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Abstract

Background: Auxin was recognized as a secondary dormancy phytohormone, controlling seed dormancy and
germination. However, the exogenous auxin-controlled seed dormancy and germination remain unclear in
physiological process and gene network.

Results: Tobacco seeds soaked in 1000 mg/I auxin solution showed markedly decreased germination compared
with that in low concentration of auxin solutions and ddH,O. Using an electron microscope, observations were
made on the seeds which did not unfold properly in comparison to those submerged in ddH,O. The radicle traits
measured by WinRHIZO, were found to be also weaker than the other treatment groups. Quantified by ELISA, there
was no significant difference found in (-1,3glucanase activity and abscisic acid (ABA) content between the seeds
imbibed in gradient concentration of auxin solution and those soaked in ddH,O. However, gibberellic acid (GA) and
auxin contents were significantly higher at the time of exogenous auxin imbibition and were gradually reduced at
germination. RNA sequencing (RNA-seq), revealed that the transcriptome of auxin-responsive dormancy seeds were
more similar to that of the imbibed seeds when compared with primary dormancy seeds by principal component
analysis. The results of gene differential expression analysis revealed that auxin-controlled seed secondary dormancy
was associated with flavonol biosynthetic process, gibberellin metabolic process, adenylyl-sulfate reductase activity,
thioredoxin activity, glutamate synthase (NADH) activity and chromatin regulation. In addition, auxin-responsive
germination responded to ABA, auxin, jasmonic acid (JA) and salicylic acid (SA) mediated signaling pathway (red, far
red and blue light), glutathione and methionine (Met) metabolism.

Conclusions: In this study, exogenous auxin-mediated seed secondary dormancy is an environmental model that
prevents seed germination in an unfavorable condition. Seeds of which could not imbibe normally, and radicles of
which also could not develop normally and emerge. To complete the germination, seeds of which would stimulate
more GA synthesis to antagonize the stimulation of exogenous auxin. Exogenous auxin regulates multi-metabolic
networks controlling seed secondary dormancy and germination, of which the most important thing was that we
found the auxin-responsive seed secondary dormancy refers to epigenetic regulation and germination to enhance
Met pathway. Therefore, this study uncovers a previously unrecognized transcriptional regulatory networks and
physiological development process of seed dormancy and germination with superfluous auxin signal activate.
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Background

The transition from dormancy to germination in seeds is
a key physiological process during the life-cycle of some
plants. Water uptake, seed dormancy released, embryo
expansion, and radical breakthrough of seed envelopes is
considered as the completion of the seed germination
[1]. Plant hormone, as a signaler, is also important for
seed dormancy and germination [2]. GA and ABA are
recognized as the key internal factors, with GA promot-
ing and ABA inhibiting seed germination and dormancy
[3]. Recent studies support the fact that the ABA/GA
ratio regulates the metabolic transition required for dor-
mancy release and germination [4—6]. On this basis, it is
inferred that other hormones such as ethylene [7, 8] and
cytokinin [9, 10] also influence germination through
cross-talk mechanisms.

Auxin, as a versatile trigger taking part in many plant
developmental processes [11], also plays a critical role in
root development, such as shaping the embryonic root
pole, determining the root meristem size and controlling
root cell elongation [12]. However, the biological func-
tion of auxin in seed dormancy and germination is yet
to be explored. Recently, a previously unrecognized
regulatory factor of seed dormancy, auxin, was identified
as a secondary dormancy hormone. It works with ABA
signaling to control seed dormancy and germination
[13].

Numerous genes involved in dormancy and germin-
ation regulation have already been confirmed. ABA
receptors (PYR, PYL/RCAR), protein phosphatase 2C
(ABI1, ABI2, HABI, AHG3), protein kinase (SnRK2.2,
2.3, 2.6) and other dormancy hormone regulators were
reviewed recently [14]. PIL5/PIF1 has been identified
as an important upstream component, which through
transcriptional control of biosynthetic genes, recipro-
cally regulates levels of both ABA and GA [12], and
PIL5 was found to target promoters of various hor-
monal signaling genes including ARF18, IAA16, CRF2,
and JAZI [15]. Very recently, it was reported that
auxin acts upstream of the major regulator of seed
dormancy, by recruiting the auxin response factors
ARF 10 and 16 to control the expression of ABI3
during seed germination [13].

However, the mechanisms for the auxin regulation of
seed germination process and the genetic response to
exogenous auxin stimulation on a transcriptomic scale
remained unknown. The aim of this study is to analyze
the differential physiological process and genes expres-
sion of the auxin-controlled seed dormancy and germin-
ation using Nicotiana tabacum L as the model plant.
This is the first study that exogenous auxin-controlled
seed dormancy and germination on a transcriptomic
scale and physiological development process also would
be taken into consideration.
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Results

Seed dormancy depends on exogenous auxin levels
Keeping in mind auxin control of seed dormancy in Ara-
bidopsis [13], it was presumed that the exogenous high
concentration of auxin might promote seed secondary
dormancy in tobacco. We found that tobacco seeds
soaked in 1000 mg/l indole-3-acetic acid (IAA) solution
showed markedly decreased germination compared with
those soaked in 0, 10 and 100 mg/l IAA solution and
even unsoaked seeds (Fig. 1).

Exogenous auxin regulates the emergence of germinated
seed radicle

The effect of exogenous auxin on seed germination
including water uptake, radicle emergence, endo-
sperm burst and cotyledons unfolding assay were an-
alyzed. The result showed that vacuoles of seeds
imbibed in 1000 mg/l IAA solution could not prop-
erly unfold compared with that in ddH,O (Fig. 2a
and b). Also the radicle traits, which included the
radicle weight, length and surface area, were signifi-
cantly weaker (Fig. 3a-c), but there was no signifi-
cant difference in [-1,3glucanase activity (Fig. 4).
The radicle of all the seeds did not emerge even
when approximately half of the cotyledons unfolded
in the germination process.
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Fig. 1 A graphical representation of exogenous auxin levels
controlling seed dormancy. Germination of seeds imbibed in
supplementation |AA solution or ddH,O 24 h or untreated and
then germinated on filter paper beds 156 h. Subscript 10, 100,
1000 indicated the concentration gradients
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vacuole of which completely expanded

Fig. 2 An electron micrograph showing (a) seed secondary dormancy, vacuole of the seeds not fully expanded, and many follicles bubble were
found in cells of the seeds that treated with IAA (1000 mg - L") 24 h, (b) seed germinating, vacuole of seeds treated with ddH,O 24 h and

Gibberellin level was regulated by exogenous auxin and
not abscisic acid

The effect of exogenous IAA on content of endogenous
hormones including ABA, GA, and [AA were examined.
The dynamic changes in ABA, GA;,3 and IAA in three
germination stages were shown in Fig. 5. The result indi-
cated that there was no significant difference in ABA
content between seeds imbibed in gradient concentra-
tion of auxin solution and those soaked in ddH,O, in all
three germination stages (Fig. 5a-c). However, the GA; 3
(Fig. 5d-f) and IAA (Fig. 5g-i) contents were significantly
higher, especially in the first stage.

Transcriptome analysis of exogenous auxin controlled
seed dormancy and germination

Figure 1 shows the phenotype of 72 and 156 h germinat-
ing tobacco seeds and Fig. 6 illustrates the process flux
of the RNA-seq experiment. As shown, three replica-
tions of 0 or 1000 mg/l IAA imbibed seeds that germi-
nated after 0, 72 or 156 h (for seeds status see Table 1)
were respectively collected, mixed and then used for
total RNA isolation. Afterwards, paired-end libraries
were prepared and sequenced as described in the
‘Methods’. The quality of the data and the generated se-
quences were checked using the Fast QC software and
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Fig. 3 Radicle weight (a), length (b) and surface area (c) of tobacco seed imbibed in supplementation IAA solution or ddH,O 24 h or untreated
and then germinated on filter paper beds 156 h. Different letters indicate significant differences according to Duncan test (means + SD, p < 0.05).
Subscript 10, 100, 1000 indicate the concentration gradients
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Fig. 4 (3-1, 3glucanase activity (means =+ SD) of tobacco seed

imbibed in supplementation IAA solution or ddH,O 24 h or

untreated and then germinated on filter paper beds 144 h.

Subscript 10, 100, 1000 indicate the concentration gradients
.

Phred measure Score, respectively. The percentage of
high-quality fragments was >80 % in all cases (20 units
or more in Phred values which correspond to a sequen-
cing error rate of 1 %). The mapped data generated was
shown in Table 1. There were seven samples in total. An
average of about 37 million high-quality paired-end
reads (2 x 100 bp) for all RNA-seq samples were gener-
ated. We got approximately 263 million reads pairs,
which are more than 52.6 billion bases. For each RNA-seq
sample, 72.61-91.43 % (Table 1) of reads were mapped to
the genome of N.tabacumK326 reference genome [16]
with TopHat software [17]. Following this, we used the
Cufflinks program [18] to reassemble the mapped reads
into a set of transcripts for each sample. Then cuffmerge
module in cufflinks was used to merge the transcripts
from each sample to generate a unique transcript set, also
named as unigenes. After removing the transcripts with
length < 200 bp, a total of 107,403 unigenes were detected.
These unigenes had an average length of 1757 bp and N50
value of 2105 bp, of which the lengths ranged from 200 bp
to 14,848 bp. There were 80,494 (74.94 %) of the unigenes
with length > 1000 bp.

For unigenes’ functional annotation, we utilized a blastx
search against the NCBI NR database, with an E-value of
1E-05 as a cut-off. The blastx search result showed that
about 91,840 (85.18 %) unigenes which had significant hits
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in the NR database was utilized. The distribution of the
unigenes best blastx hit E-value is shown in Additional file
1: Figure S1. Most of the unigenes had high similarity with
NR database sequences. They include 70,439 (65.58 %)
unigenes with E-value < 1.0E-100, and 91,839 (85.51 %)
ungenes with E-value < 1.0E-5. The blastx best-hit of the
91,839 unigenes showed that the first two species with the
highest hits were Solanum lycopericum (38,302, 41.71 %)
and Solanum tuberosum (37,890, 41.26 %), which were the
most important model organisms in Solanaceae. The dis-
tribution of best hits species is shown in Additional file 2:
Figure S2. For unigenes functional classification, a blastx
search against the EuKaryotic Orthologous Groups (KOG)
database was done, and it showed that 60,497 unigenes
matched with 25 KOG clusters. As shown in Additional
file 3: Figure S3, KOG classification showed that the lar-
gest category was ‘general function prediction only’ which
was same as other studies; the following category was
‘posttranslational modification, protein turnover, chaper-
ones’. For gene ontology (GO) annotation, Blast2GO suite
was used to retrieve GO terms based on the blastx search
result of NCBI NR database. Among the 91,839 annotated
unigenes, there were 76,969 unigenes that were annotated
with at least one GO term. As a result, 62,074 unigenes
were grouped into Biological Process (BP), 61,316 into
Molecular Function (MF) group and 56,760 into Cellular
Component (CC) group. The unigene percentage of each
GO term in the three groups is shown in Additional file 4:
Figure S4. Finally, KAAS tool was used to identify path-
ways for the unigenes. There were 23,261 (21.66 %) uni-
genes assigned to 2100 kyoto encyclopedia of genes and
genomes (KEGG) orthologs, which were classified into
327 KEGG pathways.

To quantify the unigenes expression in each RNA-seq
sample, we used bowtie to map the clean RNA-seq reads
to all unigenes sequences, and then used eXpress soft-
ware to calculate fragments per kilobase of exon per mil-
lion fragments mapped (FPKM) for unigenes in each
sample. To analyze the similarity of gene express pat-
terns among these different RNA-seq samples, we firstly
filtered out the unigenes without any reads mapped in
all samples, and then used principal component analysis
(PCA) to analyze the unigenes FPKM values of all the 7
samples. PCA plot of principal components 1 and 2
showed that the spatial distribution of H,O-0 and IAA-
0, H,O-72 and [AA-156 points was more concentrated,
suggesting that these samples were more similar (Fig. 7).

Auxin-responsive dormancy seeds and primary dormancy
seeds differ in their gene expression profiles

The differential expression analysis was performed by
comparing untreated seeds (Primary dormancy) and
auxin-imbibed seeds (Secondary dormancy) with H,O-im-
bibed seeds (No dormancy), separately. At a significant
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Fig. 5 Endogenous ABA (a-c), GA1+3 (d-f) and IAA (g-i) hormones’ content of tobacco seed imbibed in supplementation IAA solution or ddH,O
24 h or untreated and then germinated on filter paper beds 144 h. Subscript 10, 100, 1000 indicate the concentration gradients

level of p<0.05 and fold change>2, we identified
1958 up- and 2917 down-regulated unigenes between
untreated seeds and H,O-imbibed seeds (Additional
file 5: Figure S5A). At the same condition, we also
identified 2506 up- and 2634 down-regulated unigenes
between auxin-imbibed seeds and H,O-imbibed seeds
(Additional file 5: Figure S5B). To determine the unigenes
with differential expression pattern between untreated
seeds and auxin-imbibed seeds relative to H,O-imbibed
seeds, the H,O-imbibed seeds were taken as a control and
then the unigene counts of the nine expression patterns
were calculated.

As shown in Fig. 8, the Percentage”™ and Unigene™ col-
umns were calculated based on the unigene expression
fold change, in which unigene with fold change < 0.5 was
treated as down -regulated, and fold change>2.0 was
treated as up-regulated; the rest were treated as un-
changed. The pie chart was drawn with the Percentage’™
values. The Unigene” column was calculated based on the

p-values of gene differential expression analysis, in which
unigene with p-value <0.05 and fold change<0.5 was
treated as down-regulated, and that with p-value <0.05
and fold change > 2.0 was treated as up-regulated; the rest
were treated as unchanged. In the nine expression pat-
terns, we treated the III/IV/VI/VII patterns as the dif-
ferential expression pattern between untreated seeds
and auxin-imbibed seeds relative to H,O-imbibed
seeds. The III/VII pattern had complete differential
regulating tendency relative to H,O-imbibed seeds. In
the IV/VI pattern, unigenes presented differential expres-
sion between auxin-imbibed seeds and H,O-imbibed
seeds, but remained unchanged between untreated seeds
and H,O-imbibed seeds. Consequently, unigenes in these
four expression patterns which could also be considered
as the major causal factors that led to the difference in
mechanism between primary dormancy and auxin-
induced secondary dormancy, and this could be used to
do functional analysis.
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Fig. 6 Flow chart of the RNA-seq experimental procedure

The analyses for GO and KEGG pathway enrichment of
genes in up-regulated or down-regulated auxin-responsive
seeds were performed and it was found that these unigenes
also showed different expression trend in primary dor-
mancy seeds (p-value<0.05, 3962; patternsyy, v visvip-
There were significant enrichment of GO terms related to
auxin mediated signaling pathway (flavonol biosynthetic
process, gibberellin metabolic process), adenylyl-sulfate
reductase activity, phosphoadenylyl-sulfate reductase
(thioredoxin) activity, and glutamate synthase (NADH)
activity (Table 2 and Additional file 6: Figure S6).
KEGG pathway enrichment analysis shown the differ-
ential express unigenes were significant enriched in
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Fig. 7 A principal component analysis (PCA) chart to explore the
relationship between samples using the unigene expression
quantity. The more similar the samples, the spatial distribution of
different colors points more concentrated

plant hormone signal transduction (Additional file 7:
Figure S7) fatty acid elongation in mitochondria, and so
on (Table 3).

Auxin-responsive germinating seeds and conventional

germinating seeds differ in their gene expression profiles
Using the same method as the dormancy experiment, a
differential analysis between conventional germinated
seeds (H»O-72) and auxin-responsive germinated seeds
(IAA-156) relative to auxin-responsive dormancy seeds
(IAA-72) was conducted. Firstly, at a significant level of
P < 0.05 and fold change > 2, we identified 3526 up- and
2073 down-regulated unigenes between untreated seeds
and H,O-imbibed seeds (Additional file 5: Figure S5C).
At the same condition, we also identified 4458 up-
and 1616 down-regulated unigenes between auxin-
imbibed seeds and H,O-imbibed seeds (Additional file 5:
Figure S5D). The transcriptome comparison analysis of

Table 1 Number of reads sequenced and mapped with Tophat. The number of unique mapping reads plus multimapping reads

equals the total number of alignments. CK, H,O and IAA stand for imbibed tobacco seeds and control respectively; Numbers 0, 72

and 156 stand for germinated time

Unique mapping reads

Reads mapped in proper pairs

Sample Seed category Total reads Total mapped reads
Untreated-0 Dormancy 39,344,236 28,566,421(72.61 %)
H,0-0 Imbibition 39,795,012 35,183,360(8841 %)
IAA-O Dormancy 48,297,176 38,392,739(79.49 %)
Untreated-72 Germination 33,792,314 30,897,092(91.43 %)
H,0-72 Germination 35,593,768 31,962,893(89.80 %)
IAA-72 Dormancy 32,459,006 28,789,591(88.70 %)
IAA-156 Germination 33,769,804 29,877,097(8847 %)

24,229,292(61.58 %)
21,537,407(66.58 %
32/439,112(67.17 %
26,584,380(78.67 %
27,456,500(77.14 %
25,040,225(77.14 %
(

)
)
)
)
)
25,821,822(76.46 %)

25,845,450
29,258,962
34,779,672
24,978,136
26,621,694
23,209,710
24,613,498
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Fig. 8 A pie chart distribution of unigenes whose expression is altered during seed dormancy. The pie chart was drawn with the percentage of fold
change values. Unigenes whose expression level was significantly up-regulated or down-regulated by more than 2-fold or p-value < 0.05 during dormancy
were grouped according to their expression behavior in the two dormancy states of untreated seeds (primary dormancy) and auxin-imbibed seeds
(secondary dormancy) relative to H,O-imbibed seeds (non-dormancy). Arrows facing up or down represent up-regulated or down-regulated

two germinated states seeds of conventional germinated
seeds (H,O-72) and auxin-responsive germinated seeds
(IAA-156) in comparison with auxin-responsive dormancy
seeds (IAA-72) was performed. The unigenes were further
classified into 9 expression patterns (Fig. 9). Like the dif-
ferent expression analysis in the dormancy seeds above,
only unigenes in III/IV/VI/VII patterns were analyzed to
identify the genes with differential expression between
sample IAA-156 and sample H,O-72. These genes could
also be treated as the major causal factors that led to the
difference in mechanism between auxin-responsive germi-
nated seeds and conventional germinated seeds.

The GO and KEGG pathway enrichment of genes in
the up-regulated or down-regulated auxin-responsive
germinated seeds showed that these genes had different
expression trend compared with conventional germi-
nated seeds (p-value<0.05 3048; patternsy,rvivisvi)-
The enrichment of GO terms were associated with ABA,
auxin, JA and SA-mediated signaling pathway, response
to red, far red and blue light, serine-type endopeptidase
inhibitor activity, phenylalanine ammonia-lyase activity,
UDP-glucosyltransferase activity, and photosynthesis,
etc. (Table 2 and Additional file 8: Figure S8). The KEGG
enriched pathway were associated with glutathione metab-
olism, flavonoid biosynthesis (Additional file 9: Figure S9),
and phenylpropanoid biosynthesis (Table 3).

Genetic expression difference of auxin-responsive seed
dormancy and germination in the acquainted core
metabolism pathways

The crosstalk of ABA and GA [12], and interaction of
auxin and ABA [13] were the most important pathways

controlling seed dormancy and germination. Other im-
portant dormancy regulators could be divided into four
groups involved in seed maturation, hormonal action,
dormancy and chromatin regulation [14]. To study the
changes of these important genes and signal pathways,
we utilized a blastx search against the NCBI NR data-
base, the homolog unigenes of which in tobacco were
identified. Express patterns of these unigenes’ were ob-
tained from differential expression analyses, and the result
showed that EFS, HUBI and AHG3 in auxin-responsive
seed dormancy were significantly up-regulated and down-
regulated (Table 4).

Met metabolism is a housekeeping mechanism in all
organisms, and also is central to seed germination
[19]. As the methods above, unigenes in methionine
metabolism was studied. Met synthase and serine ace-
tyltransferase gene were significantly unregulated both
in auxin-responsive germinated seeds and conven-
tional germinated seeds (Table 4). Cysteine (Cys) syn-
thase gene was up-regulated in auxin-responsive seed
dormancy seeds and down-regulated in primary dor-
mancy seeds (Table 4).

Validation of auxin-responsive genes by quantitative
real-time PCR

To validate RNA-seq results, quantitative real-time re-
verse transcription-PCR (qRT-PCR) was used to conduct
the expression analysis of randomly assigned nineteen
auxin-responsive genes in dormancy and germination.
Table 4 and Additional file 10: Table S1 show the compari-
son between the qRT-PCR and RNA-seq analysis, showing
that all the auxin-responsive genes tested and previously
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Table 2 Representative significant enriched GO terms of the differential expressed unigenes
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Seed status ~ Category GO term Refence  Query  P-value Representative Encoded protein
set set (FDR) gene ID
Dormancy BP Para-aminobenzoic acid 130 19 220E-04 TCONS_00105446  glucosyltransferase
metabolic process
Oxalate catabolic process 6 4 299E-03 TCONS_00017169  4-coumarate—CoA ligase-like
10-like
N-acylethanolamine metabolic 34 9 641E-04 TCONS_00047595  fatty acid amide hydrolase-like
process
Glutamate biosynthetic process 25 7 299E-03  TCONS_00068711  glutamate synthase 1
Gibberellin metabolic process 127 13 321E-02  TCONS_00065700  gibberellin 2-oxidase 2,3,5
Flavonol biosynthetic process 109 13 1.15E8-02  TCONS_00051510  immediate-early salicylate-
induced glucosyltransferase
Cutin biosynthetic process 47 9 395E-03  TCONS_00032450  CYP77A19
Auxin mediated signaling 548 43 841E-04 TCONS_00056392, NTGP3, Nt-iaa4.5 deduced
pathway TCONS_00049526,  protein, IAA9, ARF1, IAA13,
TCONS_00102987,  LAX2
TCONS_00043746,
TCONS_00029963,
TCONS_00082867
MF Adenylyl-sulfate reductase 5 4 143E-03  TCONS_00030231  APS reductase
activity
Carbon-nitrogen ligase activity, 200 19 1.85E-02  TCONS_00077280  amidase-like protein
with glutamine as
amido-N-donor
Glutamate synthase (NADH) 22 8 3.01E-04 TCONS_00068708  glutamate synthase 1
activity
Indole-3-acetic acid amido 42 8 143E-02  TCONS_00011340  Nt-gh3 deduced protein
synthetase activity
Isoflavone 2'-hydroxylase 21 5 494E-02  TCONS_00066756  cytochrome P450
activity
Oxalate-CoA ligase activity 6 4 3.69E-03  TCONS_00017169  4-coumarate-CoA ligase-like
10-like
Phosphoadenylyl-sulfate 5 4 143E-03  TCONS_00030231  APS reductase
reductase (thioredoxin)
activity
Germiantion  BP ABA mediated signaling 547 35 3.19E-03  TCONS_00022716,  bZIP, LEBS, calcium-
pathway TCONS_00055623,  dependent protein
TCONS_00066091  kinase 8
Auxin mediated signaling 548 34 543E-03  TCONS_00033126, auxin efflux facilitator PIN3b,
pathway TCONS_00075562,  Nt-iaa28 deduced protein,
TCONS_00084884  germin like protein
Cinnamic acid biosynthetic 16 7 295E-05  TCONS_00069919  phenylalanine ammonia-lyase 4
process
Cysteine biosynthetic process 547 34 531E-03 TCONS_00016976,  serine acetyltransferase 7,
TCONS_00018745,  chloroplast pigment-binding
TCONS_00017791 protein CP24, ZIP
Ethylene metabolic process 247 20 437E-03  TCONS_00086037, ethylene forming enzyme,
TCONS_00008535,  WRKY transcription factor
TCONS_00106286  NtEIG-D48, Avr9/Cf-9 rapidly
elicited protein 74
JA mediated signaling 592 38 1.90E-03  TCONS_00016976,  serine acetyltransferase 7,
pathway TCONS_00057641,  BOP3, WRKY DNA-binding
TCONS_00052052,  protein, jasmonate
TCONS_00055412,  ZIM-domain protein10,
TCONS_00081296  MAP kinase kinase
L-phenylalanine catabolic process 50 7 1.79E-02  TCONS_00069919  phenylalanine ammonia-lyase 4
Response to blue light 372 25 9.11E-03  TCONS_00051968  chloroplast FtsZ-like protein
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Table 2 Representative significant enriched GO terms of the differential expressed unigenes (Continued)
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Response to far red light 324 24 4.19E-03  TCONS_00033254  chlorophyll a/b-binding protein
Response to red light 285 26 1.38E-04  TCONS_00049275  alpha-expansin precursor
SA mediated signaling 732 42 565E-03  TCONS_00081296, MAP kinase kinase, LEB5,
pathway TCONS_00055623,  serine acetyltransferase 7
TCONS_00016976
MF Phenylalanine ammonia-lyase 15 7 1.13E8-05  TCONS_00069919  phenylalanine
activity ammonia-lyase 4
Serine-type endopeptidase 34 10 4.64E-06  TCONS_00053724,  trypsin proteinase inhibitor
inhibitor activity TCONS_00009793 precursor, cyclin-T1-3-like
UDP-glucosyltransferase 581 39 4.20E-04 TCONS_00002352,  glucosyltransferase,
activity TCONS_00039739, UDP-glucose, SA
TCONS_00066391 glucosyltransferase,
flavonoid 3-O-g
lucosyltransferase
CC Chloroplast thylakoid 1211 91 5.07E-14  TCONS_00032434, plastid transketolase,
membrane TCONS_00018745,  chloroplast pigment-
TCONS_00051968 binding protein CP24,
chloroplast FtsZ-like
protein
Photosystem | reaction 28 9 1.81E-06  TCONS_00002104,  PSI-H precursor, photosystem
center TCONS_00102030, | subunit X, PS-H precursor
TCONS_00067457
Photosystem Il reaction 6 4 191E-04  TCONS_00065835,  photosystem Il protein T,
center TCONS_00027279 photosystem |l reaction
center PSB28 protein
identified by RNA-seq were confirmed by qRT-PCR. The Discussion

results showed a significant positive correlation between
the two quantitative approaches of gene expression
(Pearson correlation: p = 5.9E-3, r = 0.65; Spearman correl-
ation: p=5.2E-5, p=0.84), indicating that the RNA-seq
expression analysis performed is highly reliable.

Seed dormancy and germination are complex biological
processes which are affected by both developmental and
environmental factors. Auxin was recognized as a sec-
ondary dormancy hormone that controls seed dormancy
and germination in Arabidopsis [13]. In this study, we

Table 3 Significant enriched KEGG pathways of the difference express unigene

Seed status KEGG ID Refence set Query set P-value (FDR) KEGG pathway
Dormancy ko00062 12 54 2.68E-04 Fatty acid elongation in mitochondria
ko00910 15 105 2.13E-03 Nitrogen metabolism
ko04330 14 119 2.30E-02 Notch signaling pathway
ko04075 62 1029 4.07E-02 Plant hormone signal transduction
Germination ko00195 28 154 3.18E-12 Photosynthesis
ko00980 25 131 1.80E-11 Metabolism of xenobiotics by cytochrome P450
ko00940 39 370 1.55E-09 Phenylpropanoid biosynthesis
ko00480 32 270 3.96E-09 Glutathione metabolism
ko00196 14 78 4.20E-06 Photosynthesis - antenna proteins
ko00360 29 315 6.65E-06 Phenylalanine metabolism
ko04626 39 547 4.11E-05 Plant-pathogen interaction
ko00941 10 65 8.04E-04 Flavonoid biosynthesis
ko04976 9 63 331E-03 Bile secretion
ko00592 12 123 1.01E-02 alpha-Linolenic acid metabolism
ko00945 8 60 1.06E-02 Stilbenoid, diarylheptanoid and gingerol biosynthesis
ko00965 2 2 1.90E-02 Betalain biosynthesis
ko00052 17 256 5.00E-02 Galactose metabolism
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Fig. 9 A pie chart distribution of unigenes whose expression is altered during seed germination. The pie chart was drawn with the
percentage of fold change values. Unigenes whose expression level was significantly up-regulated or down-regulated by more than 2-fold
or p-value < 0.05 during seed germination were grouped according to their expression behavior in the two germination states of H,O-72
seeds (normal germination) and IAA-156 seeds (auxin-imbibed germination) relative to IAA-72 seeds (secondary dormancy). Arrows facing
up or down represent up-regulated or down-regulated genes, respectively

found that tobacco seeds imbibed in a high concentra-
tion of exogenous auxin solution could promote seed
dormancy and inhibit germination assayed by both
restraining radicle protrusion and cotyledon greening.
However, the microscopic scanning results implied that

the seeds soaked in auxin solution were germinating as
many follicles bubbles were found in cells whose vacu-
oles did not expand completely despite their treatment
with ddH,O. The transcriptome PCA results also indi-
cated that auxin-induced seeds are more similar to the

Table 4 Fold changes of significant differential expressed unigenes revealed in auxin-responsive seed dormancy and germination

regulation by RNA-seq and their verification by RT-PCR

Gene Encoded protein RNA-seq RT-PCR
Untreated-0 |1AA-0 vs. H,0-72 IAA-156 vs. Untreated-0 IAA-O vs. H,0-72 vs. 1AA-156 vs.
vs. H,0-0 H,O-0  vs. IAA-72 |AA-72 vs. H,0-0 H,0-0  IAA-72 IAA-72
ABA and GA crosstalk
TCONS_00064877 AHG3(Protein - 0318 - - - 03407 - -
phosphatase 2C)
TCONS_00038628 GA3ox1 0.072 - 6.848 - 0.0146 - 1.6385 -
TCONS_00082895 GA20x2 - - - 13.934 - - - 55919
TCONS_00084330 CYP707A2 0.008 - - 0.0273 - - -
ABA and auxin crosstalk
TCONS_00033126 PIN4 - - 10.190 5358 - - 39632 7.2267
Met pathway
TCONS_00038414 Cysteine synthase 0.094 2415 - - 0.0386 2.8547 - -
TCONS_00035466 AdoMet:Met - 0.105 - - - 05236 - -
S-methyltransferase
TCONS_00000319 S-adenosylmethionine - - 5.156 7679 - - 1.7983 44588
synthas
TCONS_00049344 Met synthase - - 4.748 5.275 - - 1.9543 3.8106
TCONS_00052600 Serine acetyltransferase - - - 19.437 - - - -
Epigenetic regulators - - - -
TCONS_00072327 EFS (Histone H3 - 20418 - - - 03253 - -
methyltransferase)
TCONS_00057450 HUB1(C3HC4 RING finger) - 6917 - - - 0.7614 - -
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seeds treated with ddH,O when compared to the pri-
mary dormant seeds. Seed dormancy has been defined
as the incapacity of a viable seed to germinate under
favorable conditions [1, 20]. So, this exogenous auxin-
mediated seed dormancy can be referred to as an envir-
onmental model that prevents seed germination in an
unfavorable condition.

Dormancy or germination depends on the balance be-
tween the resistance strength of the surrounding tissues
and the growth force of the elongating radicle [14]. In
this study, we found that exogenous auxin completely
restrained radicle emergence, but not refrained endo-
sperm rupture judged by the activity of -1,3glucanase, a
specific enzyme that was necessary for endosperm rup-
ture during tobacco seed germination [21-23]. As recog-
nized, radicle cell elongation was necessary for seed
germination and was generally accepted to be sufficient
for the completion of radicle protrusion, while cell
division was not essential [24]. Thus, auxin level may
also be the prerequisite for radicle development and
emergence during seed germination. The seeds of triple
tirlafb2afb3 and the quadruple mutant tirlafblafb2afb3
[25] in Arabidopsis failed to develop a hypocotyl and
root meristem. Therefore, high concentration of exogen-
ous auxin in this study might also inhibit hypocotyl and
root meristem development.

A recent study carried out by Liu et al. 2013 on Arabi-
dopsis, revealed that auxin and ABA in seed dormancy
are interdependent. Auxin acted upstream of the major
regulator of seed dormancy by activating the ABA re-
sponse, but the ABA biosynthesis was not stimulated
[13]. This study also revealed, that seeds imbibed in su-
perfluous exogenous auxin did not show increase in
ABA level. GA and IAA levels significantly increased
during the imbibition stage, and both of them progres-
sively decreased in the subsequent germination stage.
These findings suggest that seed in order to release form
the dormant state, more GA synthesis is required to
antagonize the application of the auxin. The GA path-
way was shown to have been subjected to regulation by
auxin, and the auxin promotes Arabidopsis root growth
by modulating gibberellin response [26]. GAs, although
required for the completion of germination, are not dir-
ectly involved in many processes taking place during
germination, which occurred at a stage coinciding with
or very close to radicle emergence [19]. So, the exogen-
ous auxin application might significantly promoted dor-
mancy by activating the ABA response during seed
dormancy, and also inhibited the radicle development
and emergence by modulating gibberellin response dur-
ing seed germination.

The induction of seed dormancy is controlled by a di-
verse group of regulators, which can be divided into four
groups that may be involved in: i. seed maturation, ii.
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hormonal action, iii. dormancy and iv. chromatin
regulation [14]. In present study, we found that a
hormonal regulator AHG3 was significantly down-
regulated. AHG3/AtPP2CA functions as a negative
regulator in the ABA-signaling pathway, suggesting
that it plays a major role in ABA signaling in seed
germination and early growth of Arabidopsis [27].
Moreover, expression levels of two epigenetic regula-
tors EFS and HUBI were significantly up-regulated in
this study. The EFS gene has been selected as a phase
transition regulator during seed germination in a
transcriptional network modelling study, and the mu-
tant efs seeds also show a variety of seed phenotypes
including precocious germination [28]. The RDO4/
HUBI gene was initially identified on the basis of its
reduced dormancy phenotype [29].

Met metabolism is metabolism central for seed ger-
mination [19]. During seed germination of Arabidopsis
[30-32], rice [33, 34], and peas [35], Met synthase or
adometsynthetase accumulation increased. In Arabidop-
sis, studies have shown that the accumulation level of
Met synthase strongly increased prior to radicle emer-
gence, but no further increase was observed during
radicle emergence [30-32]. In this study, Met synthase
and adometsynthetase gene were significantly up-
regulated (refer to auxin-responsive germination). Serine
acetyltransferase is a crucial enzyme in Cys synthesis
metabolism that was significantly up-regulated in auxin-
responsive germinated seeds. Cys is a precursor of Met
biosynthesis [36] and constitutes a building block con-
tributing to protein structure through the formation or
reduction of disulfide bonds as catalyzed by Trxs. It is
well documented that these enzymes affect a myriad of
proteins during germination [37]. Cys is also the precur-
sor of the major antioxidant molecule glutathione
(GSH), which is involved in several processes playing a
role in germination. The GSH-ascorbate cycle [38] or
the formation of S-nitroso glutathione (GSNO), or a
storage form of NO plays a pivotal role in seed physi-
ology [39]. Above all, auxin-responsive germination re-
fers to an enhanced met pathway in the transcriptome.

Conclusions

Unlike controlling of seed dormancy by exogenous ABA
in a microscale, this exogenous auxin-mediated seed
dormancy is more likely to be an environmental model
that prevents seed germination in an unfavorable condi-
tion. Compared to the cotyledon, the radicle was more
sensitive to exogenous auxin stimulation. Radicles of
seeds that imbibed in 1 g/L exogenous auxin solution
could not develop normally and emerge. In response to
exogenous auxin stimulation, seeds would stimulate
more GA synthesis to antagonize the effect of auxin. As
the auxin level decreased, seeds recovered from the
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dormancy status to a germination status. Principal com-
ponent analysis revealed that the transcriptome of
auxin-responsive dormancy seeds was more similar to
that of imbibed seeds when compared to primary dor-
mancy seeds. And the transcriptome of auxin-responsive
germinated seeds was more similar to that of conventional
germinated seeds when compared to auxin-responsive
dormancy seeds. To obtain the signaling pathways in-
duced by auxin, the unigenes of showed differential ex-
pression between untreated seeds and auxin-imbibed
seeds relative to HyO-imbibed seeds were chosen, was
used to do gene function analysis. Auxin-responsive dor-
mancy was associated with flavonol biosynthetic process,
gibberellin metabolic process, adenylyl-sulfate reductase
activity, thioredoxin activity, glutamate synthase (NADH)
activity and chromatin regulation. Auxin-responsive ger-
mination responded to ABA, auxin, JA and SA mediated
signaling pathway (red, far red and blue light), glutathione
and methionine metabolism, of which most importantly
we found that the auxin-responsive secondary seed dor-
mancy refers to epigenetic regulation and germination to
enhance Met pathway. Our study, thus, uncovers a previ-
ously unrecognized transcriptional regulatory networks
and physiological development processes of seed dor-
mancy and germination with superfluous auxin signal
activate.

Methods

Seed imbibition; germination and radicle traits
measurement

Seeds of tobacco (Nicotianatabacum L.)Nanjiang3 were
obtained from Guizhou Academy of Tobacco Science.
Seeds were surface sterilized with 1 % CuSO, solution
for 30 min and then 0.5 % ZnSO, solution for 15 min
on a shaker and then washed three times with double
distilled water for two minutes each. Sterile seeds were
imbibed in a supplementation hormone solution of (0,
10, 100, 1000) mg/l IAA for 24 h in a 12 h light/12 h
dark cycle at 25 °C +1 °C, with untreated seeds as con-
trol. The samples were washed three times with distilled
water. Then, the seeds in each treatment were sown on the
surface of paper bed in 90-mm-diameter plastic petri dishes
and incubated in a 12 h light/12 h dark cycle at 25 °C+1 °
C. Germination was defined as visible radicle emergence to
seed length. After 156 h, ten radicles, randomly sam-
pled from germinated seeds, were weighed on a 107
g balance, and radicle length and surface area mea-
sured with WinRHIZO [40].

Extraction, purification and quantification of the
phytohormones and f-1,3glucanase activity in seeds

The 0, 36, 72, 108 and, 144 h geminating seeds were col-
lected for B-1,3glucanase activity quantification and 0, 72
and, 144 h geminating seeds for phytohormones ABA,
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GA,3 and IAA quantification. The method for extraction,
purification, and quantification of phytohormones was
modified from the description of Wang [41]. ELISA kits
used for estimation of the hormonal levels came from
China Agricultural University (Beijing, China). The proce-
dures for proteins extraction were modified from the
Leubner-Metzger described [21]. ELISA kits used for the
estimation of the -1,3glucanase activity came from R&D
Systems parent company (Minneapolis, America).

Scanning the vacuole of imbibed seeds by electron
microscope

Among the imbibed samples, 0 and 1000 mg/L IAA
treated samples were used for subcellular structure ob-
servation. Approximately half of the seeds were fixed in
FAA (Formalin-Acetic - Alcohol) buffer and exhausted
with an aspirator pump. Subsequently, serial transverse
sections from the paraffin-embedded tissue were se-
quentially stained with safranin and fast green. Finally,
these sections were observed with a transmission elec-
tron microscope (JEOL 1230, JEOL Ltd, and Japan).

RNA extraction and next generation sequencing
The total RNA from the tobacco seeds was extracted
using total RNA purification kit (LC Science, TRK-1001)
according to the manufacturer’s instructions. The integrity
and quality of the total RNA were checked using
NanoDrop 2000 Spectrophotometer (Thermo Scientific,
USA) and formaldehyde agarose gel electrophoresis. RNA
was only used when the Abs260 nm/Abs280 nm ratio was
>1.8. Constructing database standards were as follows:
RIN value>7.5, RNA content>15 pg and, concentra-
tion > 300 ng/pl.

mRNA were enriched from 5ug qualified total RNA
using Invitrogen Dynabeads mRNA Ditect kit, and then
mRNA were fragmented on block at 95 °C for 2mins
followed by the addition of stop solution to end the re-
action. After purification by Qiagen kit, the RNA frag-
ments were used to first strand ¢cDNA synthesis by
SMARTSscript II reverse transcriptase. Afterward, SMAR-
Teroligos and ANTPs were added to synthesize double
cDNA. After gel purification of cDNA, purified products
were used as template to generate sequencing library.
We used qPCR to check library quality and calculate
library concentration. Libraries were sequenced with
[lumina HiSeq 2000 platform, each sample yielding
10Gb data from the final library fragments using V3 re-
agent. Base calling was performed by CASAVA 1.8 soft-
ware (Illumina).

Transcriptome assembly with reference genome and
functional classification

The RNA-Seq reads generated by the Illumina Genome
Analyzer were initially processed to remove the adapter
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sequences and low-quality bases at the 3" end. After pre-
processing the RNA-Seq data, the reads were mapped to
the K326 genome using a spliced aligner called Tophat
[42] that can be used to identify novel splicing events
and generate novel transcripts. Tophat with default pa-
rameters which allow up to two mismatches and report
up to 40 alignments for reads mapping at multiple posi-
tions was run. The sam files generated by Tophat were
provided as input to the software Cufflinks [18], which
assembled the alignments in the sam file into transcripts.
Then, Cufflinks were run with parameters to con-
struct a minimum set of transcripts that best de-
scribes the RNA-Seq reads. Subsequently all libraries
were assembled by Cufflinks. Cuffmerge [18] was used
to merge these assemblies to generate a unique tran-
script sets, we called them as unigenes. Later, these
unigenes were used to estimate express abundance
(FPKM) by Cufflinks.

For unigenes function annotation, homology search
with blastx algorithm was performed. Firstly, each tran-
script with length >200 bp was searched against NCBI
NR database (ftp://ftp.ncbinih.gov/blast/db) and KOG
database (ftp://ftp.ncbi.nih.gov/pub/COG/KOG/kyva) using
blastx. The best similar hit with an E-value < 1.0e-5 was
chosen to generate transcript annotation information.
Secondly, each transcript with length>200 bp was
annotated with GO database (http://www.geneontolo-
gy.org/) with Blast2GO [43] that was based on the
blast algorithm to obtain the Biological Process (BP),
Cellular Component (CC) and Molecular Function
(MF) GO terms information of annotated transcripts.
Finally, all transcripts were searched against KEGG
database with KAAS tool [44], and multiple plant or-
ganisms were chosen to get the KEGG best homolo-
gous ortholog IDs with the default parameters.

Gene differential expression and gene enrichment
analyses

For unigenes expression analysis, preprocessed RNA-seq
reads were mapped to unique transcripts with Bowtie2,
and then the unigene reads counts were obtained by
eXpress, which can correct multiple mapped reads.
Then, differential express transcripts between two treat-
ments without replicate were detected by R DESeq pack-
age [45], which normalized the library size based on
library reads counts and detected the DE genes based on
the negative binomial distribution. nbinomTest ()function
was used for no-replicate analysis. Differential express
transcripts p-value was corrected by Benjamini and
Hochberg FDR correction.

Over-representation of GO terms of differential ex-
press unigenes were identified by BINGO plugin [46] in
Cytoscape software with a hypergeometric test after
Benjamini and Hochberg FDR correction at a significance
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level of p-value < 0.05 based on our custom tobacco tran-
scripts GO annotated datasets.

Over-representation of KEGG pathways of differential
express unigenes were identified with GSEAKEGGHYy-
perGParams() function in R GOstats package [47], which
was based on the hypergeometric test. P-values were
corrected by Benjamini and Hochberg FDR method,
then chose a significance level of p < 0.05. The KEGG
native diagrams were obtained using keggview.native()
function in R Pathview package [48].

Real-time quantitative PCR

Quantification was performed with a two-step reaction
process: reverse transcription (RT) and PCR. Each RT
reaction consisted of 0.5 pg RNA, 2 pl of PrimerScript
Buffer, 0.5 pl of oligo dT, 0.5 pl of random 6mers and
0.5 pl of PrimerScript RT Enzyme Mix I (TaKaRa,
Japan), in a total volume of 10 pl. Reactions were per-
formed in a GeneAmp® PCR System 9700 (Applied Bio-
systems, USA) for 15 min at 37 °C, followed by heat
inactivation of RT for 5 s at 85 °C. The 10 pl RT reaction
mix was then diluted 10 times in nuclease-free water
and held at —-20 °C.

Real-time PCR was performed using LightCycler® 480
II Real-time PCR Instrument (Roche, Swiss) with 10 pl
PCR reaction mixture that included 1 pl of ¢cDNA, 5 pl
of 2 x LightCycler® 480 SYBR Green I Master (Roche,
Swiss), 0.2 pl of forward primer, 0.2 pl of reverse primer
and 3.6 pl of nuclease-free water. Reactions were incu-
bated in a 384-well optical plate (Roche, Swiss) at 95 °C
for 10 min, followed by 40 cycles of 95 °C for 10 s, and
60 °C for 30 s. Each sample was run in triplicate for ana-
lysis. At the end of the PCR cycles, melting curve ana-
lysis was performed to validate the specific generation of
the expected PCR product. The primer sequences were
designed in the laboratory and synthesized by Generay
Biotech (Generay, PRC) based on the mRNA sequences
obtained from the NCBI database (Additional file 11:
Table S2). The expression levels of mRNAs were nor-
malized to L25 and were calculated using the 2-AACt
method [49].

Statistics

The results are expressed as means * standard deviation
(SD) calculated from at least three replications per treat-
ment. ANOVA for radicle traits, p-1,3glucanase activity
and plant hormone levels were performed using the
Ducan’s test (P<0.05 error level). Statistical analyses
were performed using SPSS software Ver.16.0, and plot-
ting using Origin software Ver.8.5.

Availability of supporting data
RNA-seq read data has been deposited in the NCBI SRA
database under accession number SRP068795.
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Additional files

Additional file 1: Figure S1. The distribution of the unigenes’ best
blastx hit E-value in dormancy and germination of Nicotiana tabacum L.
plants after RNA-seq analysis. (TIF 9107 kb)

Additional file 2: Figure S2. The distribution of best hits species was
shown in dormancy and germination of Nicotiana tabacum L. plants after
RNA-seq analysis. (TIF 7945 kb)

Additional file 3: Figure S3. KOG classification observed in dormancy
and germination of Nicotiana tabacum L. plants after RNA-seq analysis.
(TIF 27158 kb)

Additional file 4: Figure S4. Distribution of auxin-responsive genes
from whole Nicotiana tabacum L. seeds in several GO categories. Genes
with putative functions were assigned to (A) molecular function, (B)
biological process or (C) cellular component categories using GO
annotations from the TAIR databa. (TIF 19948 kb)

Additional file 5: Figure S5. Volcano plots of significant genes in
dormancy and germination of Nicotiana tabacum L. plants after RNA-seq
analysis. The x-axis represents the average value and the y-axis represents
log 2 fold change. Several breakpoints of the Fc values are indicated on
the Y-axis, where 0 indicates 'no change’. Up-regulated and down-
regulated genes are shown in red (p <0.05) and genes with a slight
change in expression are shown in black (Additional file 5: Figure S5A,
Untreated-0 vs H,0-0; Additional file 5: Figure S5B, IAA-0 vs H,0-0;
Additional file 5: Figure S5C, H,0-72vs IAA-72; Additional file 5: Figure S5D,
IAA-156 vs IAA-72.). (ZIP 1914 kb)

Additional file 6: Figure S6. Example of GO term enriched in the gene
differential expression analyses of auxin-responsive dormancy seed. Enriched
GO terms were identified using BinGO, and the network was visualized with
Cytoscape. Colors of the circles indicate the p-value (Hypergeometric test
with Benjamini and Hochberg FDR correction) of enrichment. The size of
circles represents the background gene counts of GO terms. The complete
GO enrichment list were shown in Table 2. (TIF 583 kb)

Additional file 7: Figure S7. Differential expressed unigenes enriched
in plant hormone signal transduction KEGG pathway in auxin-responsive
dormancy seed (FDR adjusted p-value = 4.07E-02). Enriched KEGG pathway
was identified by hypergeometric test with a significance level of FDR
corrected p-value < 0.05. Colors of the gene rectangles indicate the gene
express patterns which were shown as the legend. The complete KEGG
pathway enrichment list were shown in Table 3. (TIF 666 kb)

Additional file 8: Figure S8. Example of GO term enriched in the gene
differential expression analyses of auxin-responsive germination seed.
Enriched GO terms were identified by BinGO plugin in Cytoscape software,
as described in “Methods”. Colors of the circles indicate the p-value of
enrichment. The size of circles represents the background gene counts of GO
terms. The complete GO enrichment list were shown in Table 2. (TIF 745 kb)

Additional file 9: Figure S9. Differential expressed unigenes enriched
in flavonoid biosynthesis KEGG pathway in auxin-responsive germination
seed (FDR adjusted p-value = 8.04E-04). Enriched KEGG pathway was
identified by hypergeometric test with a significance level of FDR corrected
p-value < 0.05. Colors of the gene rectangles indicate the gene express
patterns which were shown as the legend. The complete KEGG pathway
enrichment list were shown in Table 3. (TIF 600 kb)

Additional file 10: Table S1. Validation of auxin-responsive genes by
RT-PCR. (DOCX 22 kb)

Additional file 11: Table S2. The primer sequences of genes used for
RT-PCR validation. (DOCX 22 kb)
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