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Abstract

Background: Heterosis or hybrid vigour is a phenomenon in which hybrid progeny exhibit superior performance
compared to their parental inbred lines. Most commercial Chinese cabbage cultivars are Fy hybrids and their level
of hybrid vigour is of critical importance and is a key selection criterion in the breeding system.

Results: We have characterized the heterotic phenotype of one F; hybrid cultivar of Chinese cabbage and its
parental lines from early- to late-developmental stages of the plants. Hybrid cotyledons are larger than those of the
parents at 4 days after sowing and biomass in the hybrid, determined by the fresh weight of leaves, is greater than
that of the larger parent line by approximately 20 % at 14 days after sowing. The final yield of the hybrid harvested
at 63 days after sowing is 25 % greater than the yield of the better parent. The larger leaves of the hybrid are a
consequence of increased cell size and number of the photosynthetic palisade mesophyll cells and other leaf cells.
The accumulation of plant hormones in the F; was within the range of the parental levels at both 2 and 10 days
after sowing. Two days after sowing, the expression levels of chloroplast-targeted genes in the cotyledon cells were
upregulated in the F; hybrid relative to their mid parent values. Shutdown of chlorophyll biosynthesis in the
cotyledon by norflurazon prevented the increased leaf area in the F; hybrid.

Conclusions: In the cotyledons of F; hybrids, chloroplast-targeted genes were upregulated at 2 days after sowing. The
increased activity levels of this group of genes suggested that their differential transcription levels could be important

for establishing early heterosis but the increased transcription levels were transient. Inhibition of the photosynthetic
process in the cotyledon reduced heterosis in later seedling stages. These observations suggest early developmental
events in the germinating seedling of the hybrid may be important for later developmental vigour and yield advantage.
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Background

Hybrid vigour or heterosis refers to the superior perform-
ance of hybrid progeny relative to their parents, and this
phenomenon is important in the production of many crops
and vegetables. Genetic analyses of F; hybrids in maize and
rice have defined a large number of QTLs, which may
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make contributions to heterosis. Gene interactions such as
dominance, overdominance, pseudo-overdominance, and
epistasis have been suggested to explain the development
of heterosis [1, 2]. Recent molecular analyses of transcrip-
tomes, proteomes, and metabolomes, together with refer-
ence to the epigenome of the parents and hybrids have
begun to uncover some new facts about the generation of
hybrid vigour [3—6]. High-throughput sequencing technol-
ogy enables us to not only compare the expression level of
genes between the F; and parental lines but also to exam-
ine the parental allelic contributions to gene expression in
F; hybrids at the whole genome level [7].
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In Arabidopsis thaliana, several hybrids such as
Columbia-0 (Col) x C24 and Landsberg erecta (Ler) x C24
show heterosis in vegetative biomass. A heterosis pheno-
type is seen in early development with hybrids having
increased cotyledon size only a few days after sowing
[8-11]. The efficiency of the photosynthetic process is
equivalent in parents and C24 x Col hybrids, and leaves of
the hybrids are larger than the leaves of the parents. The
total amount of photosynthesis is greater in the hybrids
than in parents because of the larger leaves [9].

The genus Brassica includes important vegetables
(Brassica rapa L. and Brassica oleracea L.) and oilseed
crops (Brassica napus L.), and is related to A. thaliana.
B. rapa vegetables such as Chinese cabbage (var. peki-
nensis), turnip (var. rapa), pak choi (var. chinensis), and
Komatsuna (var. perviridis) are widely grown in Asia.
Most cultivars of B. rapa are self-incompatible, prevent-
ing self-fertilization, although some oilseed cultivars
(var. tricolaris) are self-compatible [12—14]. In Japan,
most B. rapa commercial varieties are F; hybrid cultivars
which have increased yields relative to their parents.
Self-incompatibility or cytoplasmic male sterility is uti-
lized in producing the F; hybrid seeds [14].

Though there is no doubt that F; hybrids exhibit het-
erosis in yield, there are few reports evaluating the yield
characteristics of Chinese cabbage hybrids, and there is
no report focusing on early developmental stages of the
hybrid plant. In this study, we examined the plant size
and hormone concentrations in early seedlings and yield
in the commercial Chinese cabbage hybrid “W39” and
its parents to find when heterosis occurs and how much
the yield increases in the F; hybrid relative to parental
lines. It has been suggested that heterosis could be a
result of changes in the transcriptional network. We
identified the differentially expressed genes between the
F; and parental lines together with the allele-specific
expressed genes in the F; at 2 days after sowing (DAS)
by RNA sequencing (RNA-seq). We found that in-
creased production of photosynthesis in the first week
after germination is critical for heterosis and that upreg-
ulation of chloroplast-targeted genes at 2 DAS might
contribute to this process.

Methods

Plant materials

A commercial F; hybrid cultivar of Chinese cabbage,
“W39” (Watanabe Seed Co. Ltd., Japan), and its parental
inbred lines, S27 (female) and R29 (male), were used for
analysis of the heterosis phenotype. Selfed seeds of par-
ental lines were harvested using honeybees as pollinators
after spraying with NaCl solution, which weakens the
self-incompatibility. Seeds of F; hybrids were harvested
by open crossing between parental lines. Fifty dry seeds
of parental lines and hybrids were weighed and statistical
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comparisons of the weight of 50 dry seeds were per-
formed using Student’s ¢-test (p < 0.05).

Plants were grown in plastic dishes containing Murashige
and Skoog (MS) agar medium supplemented with 1.0 % su-
crose (pH 5.7) in growth chambers under a 16-h/8-h light/
dark cycle at 22 °C. The parents and hybrids were placed at
equal intervals on the same agar plate divided into two or
four regions (Additional file 1: Fig. S1A), and samples were
harvested for examination of cotyledon/leaf area and cell
size, flow cytometric analysis, hormonome analysis, chloro-
phyll quantification, and expression analysis.

For the inhibitor studies, seedlings were grown for a
week on MS plates and transferred to MS plates with 1.0
UM norflurazon (Sigma-Aldrich), or seeds were sown on
the MS plates with 1.0 uM norflurazon and after one
week treated seedlings were transferred to MS plates.

For examining the yield under field conditions, seeds
were sown on multi cell trays on 17th August 2011 and
grown in a greenhouse. On 5th September 2011, seedlings
were transplanted to the field at Osaki, Miyagi, Japan (38°
57'N, 141°00’E). Thirty plants per plot were transplanted
and plot size was 13.5 x 0.7 meters. Row spacing is 70 cm
and planting distance is 40 cm. On 29th October 2011,
plants were harvested. Statistical comparisons of fresh
weight of total biomass and harvested biomass were per-
formed using Student’s ¢-test (p < 0.05).

Cotyledon/leaf area and cell size

Cotyledons in seeds, cotyledons at 2, 4, or 6 DAS, and
1st and 2nd leaves at 10, 12, or 14 DAS were fixed in a
formalin/acetic acid/alcohol solution (ethanol: acetic
acid: formalin = 16: 1: 1). The image of the whole cotyle-
don or leaf was photographed under a stereoscopic
microscope, and sizes were determined with Image-]
software (http://rsb.info.nih.gov/ij/). After examination
of cotyledon or leaf area, they were cleared in a chloral
hydrate/glycerol/water solution (chloral hydrate: H,O:
glycerol = 8: 2: 1), and the samples were photographed
under Nomarski optics. The palisade cell number per
fixed unit area in the subepidermal layer of the center of
the leaf blade between the midvein and the leaf margin
was counted. More than three independent experiments
were performed for examination of cotyledon/leaf area
and cell size. Statistical comparisons of cotyledon/leaf
area and cell size were performed using Student’s t-test
(p < 0.05).

Flow cytometric analysis

Nuclei from cotyledons at 6 DAS or 1st and 2nd leaves at
14 DAS grown on MS agar plates in a growth chamber
were released in nuclei extraction buffer by lightly chop-
ping the cotyledons or leaves with a razor blade and
stained following the manual of Partec CyStain UV precise
P (PARTEC). Ploidy levels were measured by a Ploidy
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Analyzer (PARTEC). Flow cytometry experiments were
repeated three times using cotyledons or true leaves from
different plants.

Hormone analysis

The 2 day cotyledon and 10 day 1st and 2nd leaves were
harvested. Plant hormones were extracted, purified, and
quantified as described previously [15, 16]. Statistical com-
parisons of plant hormone contents were performed using
Student’s ¢-test (p < 0.05).

Chlorophyll extraction and quantification

Cotyledons at 6 DAS were ground in 80 % (vol/vol) acet-
one. Absorbance of the supernatants was measured at
646.6 and 663.6 nm, and concentrations of total chloro-
phyll were calculated using the following formulae: total
chlorophyll (pg/mL) = 17.76 x A646.6 + 7.34 x A663.6. Data
presented are the average and standard error (SE) from six
biological replications.

Gene expression analysis

The parents and hybrids were grown on MS agar plates in
a growth chamber. Total RNA was isolated from five
bulked cotyledons of both hybrids and parents from 2 — 6
DAS using the SV Total RNA Isolation System (Promega).
c¢DNA was synthesized from 500 ng total RNA using
PrimeScript RT reagent Kit (Takara bio). Prior to quanti-
tative RT-PCR, the specificity of the primer set for each
gene was first tested by electrophoresis of PCR amplified
products using EmeraldAmp MAX PCR Master Mix
(Takara bio) on 2.0 % agarose gel in which single products
were observed. Absence of genomic DNA contamination
was confirmed by the PCR of no RT control. PCR condi-
tions were 95 °C for 3 min followed by 30 cycles of 95 °C
for 30 s, 55 °C for 30 s, and 72 °C for 30 s.

Quantitative RT-PCR was performed using a LightCycler
Nano (Roche). The ¢cDNA was amplified using FastStart
Essential DNA Green Master (Roche). PCR conditions
were 95 °C for 10 min followed by 40 cycles of 95 °C for 10
s, 60 °C for 10 s, and 72 °C for 15 s, and Melting program
(60 °C to 95 °C at 0.1 °C/s). After amplification cycles, each
reaction was subjected to melt temperature analysis to con-
firm single amplified products. The relative expression level
of each gene relative to ACTIN (Bractin) was automatically
calculated using automatic CQ calling according to the
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manufacturer’s instructions (Roche) [17]. Data presented
are the average and SE from three biological and experi-
mental replications and statistically analysed using the
Student’s t-test, p < 0.05. The primers used in this study are
listed in Additional file 2: Table S1.

RNA sequencing

Cotyledons were collected at 2 DAS and total RNA was
isolated with SV Total RNA Isolation System (Promega).
Sequence library preparation, sequencing, mapping short
reads, identification of differentially expressed genes,
and gene ontology analysis were followed as described
previously [18]. RNA-seq was performed using Illumina
Hiseq2000. Totally, 16,357,770 (~1500 Mbp), 17,548,397
(~1600 Mbp), and 16,267,428 (~1500 Mbp) reads in S27,
R29, and F; were uniquely mapped to Brassica genome
release 1.2, respectively. The gene expression level was
scored by fragments per kilobase per million (FPKM). The
merged reads of S27 and R29 were used for mid-parent
values (MPV).

We searched the SNPs between S27 and R29 from
RNA-seq data with a minimum coverage of eight reads
per site. Of 41,174 annotated genes, 10,931 genes (26.5 %)
had no reads both in S27 and R29, and 12,770 (31.0 %)
genes had more than one SNP.

Results

Heterosis can be detected in young seedlings

We followed the development of the leaves in the hybrid
and parents from germination to 30 DAS. The germin-
ation rate did not differ among parental lines and F;
hybrids. The R29 parent had more leaves from 12 to 30
DAS than did the F; hybrid or the S27 parent (Additional
file 1: Fig. S1B). At 30 DAS the F; hybrid had 71 % and 11
% greater fresh weight than the S27 and R29 parental lines,
respectively (Additional file 1: Fig. S1C).

The mature seeds of the F; hybrid have a greater dry
weight than the parental seeds (Table 1), and the cotyledon
in the mature F; seed has an increased area relative to the
area of the cotyledon in the better performing parent R29
(Table 1). We checked whether the increased size of the F;
cotyledon was due to an increased number or to increased
size of the palisade mesophyll cells in the cotyledon, or
whether both factors apply. The adaxial layer of palisade
mesophyll cells has fewer cells per unit area in the F;

Table 1 Dry weight, cotyledon size, and cell number per unit area of cotyledon in mature seeds

S27 (female) R29 (male) F1-S27 x R29
50 seed weight (mg) 1383+ 1.0% (n=5) 1604+ 13° (n=5) 1719+ 46 (n=5)
Cotyledon area (mm?)* 2.72+008% (n=30) 3.04+008° (n=30) 327 £0.08 (n=30)
Cell number per unit area (250 pm?) 5509+ 1.89° (n=11) 6191+148 (n=11) 4777 £125% (n=13)

Different letters indicate significant differences at p < 0.05 (Student’s t-test)
*The area is half of the cotyledon
Mean + Standard errors
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hybrid than in the parental lines (Table 1), indicating the
palisade cells are larger in the F; hybrid than in the parents.

In the germinating seedlings the cotyledons of the F;
hybrids remained larger than the cotyledons of the par-
ents over the period 2—6 DAS (Table 2). The cotyledons
begin to senescence after this time. The first two leaves
of the F; hybrid at 14 DAS were larger and wider than
those of the larger parent, S27 (Table 2). The cotyledons
and leaves of the F; hybrids had cell sizes equal to the
R29 parent, which has larger cells than the S27 parent
(Table 3). The distribution of ploidy levels in the cells of
the cotyledons and leaves in parents and the F; hybrid
showed no difference in the cotyledons at 6 DAS and 1st
and 2nd leaves at 14 DAS (Additional file 1: Fig. S2). In
seedling development the F; hybrid had a greater fresh
weight at 7 and 14 DAS than the larger parent (Table 2).
Heterosis was not evident in the root system at either 7
or 14 DAS (data not shown).

In field conditions the F; hybrid showed more than 20 %
greater total biomass and harvested biomass (in which the
outer leaves were stripped for marketing) than the larger
parent (Fig. 1a, b). The height, width, and circumference
of the harvested F; plants were all greater than the corre-
sponding dimensions of the parental plants (Fig. 1c).

Hormone profiles were similar in parental lines and the
F, hybrid

As hormone signaling has been suggested to be important
in heterotic hybrids of A. thaliana [19], we examined en-
dogenous hormone contents in the parents and F; hybrid.
We measured the levels of auxins, cytokinins, ABA, gib-
berellins, jasmonates, and salicylic acid in 2 day cotyledons
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and 10 day 1st and 2nd leaves. 20 of the 43 hormone
derivatives assayed were not detected in any lines
(Additional file 2: Table S2). GAg was not detected in
F, hybrid, tZ was not detected in S27 and R29, and
IAPhe was not detected in R29 and the F; hybrid. 10,
5, and 7 molecular types showed significantly different
contents between S27 and R29, between S27 and F;
hybrid, and between R29 and F; hybrid (p<0.05).
GAg, GAp,, GAyp, and GAs3 accumulated to higher levels
in R29 than in S27 and F; hybrid (Fig. 2, Additional file 2:
Table S2). SA had higher levels in the F; hybrid than
in the parents.

In the 10 day 1st and 2nd leaves, 15 of the 43 hormone
types were not detected in any lines (Additional file 2:
Table S2). As was the case in 2 day cotyledons, plant
hormone accumulation did not show over or under
dominance in the F; hybrid except for iPRPs and
GA,, (Additional file 2: Table S2). These results indi-
cate that the accumulation of plant hormones in the
F, hybrid was within the range of the parental levels
at both 2 and 10 DAS.

Expression level of organ size-associated genes

The increased cotyledon and leaf area in F; hybrids sug-
gested that organ size-associated genes contribute to the
heterosis phenotype as has been reported in maize and
Larix [20, 21]. We examined the expression level of four
genes, ARGOS, ANT, EBP1, and CYCD3;1, which are in-
volved in development of organ size [22], from 2 to 6
DAS and compared the expression levels between the F,
hybrid and each parent or between the F; hybrid and
MPV. The expression level of ANT was low, and the

Table 2 Area and size of cotyledon and true leaf and fresh weight in S27, R29, and F,

S27 (female) R29 (male) F1-S27 x R29 Relative to MPV Relative to BPV
Cotyledon area (mm?)
2 DAS 10.77 £059% (n=19) 11.69 + 0.48%° (n = 20) 1304 +0.68° (n=24) 1.16 112
4 DAS 52.87 246 (n=42) 53.59+2.14° (n =36) 6882 +3.00° (n=33) 1.29 1.28
6 DAS 80.14+3.51% (n=37) 7713 £275% (n=38) 10052 +4.69° (n = 36) 1.28 1.25

1st and 2nd leaf area (mm?)

10 DAS 87.62+557° (n=26) 84.51+2.03° (n=36)

12 DAS 14351+ 559° (n=30) 111.01 +2.86% (n=36)

14 DAS 14648 +5.02° (n = 36) 114.62 +4.62° (n=34)
Leaf size at 14 DAS

Length (cm) 1.50+0.03% (n=36) 145 +0.03% (n=36)

Width (cm) 094 +0.02% (n=36) 0.86 +0.02% (n = 36)

Fresh weight (mg)
7 DAS
14 DAS

79.04 + 1.88% (n = 25)
239.86 + 5.83° (n = 42)

7751+188 (n=37)
18275 +4.24% (n=44)

119.26 +5.25° (n = 30) 139 136
15840+ 6.57° (n = 36) 124 1.10
179.13 +6.96° (n = 36) 137 122
1.74+0.04° (n = 36) 1.18 1.16
1.13+003° (n = 36) 126 120
90.22 +232° (n=41) 1.15 114
257.63 + 524 (n = 43) 122 107

Letters indicate significant differences at p < 0.05 (Student’s t-test)
MPV mid-parent value, BPV best-parent value
Mean =+ Standard errors
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Table 3 Cell number per unit area in the first layer of palisade mesophyll cells of cotyledon and true leaf

S27 (female)

R29 (male)

F-527 x R29

Cell number per unit area (400x400 pmz)

Cotyledon at 2 DAS
Cotyledon at 4 DAS
Cotyledon at 6 DAS

Cell number per unit area (200x200 pm?)

1st and 2nd leaves at 10 DAS
1st and 2nd leaves at 12 DAS
1st and 2nd leaves at 14 DAS

213082+ 81.54% (1=17)
15212421 (n=17)
11116 £4.67° (n=19)

186.59+6.75° (n=17)
11961 +267° (n=18)
81.32+380° (n=19)

199153 +5232% (n=17)

12820+ 5.75° (n = 20)
86.35 + 2647 (n=20)

109.82+383% (n=17)
7578 £2397 (n=23)
66.74+225% (n=19)

193067 +55.06° (n=18)
111.63+£4.04° (n=19)
86.85 +3.15% (n = 20)

121.81+£4.92% (n=16)
82.06+349% (n=17)
62.17 +4.02° (n=18)

Letters indicate significant differences at p < 0.05 (Student’s t-test)
Mean + Standard errors

expression levels of ARGOS, CYCD3;1, and EBPI gradually
decreased over time (Fig. 3a, b, Table 4). At 2 or 3 DAS,
the expression levels of ARGOS, CYCD3;1, and EBPI in
S27 were higher than those in R29 and F; hybrids
(Fig. 3a, b, Table 4), suggesting these loci do not con-
tribute significantly to the heterosis of the F; hybrid.

Chloroplast-targeted genes have increased expression
levels in early developmental stages

We measured the expression level of eight genes involved
in chlorophyll biosynthesis or in the photosynthesis
process with products active in the chloroplast or plastid.
At 2 DAS the expression levels of all eight genes were low

in the F; hybrids and parents, but were higher in the F;
hybrid than in parental lines (Fig. 3¢, d, Table 4); 6 of the 8
genes, ATPD, CHL27, CHLM, LHCA2, PORC, PsbP, were
significantly upregulated in the F; hybrids relative to the
MPV. At 3 DAS the expression of these chloroplast-
targeted genes was increased in both F; hybrids and
parental lines, and only LHCA2 had higher expression in
the F; hybrids than in the parental lines (Fig. 3¢, d,
Table 4). At 4 DAS there was a decrease in expression
level of all eight genes in both F; hybrids and parental
lines, and the expression levels were similar in all lines
(Fig. 3¢, d, Table 4). At 5 and 6 DAS there was similar ex-
pression to the 4 DAS expression levels with no difference
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total biomass in S27 (n=23), R29 (n =30), and F; hybrid (n = 30). ¢ Height, width, and circumference of harvested S27 (n=15), R29 (n=15), and
Fy hybrid (n=15). Letters above the bars indicate significant differences at p < 0.05 (Students t-test). MPV, mid parent value
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between the F; hybrids and MPV except for PORB at 6
DAS (Fig. 3¢, d, Table 4).

We examined the chlorophyll content per gram fresh
weight at 6 DAS. The chlorophyll content of the F; hy-
brid (0.136 £0.005 upg/mg) is similar to that of R29
(0.127 £ 0.010 pg/mg) but greater than that of S27
(0.094 £ 0.009 pg/mg). When the larger leaves are con-
sidered the total chlorophyll content of the F; hybrid is
greater than that of parents because of the increased size
and number of cells resulting in an increased leaf area
and fresh weight in the F; hybrid.

Transcriptome analysis of 2 DAS cotyledons

As the expression levels of chloroplast-targeted genes
tended to be higher in the F; hybrids than MPV at 2
DAS (Table 4), we performed a transcriptome analysis
in the parental lines (527 and R29) and the F; hybrid.
To verify the RNA-seq analysis, we compared the

relative ratio of expression levels between the F; hy-
brid and MPV calculated by qPCR and RNA-seq data
in the organ size-associated and chloroplast-targeted
genes (Table 4, Additional file 2: Table S3). A high
correlation (r=0.95) was observed between the two
analyses (Fig. 4a).

Less than 1 % of the genes showed a two-fold difference
(log2 ratio > = 1.0) in expression with 95 % confidence be-
tween parental lines (204 of 41,174 genes) or between the
F, hybrid and each parental line (F; vs. S27; 157 genes, F;
vs. R29; 206 genes) (Fig. 4b, Additional file 2: Tables S4-6).
Between F; hybrid and MPV (see Methods) 195 (0.5 %)
genes showed a two-fold difference (log2 ratio > = 1.0) in
expression with 95 % confidence, and 13 of these 195
genes were differential expressed in the parental lines
(Fig. 4b, Additional file 2: Table S7).

We performed a Gene Ontology (GO) analysis of genes
differentially expressed in the parental lines (S27 vs. R29),
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between the F; hybrid and each parental line (F; vs. S27,
F; vs. R29), and between the F; hybrid and the MPV
(Table 5, Additional file 2: Tables S8-S11). In the upregu-
lated genes in the F; hybrid compared with S27, R29, or
MPV, GO categories of ‘Photosynthesis’ and ‘Chloroplast
part’ were overrepresented. In the downregulated genes in
the F; hybrid, the GO categories of ‘Response to heat’,
‘Response to high light intensity’, and ‘Response to
temperature stimulus’ were over-represented (Table 5,
Additional file 2: Tables S8-S11).

Overall, chloroplast-targeted genes, especially those
having a function in photosynthesis, such as Light
harvesting chlorophyll a/b-binding protein (LHCB),
Photosystem I subunit (PSA), and NDH-dependent
Cyclic Electron Flow (NDF) had a higher expression
level in the F; hybrid than in the parental lines and
genes involved in the category of ‘response to heat’,
‘response to temperature stimulus’, and ‘response to
high light intensity’ such as Heat shock protein (HSP)
and Heat stress transcription factor (HSF) had a
lower expression level in the F; hybrid than in

parental lines (Additional file 1: Fig. S3, Table 5,
Additional file 2: Tables S5-S7, S9-S11).

Identification of allele specific expressed genes in the F,
hybrid

The parental alleles expressed in the F; hybrid were iden-
tified through a SNP analysis. The two allelic expression
levels in each gene in the F; hybrid (AEL) were compared
to the relative expression levels (REL) in the two parents.
436 (3.5 %) of 12,321 (excluding 449 non-expressed genes
in S27 and/or R29) genes showed a difference between
AEL and REL (p <0.01) (Fig. 5, Additional file 1: Fig. S4).
Genes that were either differentially expressed between
the parents (11.9 %) or showed differential expression
relative to the MPV (15.8 %) were overrepresented (Fig. 5,
Additional file 1: Fig. S5).

We identified allele-specific expressed genes in the F;
hybrid. We classified genes as allele-specific expressed
if they satisfied the following criterion: five fold differ-
ence of SNP numbers per site between S27 and R29
alleles (p <0.05) or p<0.001 if only one-parental SNP
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Table 4 Expression level of genes involved in organ size and chloroplast-targeted genes detected by quantitative RT-PCR at different

times after sowing

2 DAS

S27 (female)

R29 (male)

F1-S27 x R29

Genes involved in organ size

ANT
CYco3;1
EBP1
ARGOS
Chloroplast-targeted genes
CHLM
CHL27
PORB
LHCA2
PORC
PsbS
ATPD
PsbP

Genes involved in organ size

ANT
CYco3i
EBPI
ARGOS
Chloroplast-targeted genes
CHLM
CHL27
PORB
LHCA2
PORC
PsbS
ATPD
PsbP

Genes involved in organ size

ANT

CcYco31

EBPI

ARGOS
Chloroplast-targeted genes
CHLM

CHL27

PORB

LHCA2

0.05 +0.013" (1.60)
169.99 + 15.920° (1.29)
791.80 + 63.295° (1.24)
3814 +3.839° (152)

7.27+0.723% (1.00)
47640368 (1.16)
1844 + 2,558 (1.46)
1840+ 0.671° (141)
122 +0085° (0.88)
001+ 00012 (0.86)
17.06 + 3.687° (0.95)
5456 +3.150° (1.18)
3 DAS

S27 (female)

0.11 £0.035° (147)
60.47 + 4.589° (1.29)
231.00+ 20657 (1.26)
11.76 + 0.966° (1.14)

109.15+7.716° (1.12)
273.81+5.100° (0.72)
879.58 + 53.892° (132)
895.36 + 89.621° (0.68)
34.55+0321° (0.89)
0.29+0.0117 (0.90)
1019.51 + 74.779% (1.03)
3939.02 + 403.225° (0.94)
4 DAS

S27 (female)

0.03 £0.007° (1.31)
12,91 £2.030° (1.08)
9548 + 13.552° (1.05)
093 +0.183% (1.23)

1.97 £0208° (0.76)
279+05317 (047)
1843 +0372° (0.96)
42810+ 155.529% (0.96)

0.02 +0.002? (0.55)
9264+ 18702 (0.71)
480,63 + 117.658 (0.76)
12,16 +0.804° (048)

743 +0.849° (1.00)
347 +0301° (0.84)
6.74+ 1238 (0.54)
7.63+0691° (0.59)
154+ 0.249°° (1.12)
001 +0.005° (1.14)
18.89 + 3689 (1.05)
3757 £6.258° (0.82)

R29 (male)

0.04 +0,009° (0.53)
33.15+5.176° (0.71)
134.80 + 20743 (0.74)
8.86 = 1.563% (0.86)

85.37 £9.127% (0.88)
48432 + 146.105% (1.28)
456.81 + 71.574% (0.52)
1729.73 +188.985™ (1.32)
43.16 +4.084% (1.11)

0.36 +0.041° (1.10)

955.55 +121.680° (0.97)
444587 +611.073° (1.06)

R29 (male)

0.02 +£0.001° (0.69)
10.96 +2.726% (0.92)
85.76 +20.561° (0.95)
0.58 +£0.126° (0.77)

324409137 (1.24)

9.15 +3.5587 (1.53)
20.05+0.210% (1.04)
449,70 + 131.546% (1.02)

0.03 £0.007% (1.11)
11823 + 19826 (0.90)
47861+ 75656° (0.75)
18,60 + 3.388% (0.74)

957+0.116° (131%)
594+ 0668 (1.44%)
2063 + 2.589° (1.64)
3794+ 5624° 2917
2.11+0.107° (153*)
0.02+ 0008 (2.21)
3926 +8350° (2.18%)
96.10 +4.271° (2.09*%)

F,-527 x R29

0.05 +0.024% (0.72)
27.29 £4.522% (0.58)
117.18 + 17.5387 (0.64)
527 04427 (0.51%)

10853 +9.602° (1.12)
22376 +23.998" (0.59)
509.17 + 72.665° (0.76)
2354.13 + 398359 (1.79%)
4158+5.773% (107)
035+ 0.046” (1.06)

814.55 + 216.658" (0.82)
631969 + 1259.5737 (1.51)

F1-527 x R29

0.03 +0.006° (1.14)
10.80 + 1.8607 (0.90)
84.79 + 13.5407 (0.92)
065 +0.122° (0.83)

28306597 (1.09)
3.17+059° (0.53)

1831 +0.276° (0.95)
57412 +318.830% (1.31)
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Table 4 Expression level of genes involved in organ size and chloroplast-targeted genes detected by quantitative RT-PCR at different

times after sowing (Continued)
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PORC
PsbS
ATPD
PsbP

Genes involved in organ size
ANT

CYco3i

EBPI

ARGOS
Chloroplast-targeted genes
CHLM

CHL27

PORB

LHCA2

PORC

PsbS

ATPD

PsbP

Genes involved in organ size
ANT

CYco31

EBPI

ARGOS
Chloroplast-targeted genes
CHLM

CHL27

PORB

LHCA2

PORC

PsbS

ATPD

PsbP

7.60 +4.034° (0.87)
0.03+0017° (1.26)
122.09 +5.773° (0.86)
718.75 + 75.843% (1.03)
5 DAS

S27 (female)

0.03 +0.004° (1.23)
6.82+0.801° (121)
33.02+3.196° (1.14)
046 +0,088° (1.37)

220+0.2897 (1.14)
1.96+0.168° (1.13)
223 +0.169° (0.97)
39.10 +5.653% (1.08)
061+0.078 (0.77)
0.00 +0.002° (1.26)
21.62 +£0.925% (1.05)
153.34 +8.824% (1.11)
6 DAS

S27 (female)

001 +0.006" (0.77)
2.10 +£0.388° (0.82)
19.52 +3.345% (0.77)
0.25 +0.067° (1.07)

4.15+0.187% (1.12)
528+0.742% (1.13)
1.91+0.060°° (1.15)
39.94 + 2.660° (1.06)
114 +0324° (068)
00100012 (0.67)
3836+ 7410° (0.93)
192.31 4 32.822° (1.19)

977 27047 (1.13)
0.02 £ 0.006° (0.74)
16322+ 13.719° (1.14)
682.77 + 44.241° (0.97)

R29 (male)

002 +0.002° (0.82)°
449 +0470° (0.79)
24.89 + 4.347° (0.86)
021+0038° (0.63)

1.67 +£0.309° (0.86)
1.52+0.3897 (0.87)
239 +0.340° (1.03)
33.21+£5.320% (0.92)
0.97 £0.245 (1.23)
0.00 +0.000° (0.74)
19.51 £ 1.521% (0.95)
122.08 +4.314° (0.89)

R29 (male)

0.01+00107 (1.23)
3.02+0.392° (1.18)
31.08 +4.424% (1.23)
021 +£0.026° (0.93)

324 +0.504° (0.88)
4.06 +0.369° (0.87)
141 +0.073° (0.85)
35.17 £3.957% (0.94)
220 +0.525% (1.32)
0.01 +0.007° (1.33)
44.09 +9.913% (1.07)
131.54+7.282° (0.81)

11.92 54527 (1.37)
0.01 +£0.003" (0.56)
91.23 £9.503% (0.64%)
612.86 +49.441° (0.87)

F-527 x R29

0.02 +£0.002° (0.62%)
470+0671° (0.83)
27.02 +3.787% (0.93)
0.22 +0.021° (0.66)

1.79+0.319° (0.93)
1.52 03407 (0.88)
224403137 (0.97)
36.19 + 5.032% (1.00)
0.86+0.165 (1.09)
0.00 +0.000° (0.74)
21.96 +£2212% (1.07)
171.79 + 23.5997 (1.25)

F1-527 x R29

0.00+0.001% (0.28)
257 +£0.7877 (1.23)
27.88+8320° (1.10)
023 +£0.035% (1.01)

368+ 0.536° (1.00)
410+0257° (088)
337 +£0768° (203*)
4460+ 1578 (1.19)
126+0331% (0.76)
0.01+0002° (062)
4111+ 15.227% (1.00)
21630+ 21.144% (1.34)

Letters indicate significant differences at p < 0.05 (Student’s t-test)

The relative ratio of expression level compared with MPV (mid parent values) is shown in parentheses
*p <0.05 (F; vs. MPV); **p <0.01 (F; vs. MPV)

Mean + Standard errors

was detected. We found 162 (41; only S27 alleles, 121;
S27 >R29) S27 allele specific and 194 (39; only R29
alleles, 155; R29 > S27) R29 allele specific genes (Additional
file 1: Fig. S6, Additional file 2: Table S12). 145 (40.7 %) of
356 allele-specific expressed genes showed a difference
between AEL and REL (Fig. 5).

We performed a GO analysis of these allele specific
genes. In the S27 allele specific expressed genes, GO
categories of ‘Cytoplasm’, ‘Chloroplast’, ‘Ribosome’,
and ‘Translation’ showed significant enrichment (Additional
file 2: Table S13). In the R29 allele specific expressed genes,
GO categories of ‘Cytoplasm’, ‘Ribosome’, ‘Response to
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water’, and “Translation’ showed significant enrichment
(Additional file 2: Table S13). Genes categorized into
both ‘Translation” and ‘Ribosome’ tended to show both
S27 and R29-allele specific expression in the F; hybrid
(Additional file 1: Fig. S7).

Shutdown of chlorophyll biosynthesis in the cotyledon
decreased heterosis

Chloroplast-targeted genes were upregulated in the F;
hybrid at 2 DAS, especially those having a function in
photosynthesis. To examine the relationship between
photosynthesis and increased cotyledon/leaf area at an
early developmental stage, young seedlings were treated
with norflurazon, an inhibitor of phytoene desaturase, at
two different stages [23]. Seeds were grown on MS medium
for one week, and transferred to MS medium with 1.0 uM
norflurazon and grown a further two weeks. The treated
seedlings did not produce chlorophyll and had white 1st
and 2nd leaves (Additional file 1: Fig. S8). The 1st and 2nd
leaves of the F; hybrids were larger than those of parental
lines after two weeks on the norflurazon medium (Table 6,
Additional file 1: Fig. S8). Seeds grown on MS medium
with 1.0 uM norflurazon for one week and transferred to
MS medium without norflurazon did not show any heter-
osis (Table 6, Additional file 1: Fig. S8), though plants did

recover chlorophyll biosynthesis after removal of nor-
flurazon as reported [24]. These experiments show that
photosynthesis at the cotyledon stage is critical for
heterosis in the F; hybrid.

Discussion

Heterosis is observed in mature seeds, post-germination
seedlings, and mature plants

The pattern of development showing different aspects of
heterosis in Chinese cabbage is similar to that described
for A. thaliana, another member of the Brassica family
[9-11, 25-27]. We showed that the mature seed of the
F; hybrid is larger than the seeds of either of the parents,
and the area of the embryo is greater in the F; hybrid
than in the parents. Large embryo sizes and increased
post germination seedling sizes have been reported in A.
thaliana and maize F; hybrids [9-11, 26, 28, 29], sug-
gesting that the seed heterosis in B. rapa is likely to be
an innate characteristic of the F; hybrid rather than a
result of the sodium chloride treatment in parents used
to overcome the self-incompatibility (see Methods).

In A. thaliana, the larger size of the cotyledon and leaves
of F; hybrids are associated with increased size and number
of the photosynthetic palisade mesophyll cells. At maturity,
the C24 x Col hybrid has approximately 25 %—30 % greater
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Table 5 Top 3 of overrepresented GO terms in Biological process in differentially expressed genes among S27, R29, F,, and MPV

F, S27 R29 MPV
® Photosynthesis ®  Photosynthesis
sk koksk
®  Photosynthesis, ®  Photosynthetic
. light reaction electron
[} Ellftosynthesm ok transport in
®  Photosynthetic photosystem I
Fi> ® Response to electron otk
Stress *** transport in ®  Photosynthesis,
® Response to photosystem T light reaction
stimulus *** ok sk
®  Photosynthesis
skoksk
® Response to ® Response to
heat *#* light stimulus
S27> @ Response to **
high light L] Res_pqnse to
intensity sk radiation **
® Response to
temperature
stimulus ***
® Response to
heat ***
® Response to
R29 > temperature
stimulus ***
® Response to
high light Response to
intensity *** stimulus ***
® Response to ® Response to
heat *** stress ***
® Response to ® Response to
MPV > high light chemical

intensity *** stimulus ***
® Response to
temperature

stimulus ***

Expression levels in vertical on the left lines are higher than that in right of the horizontal lines

*** P <0.001; **,P<0.01

biomass than either of the parents [9, 10]. In “W39”, the
R29 male parent has larger photosynthetic cells than the
S27 female parent, which has an increased cell number
relative to R29, and the F; hybrid combines both these
properties. Difference in cell number or size did not result
in difference in the organ size between parental lines, but

the increased cell number and size in the F; hybrid resulted
in an increased organ size and was associated with an
increased photosynthetic capacity. Heterotic F; hybrids of
A. thaliana also showed both increased cell number and
size [9-11], suggesting that the occurrence of both events
is important for increased organ size in heterotic F; hybrids.
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We checked whether the increased cell size could be attrib-
uted to endopolyploidy and found that there was no differ-
ence in the distribution of cell ploidies in the F; hybrids
and parents. Since it is known that increased cell size or
number in the leaves of plants is correlated with increased
chloroplast number and chlorophyll content, it is likely that
the overall amount of photosynthesis in the hybrid plant is
greater than in either of the parents [9, 30]. As the leaves of
the hybrid “W39” are greater in total area than the parents
and the chlorophyll content per fresh weight in “W39” was
similar to that of best parent, an increased production of
photosynthate could be expected.

Plant hormones play important roles in regulating plant
growth and development. We measure the hormone levels
in 2 day cotyledons and 10 day leaves, before or just after
the appearance of the increased leaf area. Most of the
hormone concentrations in the F; hybrid were within the
parental range. As sensitivity to hormone signalling is im-
portant for the heterosis phenotype in A. thaliana [19],
sensitivity rather than concentrations of hormones may be
important for the heterosis phenotype.

Table 6 Leaf area after norflurazon treatment
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Tissue, organ or stage-specific heterosis has been ob-
served in a number of plants and these all result in
increased yield [31, 32]. Heterosis in the “W39” F; hybrid
of Chinese cabbage results in a greater harvestable biomass
than in the parents. It is possible that changes in the leaf
cells in some of the earliest stages of the germinating seed-
ling may lead to the continuing increase in size of leaves in
the F; hybrid with genetic factors responsible for increased
cell number and size. This property could be of fundamen-
tal importance in generating the increased biomass of the
F; hybrid. Further study will be required to determine
whether increased cotyledon or leaf size is a general pre-
dictor of high yield heterosis in B. rapa F; hybrids.

Chloroplast-targeted genes were upregulated in F,
hybrids at two days after sowing
There are reports which claim to identify heterosis related
genes such as a flowering time gene in tomato, circadian
rhythm genes in A. thaliana, and organ size genes in
maize and Larix [20, 21, 33, 34]. We examined four genes
whose orthologs in A. thaliana were involved in leaf size
control. In S27, which has more cells than R29 and F; hy-
brids, the expression level of the three genes, CYCD3;1,
EBPI, and ARGOS, was higher than that in R29 and F;
hybrid at 2-3 DAS, and these three genes are similarly
expressed in the F; hybrid and R29. Though increased cell
number in S27 is related to the increased expression levels
of these three genes, the increased cotyledon size in the F;
hybrid, being partly dependent on increased cell number,
is less dependent on the pathway involving these genes.
Upregulation of chloroplast-targeted genes occurs in the
Arabidopsis C24 x Col hybrid, the heterotic intra-specific
hybrids of rice, and the heterotic inter-specific hybrids of
A. thaliana and related species [9, 33, 35, 36]. Eight of the
upregulated chloroplast-targeted genes reported in the
Arabidopsis C24 x Col hybrid were upregulated in “W39”
at 2 DAS. The 2 DAS transcriptome analysis identified
genes involved in the categories of ‘Photosynthesis’ and
‘Chloroplast part’ as upregulated in the F; hybrid com-
pared to the parental lines. This transient increase in gene
expression of the photosynthesis related genes on day 2
may be a prerequisite to the continuing increases in both
cell size and number of photosynthetic cells, processes

R29 (male) S27 (female) F1-527 x R29 Relative to MPV Relative to BPV
Relative ratio in leaf area compared with R29
A. Leaf area in 1st and 2nd leaves after three weeks sowing 1.00° 1.19+0.15° 274+033° 254 229
B. Leaf area in 3rd and 4th leaves after four weeks sowing 1.00° 192+0.17° 150+ 0.18% 093 0.78

A. Seeds were sown on MS medium and grown for one week. The seedlings were transferred to MS medium with 1.0 uM norflurazon and grown for a further

two weeks

B. Seeds were grown on MS medium with 1.0 uM norflurazon for one week, then transferred to MS medium for three weeks

Letters (a and b) indicate significant differences at p < 0.05 (Student’s t-test)
MPV mid-parent values, BPH best-parent values
Mean + Standard errors
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initiated in the cotyledon in the final growth stages of the
seed. A dependence on photosynthesis in the cotyledon
stage for subsequent heterosis in germinating seedlings
was suggested by the results of the norflurazon treatment
on young seedlings. Plants could grow during the one-
week norflurazon treatments of seeds because sucrose was
provided by the medium. However equalizing the source
by blocking photosynthesis eliminates the heterosis
phenotype even when plants are grown on MS medium
for 2 weeks after norflurazon treatment. This suggests that
an increased production of photosynthesis in the first
week of cotyledon growth is important for increased leaf
size in F; hybrids even after the cotyledon stage. The tran-
sient increase in gene expression of the photosynthesis
related genes in the cotyledon may be required for the
heterosis seen after the cotyledon stage.

Genes involved in stress were downregulated in F,
hybrids at two days after sowing

In C24 x Col hybrids in A. thaliana, genes in the stress re-
sponse category were overrepresented in both up- and
downregulated genes in the F; hybrid relative to the MPV
at both cotyledon and seedling stages [9]. Differential
expression of stress responsive genes between inter- or
intra-specific hybrids and their parental lines has been
widely observed in plants [9-11, 36, 37]. In this study, we
found downregulation of genes involved in the categories
of ‘Response to heat’, ‘Response to temperature stimulus’,
and ‘Response to high light intensity’ such as HSP genes in
the F; hybrid relative to parental lines. It is not clear
whether this implies that the F; hybrid may be less
responsive to environmental effects or it is only obvious in
unchallenged conditions. Downregulation of HSP genes
was also observed in heterotic inter-specific hybrids
between A. thaliana and A. arenosa, and the authors
suggested this is due to buffering effects [37], which may
be involved in the vigour phenotype.

Allele-specific expressed genes
RNA-seq enables us to distinguish the parental alleles of
transcripts in F; hybrids at the whole genome level. In this
study, we compared the AEL and REL in all expressed
genes, genes differentially expressed between parental
lines, or genes non-additively expressed between F; hybrid
and MPV. Fewer than 16 % of genes showed a significant
difference between AEL and REL, suggesting that differ-
ences in the expression levels between parental lines is
maintained in the allelic bias of transcripts in F; hybrids.
Of the AEL genes, about 45.7 % of genes had more tran-
scripts derived from S27 alleles than that from R29 alleles,
indicating that there is no preference for the expression
alleles from one parent in the F; transcripts.

We identified 365 genes as being allele-specific expressed,
and the GO categories of “Translation’ and ‘Ribosome’ were
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over-represented in both S27- and R29-allele specific
expressed genes. Mutations in ribosomal protein genes
in A. thaliana cause various types of developmental de-
fects including in leaf development and cell prolifera-
tion [38, 39]. Single recessive mutants of the ribosomal
protein genes, api2/rpl36ab or rpl36aa, showed a
pointed-leaf phenotype, and these two genes with iden-
tical amino acid sequences are located on different
chromosomes. The hybrid between apl2 and rpl36aa
(API2/api2; RPL36aA/apl36aa) revealed the same
phenotype as each of the single mutants, indicating that
non-allelic non-complementation of ribosomal proteins
combining to produce haploinsufficiency, plays a role
in leaf development [40]. Different combinations of
ribosomal proteins caused by allele-specific expression
of ribosomal proteins observed in this study may be
related to the increased leaf area in F; hybrid.

Conclusions

The heterosis phenotype first seen in the cotyledons was
observed a few days after sowing. Most genes showed an
additive expression pattern, and any difference of expres-
sion levels between parental lines was maintained in the
F, hybrids. Genes categorized in the GO analysis into
‘Photosynthesis’ and ‘Chloroplast part’ tended to be upreg-
ulated in F; hybrids at 2 DAS. Norflurazon treatment on
germinating seeds leads to a white cotyledon and reduced
heterosis in leaves. Norflurazon treatment on one-week
seedlings, which have green cotyledons, continued to have
heterosis in leaf size. These observations suggest the up-
regulation of chloroplast-targeted genes in the cotyledon
and photosynthesis at the cotyledon stage are important
for increased leaf area in F; hybrids, and this increased leaf
area could lead to the increased yield seen at harvest.

Availability of supporting data

All supporting data are included as additional files. The
RNA sequencing data have been deposited with DDBJ
under DRA003125.

Additional files

Additional file 1: Figure S1. Development of S27, R29, and F; hybrid.
(A) Two day seedlings of 527, R29, and F; hybrid. The number of true
leaves (B) and fresh weight at 30 DAS (C) in F; hybrid and parental
lines. Figure S2. Flow cytometry analysis of nuclei from cotyledon at 6
DAS (A) and 1st and 2nd leaves at 14 DAS (B) in S27, R29, and the F,
hybrid. Figure S3. Bar graph of the expression levels of upregulated
(left panel) and downregulated (right panel) genes in F; hybrid compared
with parental lines. Figure S4. Comparison between relative ratio of SNP
numbers between parental alleles in Fy hybrid (x axis) and relative
expression levels between parental lines (y axis) in the total expressed
genes. Figure S5. Comparison between ratio of SNP numbers in parental
alleles in Fy hybrid (x axis) and relative expression levels in parental
lines (y axis) in the non-additively expressed genes between F; and
mid parent value (circles) and differentially expressed genes between
parental lines (squares). Figure S6. Scatter diagram of SNP numbers
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of 527 alleles (x axis) and R29 alleles (y axis) in F; hybrid transcripts. Figure
S7. Parental allelic ratio in allele-specific expressed genes involved in the GO
category of ‘Ribosome’. Figure S8. Phenotypes with norflurazon treatment.
(PPT 11230 kb)

Additional file 2: Table S1. Sequences of primers used for quantitative
RT-PCR. Table S2. Plant hormone contents in 2 day cotyledon and
10 day 1Tst and 2nd leaves in S27, R29, F,. Table S3. Expression level
of organ size associated and chloroplast-targeted genes by RNA-seq.
Table S4. Differentially expressed genes between S27 and R29 in 2
day cotyledon. Table S5. Differentially expressed genes between S27
and F; in 2 day cotyledon. Table S6. Differentially expressed genes
between R29 and F; in 2 day cotyledon. Table S7. Differentially
expressed genes between F; and MPV (Mid Parent Values) in 2 day
cotyledon. Table S8. GO term overrepresented in differentially expressed
genes between parental lines in 2 day cotyledon. Table S$9. GO terms
overrepresented in differentially expressed genes between S27 and F;,
in 2 day cotyledon. Table S10. GO terms overrepresented in differentially
expressed genes between R29 and F; in 2 day cotyledon. Table S11. GO
terms overrepresented in differentially expressed genes between F; and
MPV (Mid parent values) in 2 day cotyledon. Table S12. Allele-specific
expressed genes in Fy hybrid. Table $13. GO term overrepresented in

allele specific expressed genes in F; at 2 days after sowing. (XLSX 157 kb)
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