by only JA. Other gene pairs
showed different expression patterns, suggesting differ-
ent roles of the PRI family between these plant species.

From these situations, we hypothesized that a com-
mon defence system is present in Brachypodium and
that the system is conserved among monocot plants.
This idea is also supported by our findings that at least
WRKY45-2, 4CL, BAPRI-4 and BdPR1-5 were regulated
by both SA and JA (Figs. 1, 2 and 4c). A comprehensive
transcriptome analysis of Brachypodium using RNA-seq
or microarrays may confirm this hypothesis.

Conclusions

Genome deciphering by next-generation sequencing
and comprehensive transcriptome analysis with RNA-
seq enable comparative genomics in many crop spe-
cies. Distinctive features in crops often impede the
progress of detailed molecular analysis, but a large
picture of plant immunity is available only in Arabi-
dopsis and rice at present. Given that Brachypodium
has attractive advantages that can overcome the limi-
tations of crop research especially for Pooideae crops
attributed to slow growth speed, large genome size,
high ploidy and so on, it is expected to provide
knowledge bearing on the commonality or uniqueness
of defence systems among plant species. In this study,
we identified the phytohormone marker genes
WRKY45-1 and WRKY45-2 for SA; AOS, LOX, 4CL,
PAL, PRI-2, PRI-5 and PRI-6 for JA and TAR and
UGT76-4 for ET (Figs. 1, 2, 3 and 4). Having been se-
lected for responsiveness on the bases of both time
point and intensity, which are parameters used for
monitoring plant reactions during infection by many
phytopathogens, these genes should be useful tools
not only for describing spatiotemporal immune
responses to specific pathogens in Brachypodium but
also for comparing them with those to other
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pathogens in a unified framework. The comparison of
expression profiles of PRI family genes suggests that
Brachypodium has phytohormone responses more
similar to those of rice than of Arabidopsis.

Methods

Plant materials and growth conditions

The Brachypodium distachyon cultivar Bd21 was used.
Brachypodium seeds were germinated on moist filter
paper. After 7 days, the seedlings were transferred to
wells of 24-well microtiter plates filled with soil and
grown in a growth chamber (LPH-350S; Nippon Medical
& Chemical Instruments, Osaka, Japan) at 23 °C under a
20 h light/4 h dark photoperiod [13].

Phytohormone treatment

Sodium salicylate (SA; Wako, Osaka, Japan), MeJA (JA;
Wako, Osaka, Japan) and ethephon (Sigma-Aldrich, St.
Louis, MO, USA), an ET generator, were used as phyto-
hormones. Whole Bd21 seedlings grown for 3 to 4 weeks
were immersed in water (mock treatment) or a plant
hormone solution (1 mM SA, 100 pl MeJA, or 100 uM
ethephon) using 50-mL conical tubes. The seedlings
were incubated for 24 or 48 h at 23 °C under a 20 h
light/4 h dark photoperiod. Then, the first and second
fully expanded leaves from the top of the seedlings were
collected in 2-mL tubes and frozen in liquid nitrogen.

RNA extraction and gene expression analysis

The frozen samples were crushed with four zirconia
beads (¢ 2 mm) using a Shake Master Neo (BMS, Tokyo,
Japan). Total RNA was extracted with a Total RNA Puri-
fication Kit (JenaBioscience, Jena, Germany) with on-
column DNase treatment (Invitrogen, Carlsbad, CA,
USA). RNA concentration and purity were validated
with a DS-11 spectrophotometer (Denovix, Wilmington,
DE, USA). ¢cDNA was synthesized from each sample
with the PrimeScript RT reagent kit with gDNA Eraser
(Takara, Shiga, Japan). Gene expression analyses were
performed by qRT-PCR using a KAPA SYBR Fast qPCR
Kit (KAPA BIOSYSTEMS, Woburn, MA, USA) with a
GVP-9600 real-time PCR instrument (Shimadzu, Kyoto,
Japan). The quantification of target transcripts was per-
formed using the GVP-9600 internal software GVP gene
detection system, and the data were normalised to the
BdUbi4 gene (Bradi3g04730), which has been estab-
lished as a reference gene for expression studies in B.
distachyon [59]. Primers used in this study are listed in
Additional file 2: Table S1.

Availability of data and materials
All supporting data can be found within the manuscript
and its additional files.
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Additional file 1: Figure S1. Protein sequence alignments of
OsWRKY45, BAWRKY45-1 and BAWRKY45-2 (PPTX 145 kb)

Additional file 2: Table S1. Primers used in this study (DOCX 32 kb)
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