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Changes in transcription of cytokinin
metabolism and signalling genes in grape
(Vitis vinifera L.) berries are associated with
the ripening-related increase in
isopentenyladenine
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Abstract

Background: Cytokinins are known to play an important role in fruit set and early fruit growth, but their involvement
in later stages of fruit development is less well understood. Recent reports of greatly increased cytokinin concentrations
in the flesh of ripening kiwifruit (Actinidia deliciosa (A. Chev.) C.F. Liang & A.R. Ferguson) and grapes (Vitis vinifera L.)
have suggested that these hormones are implicated in the control of ripening-related processes.

Results: A similar pattern of isopentenyladenine (iP) accumulation was observed in the ripening fruit of several
grapevine cultivars, strawberry (Fragaria ananassa Duch.) and tomato (Solanum lycopersicum Mill.), suggesting a
common, ripening-related role for this cytokinin. Significant differences in maximal iP concentrations between
grapevine cultivars and between fruit species might reflect varying degrees of relevance or functional adaptations
of this hormone in the ripening process. Grapevine orthologues of five Arabidopsis (Arabidopsis thaliana L.) gene
families involved in cytokinin metabolism and signalling were identified and analysed for their expression in
developing grape berries and a range of other grapevine tissues. Members of each gene family were characterised by
distinct expression profiles during berry development and in different grapevine organs, suggesting a complex regulation
of cellular cytokinin activities throughout the plant. The post-veraison-specific expression of a set of biosynthesis,
activation, perception and signalling genes together with a lack of expression of degradation-related genes
during the ripening phase were indicative of a local control of berry iP concentrations leading to the observed
accumulation of iP in ripening grapes.

Conclusions: The transcriptional analysis of grapevine genes involved in cytokinin production, degradation and
response has provided a possible explanation for the ripening-associated accumulation of iP in grapes and other
fruit. The pre- and post-veraison-specific expression of different members from each of five gene families
suggests a highly complex and finely-tuned regulation of cytokinin concentrations and response to different
cytokinin species at particular stages of fruit development. The same complexity and specialisation is also
reflected in the distinct expression profiles of cytokinin-related genes in other grapevine organs.
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Background
Naturally occurring cytokinins are adenine derivatives
whose diverse functions in plant growth and develop-
ment have earned them recognition as molecules of
great biological and agricultural importance. The four
most abundant cytokinins found in plants, trans-zeatin
(tZ), N6-(Δ2-isopentenyl)-adenine (iP), cis-zeatin (cZ),
and dihydrozeatin, differ in the stereo-isomeric position,
hydroxylation and saturation of the isoprenoid side
chain [1], but little is known about the physiological
relevance of these side chain differences [2]. Apart from
their well-described role in regulating cell division and
differentiation [3], cytokinins are involved in a range of
processes essential to plant survival, such as leaf senes-
cence [4, 5], control of shoot-to-root balance [6, 7],
nutritional signalling [8, 9], stress tolerance [10] and
nodulation [11, 12]. Quantity and composition of
cellular cytokinins are regulated through biosynthesis,
transport, inter-conversion of distinct forms, transient
inactivation by conjugation, and irreversible inactivation
by side chain cleavage [13]. The targeted disturbance of
this balance, leading to increased activity of inflorescence
and floral meristems and higher seed yield in rice (Oryza
sativa L.) [14] and Arabidopsis (Arabidopsis thaliana L.)
[15], has recently provided evidence for the importance of
cytokinins in reproductive development and hence crop
productivity. In support of this, high cytokinin activities or
concentrations have been reported in immature seeds and
fruit from a large number of species, including pea (Pisum
sativum L.) [16], white lupine (Lupinus albus L.) [17],
Christmas rose (Helleborus niger L.) [18], tomato (Sola-
num lycopersicum Mill.) [19], strawberry (Fragaria ana-
nassa Duch.) [20], kiwifruit (Actinidia deliciosa (A. Chev.)
C.F. Liang & A.R. Ferguson) [21], raspberry [22] and
grape (Vitis vinifera L.) [23–25]. Generally, cytokinin
activities/concentrations were found to peak shortly after
fertilization coinciding with periods of high rates of cell
division, which has linked these hormones to fruit set and
early fruit growth [26, 27]. Applications of synthetic
cytokinins such as 6-benzylaminopurine, N-(2-Chloro-
4-pyridinyl)-N’-phenylurea (CPPU) and thidiazuron
(TDZ) have been widely used in fruit such as grape
[28], kiwifruit [29], blueberry (Vaccinium ashei Reade)
[30], apple (Malus domestica Borkh.) [31] and pear
(Pyrus communis L.) [32] to improve fruit set and/or
increase fruit size. In contrast, the role of cytokinins
during later stages of fruit development is less well
documented and understood, partly due to the often
reported decrease in cytokinin activities/concentrations
following the initial growth phase [33]. Treatment of fruit
with the above mentioned cytokinins has produced incon-
sistent effects on the progression of ripening varying with
fruit species and cytokinin used. For example, CPPU-
treated grapes showed a delayed accumulation of sugars
and anthocyanins and remained firmer than control ber-
ries [34] and a similar CPPU-induced ripening delay has
been described in blueberry [30]. However, the opposite
effect was observed in kiwifruit, where CPPU treatment
led to increased sugar accumulation, decreased acidity
and reduced flesh firmness [35]. TDZ had the same
ripening-advancing effect on kiwifruit as CPPU [35],
whereas ripening of TDZ-treated persimmon (Diospyros
kaki L.) fruit was delayed, as evidenced by a delay in sugar
accumulation and chlorophyll degradation [36]. In con-
trast, treatment with 6-benzylaminopurine had no effect
on the ripening progression of persimmon [36]. While
application studies have therefore not given any clear
indications for possible functions of endogenous cyto-
kinins in the ripening process, the asynchronous rip-
ening of siliques and reduced production of viable
seeds in cytokinin-deficient Arabidopsis mutants suggest
an involvement of these hormones in fruit maturation [6].
In addition, two recent studies on kiwifruit [37] and grape
berries [38] have reported a sharp increase in the concen-
tration of active cytokinins in the flesh of ripening fruit. In
the case of kiwifruit, the main contributor to this increase
was tZ, whereas iP was found to be the main cytokinin
species accumulating in ripening grapes.
The aim of this study was to further investigate the

ripening-related increase in iP concentrations in grapes,
focusing on the role of local cytokinin biosynthesis, activa-
tion, perception, signalling and degradation. The expres-
sion profiles of relevant genes in developing grape berries
were indicative of distinct sets of cytokinin-related genes
controlling the quantity and composition of, and respon-
siveness to, cytokinin species accumulating in the fruit
during different stages of development. In addition, evi-
dence is provided that the accumulation of iP during the
ripening phase is common to a range of grapevine culti-
vars and also occurs in tomato and strawberry.

Methods
Plant material
For the analysis of developmental changes in the expres-
sion of cytokinin-related genes and cytokinin levels,Vitis
vinifera L. cv. Shiraz berries from a commercial vineyard
were collected at weekly intervals as described by
Böttcher et al. [39] in the 2010/2011 season. All tissues
used for gene expression studies in various grapevine
organs were collected from Shiraz plants grown in an
experimental vineyard or glasshouse in Adelaide, South
Australia [39]. In addition to the Shiraz berry series,
cytokinin measurements were also taken from the fol-
lowing samples: 1) Vitis vinifera L. cv. Cabernet Sauvi-
gnon and cv. Riesling, grown at a commercial vineyard
(Waikerie, South Australia; −34.100°, 139.842°) and sam-
pled every two weeks as described by Kalua and Boss
[40, 41]. Seeds were removed from frozen berries prior
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to grinding and cytokinin extraction. 2) Vitis vinifera L.
cv. Pinot Noir berries, grown at a commercial vineyard
(Willunga, South Australia; −35.263°, 138.553°) and sam-
pled as in 1), but retaining the seeds. 3) Grapes of similar
sugar content (19.4–20.8°Brix) collected from 13 grapevine
species (11 Vitis vinifera, one Vitis hybrid and one inter-
specific hybrid) grown at an experimental vineyard (Waite
Coombe vineyard, Adelaide, South Australia; −34.263°,
138.553°) in the 2013/2014 season. Juice from individual
berries (10 berries per replicate, three replicates) sampled
from six bunches across two vines was tested for total sol-
uble solids using a PAL-1 digital refractometer (Atago,
Tokyo, Japan), followed by immediate deseeding and freez-
ing in liquid nitrogen of berries within the above specified
sugar content range. 4) Tomatoes (Solanum lycopersicum
Mill. var. Moneymaker) grown from seed in the glasshouse
(CSIRO Agriculture, Adelaide, South Australia) and
harvested at five standard ripening stages as detailed
by Böttcher et al. [42]. 5) Strawberries (Fragaria ananassa
Duch. cv. Ablion) at four different ripening stages (small
green, large green, turning, red ripe), sampled at a commer-
cial strawberry farm (Hahndorf, South Australia; −35.038°,
138.816°) in November 2009. A minimum of five straw-
berries per stage was used for each biological replicate. For
a second set of samples, achenes were removed with
tweezers prior to freezing in liquid nitrogen.

Determination of total soluble solids (TSS) levels
Measurements of TSS (degrees Brix) for the berries
from the developmental series were done as described
by Davies et al. [43].

Phylogenetic analysis
Grapevine sequences belonging to five families of pro-
teins involved in the biosynthesis, activation, perception,
signalling and degradation of cytokinins were identified
by BLASTP searches of the non-redundant NCBI pro-
tein database (http://www.ncbi.nlm.nih.gov/) using the
respective Arabidopsis sequences (see Additional file 1),
obtained from The Arabidopsis Information Resource
(TAIR; https://www.arabidopsis.org/), as queries. Phylo-
genetic analyses were conducted using the correspond-
ing nucleotide sequences in MEGA6.06 [44] as follows:
The Arabidopsis and grapevine nucleotide sequences for
each gene family were aligned using MUSCLE [45], all
positions containing gaps and missing data were elimi-
nated. The evolutionary history was inferred by using
the Maximum Likelihood method based on the JTT
matrix-based model [46]. A bootstrap consensus tree
was generated from 100 replicates [47] and branches cor-
responding to partitions replicated in less than 70 % repli-
cates were collapsed. Initial tree(s) for the heuristic search
were obtained automatically by applying Neighbor-Join
and BioNJ algorithms to a matrix of pairwise distances
estimated using a JTT model and then selecting the top-
ology with superior log value. The coding data was trans-
lated assuming a standard genetic code table. The naming
of grapevine genes followed the guidelines published by
Grimplet et al. [48].

RNA extraction, cDNA synthesis and qRT-PCR
RNA extraction, cDNA synthesis and qRT-PCR were
performed as described previously [49] with modifica-
tions as described by Böttcher et al. [39]. The gene-
specific primers and corresponding accession number
used for ACT2 (reference gene) have been published
previously [50]. All primer pairs for cytokinin-related
genes used in this study are listed with corresponding
amplicon sizes in Additional file 2. Gene expression data
was analysed using the MeV software (version 4.9;
http://www.tigr.org/software/tm4/mev.html) and pre-
sented as heat maps with hierarchical clustering.

Extraction and quantification of nucleobase cytokinins
For the quantification of iP and tZ, 100 mg of fruit tissue
was extracted in 1 mL of 70 % (v/v) ethanol, 0.2 mM
diethyldithiocarbamic acid, spiked with 5 pmol of d6-iP
and d5-tZ (OlChemIm Ltd., Olomouc, Czech Republic)
as internal standards, for 2 h at 4 °C on a rotating mixer.
After the tissue was pelleted by centrifugation at 4 °C,
the supernatant was removed and kept at 4 °C, while the
pellet was re-extracted in 1 mL of 70 % (v/v) ethanol,
0.2 mM diethyldithiocarbamic acid for 1 h at 4 °C. Fol-
lowing centrifugation the supernatant was combined
with the initial extract, the organic solvent was removed
in vacuo and the aqueous phase was adjusted to pH 7.5
(NaOH) and applied to a 100 mg C18 SPE column
(Waters, Wexford, Ireland). The column was washed
with water pH 7.5 (2 mL) and then eluted with 80 % (v/v)
MeOH, 2 % (v/v) acetic acid (2.5 mL). The dried residue
was re-suspended in 50 μL 90 % (v/v) 15 mM formic acid,
adjusted to pH 4.0 with ammonia, 10 % (v/v) methanol to
be analyzed with an Agilent LC-MS system (1200 series
HPLC coupled with a 6410 triple quad mass spectrom-
eter). The sample (10 μL) was first separated on a Luna
C18 column (75 × 4.6 mm, 5 μm, (Phenomenex, Torrance,
CA)) held at 30 °C using the following solvent conditions:
0–20 min, linear gradient from 10 % (v/v) MeOH, 90 %
15 mM formic acid, adjusted to pH 4.0 with ammonia to
95 % (v/v) MeOH, 5 % (v/v) 15 mM formic acid, adjusted
to pH 4.0 with ammonia, held for 5 min, linear gradient
from 95 % (v/v) to 10 % (v/v) MeOH in 1 min, held for
6 min, 0.4 mL min−1. The effluent was introduced into the
ESI ion source (nebulizer pressure 35 psi) with a desolva-
tion gas temperature of 300 °C at a flow of 8 L min−1, with
the capillary voltage set to 4 kV. The detection was per-
formed by multiple reaction monitoring in positive ion
mode. The optimization of fragmentation was done with
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iP, tZ (Sigma-Aldrich, St. Louis, MO, USA) as well as
the labelled standards using the Agilent MassHunter
Optimizer software (version B03.01). The following main
transitions were used for quantitation: d6-iP 210 > 137, iP
204 > 136, d5-tZ 225 > 137, tZ 220 > 136. In addition,
a qualifier ion transition was included for each com-
pound: d6-iP 210 > 148, iP 204 > 148, d5-tZ 225 > 119,
tZ 220 > 119. The sensitivity of the analysis was en-
hanced by monitoring d5-tZ and tZ in a different reten-
tion window (0–15 min) to d6-iP and iP (15–22 min).
The concentrations of iP and tZ in the extracts were
quantified in relation to their internal standards using
calibration curves that had been generated as follows:
50 μM stocks were used to prepare eight standard solu-
tions (1 nM–500 nM) and 50 μL of each standard solu-
tion was mixed with 5 pmol of d6-iP and d5-tZ (in
triplicate). Samples were dried in vacuo and resus-
pended in 50 μL of 90 % (v/v) 15 mM formic acid,
adjusted to pH 4.0 with ammonia, 10 % (v/v) methanol
resulting in internal standard concentrations of 100 nM
each. A 10 μl-aliquot of each sample was subjected to
an LC-ESI-MS/MS analysis as described above and
calibration curves were generated using the Agilent
Quantification software (version B04.00) by plotting the
known concentration of each unlabelled compound
against the ratio of analyte peak area to corresponding
internal standard peak area. The limits of detection
(signal-to-noise ratio >3) gained from the calibration
curves were 0.2 fmol μL−1 for tZ and 0.08 fmol μL−1 for
iP, the limits of quantification (signal-to-noise ratio >10)
were 0.67 fmol μL−1 for tZ and 0.25 fmol μL−1 for iP.

Statistical data analysis
Significant differences in TSS contents and cytokinin
concentrations were identified by analysis of variance
(ANOVA) followed by Duncan’s post hoc test. ANOVA
was also performed for the gene expression data col-
lected from the Shiraz berry development samples and
this was followed by Fisher’s Least Significant Difference
(LSD) post hoc test to test for significant differences.
Statistical testing of the various datasets was conducted
using IBM SPSS Statistics ver. 20 (IBM Australia, Sydney,
NSW, Australia).

Results
Grape cultivars exhibit similar patterns of cytokinin
accumulation during fruit development but iP
concentrations at full ripeness vary
The recent discovery of a large increase in iP concentra-
tions in ripening Shiraz berries has provided the first
evidence for a possible involvement of a cytokinin in the
ripening process of grapes [38]. In order to evaluate if
the ripening-associated accumulation of iP is a com-
mon occurrence in grapes, berries from three different
grapevine cultivars, sampled from 2 weeks post flowering
(wpf) to commercial harvest after 15–17 wpf, were ana-
lysed for their iP content (Fig. 1). The only other active
cytokinin present in detectable amounts in grape berries,
tZ [38], was also included in the analysis. tZ concentra-
tions were generally found to be low (below 1 pmol g−1

fresh weight (FW)) and were elevated significantly at only
one time point in Cabernet Sauvignon (Fig. 1a, 4 wpf),
Riesling (Fig. 1b, 2 wpf) and Pinot Noir (Fig. 1c, 6 wpf).
The biggest increase in tZ concentration was recorded for
Pinot Noir berries (~20-fold), which, unlike Cabernet Sau-
vignon and Riesling berries, had not been deseeded prior
to cytokinin extraction. In berries from all three cultivars
tested, iP concentrations had increased significantly by
four weeks after veraison (here defined as the last sam-
pling time point prior to a significant increase in TSS
levels) and continued to increase thereafter (Fig. 1). How-
ever, absolute iP concentrations at harvest varied greatly,
being highest in Cabernet Sauvignon (73.9 pmol g−1 FW),
followed by Pinot Noir (31.5 pmol g−1 FW) and Riesling
(14.6 pmol g−1 FW).
For a more detailed analysis of cultivar-specific differ-

ences in berry iP concentrations, grapes from 13 differ-
ent grapevine cultivars grown in the same vineyard were
sampled at a similar TSS content (19.4–20.8°Brix) and
subjected to iP quantification (Table 1). Measured iP
concentrations differed up to 14-fold, ranging from 4.46
pmol g−1 FW in Viognier to 62.90 pmol g−1 FW in Shi-
raz, and iP abundance was not associated with berry skin
colour. Whilst the iP concentration in Cabernet Sauvi-
gnon berries (Table 1) was comparable to berries in the
same TSS range sampled in a different year and from a
different vineyard (Fig. 1a), it was lower in berries from
Riesling, Pinot Noir (Table 1 and Fig. 1b, c) and Shiraz
(Table 1 and Fig. 2a).

Multigene families encode grapevine genes with roles in
cytokinin biosynthesis, activation, perception, signalling
and catabolism
To investigate if the post-veraison increase in grape
berry iP concentrations is the result of changes in local
cytokinin biosynthesis, activation and/or catabolism, grape-
vine genes belonging to the families of isopentenyltrans-
ferases (IPTs), LONELY GUY (LOG) cytokinin nucleoside
5′-monophosphate phosphoribohydrolases and cytokinin
oxidases/dehydrogenases (CKXs) were identified by
sequence similarity to the respective Arabidopsis genes
(Table 2, Additional files 1 and 3A-C). Cytokinin histidine
kinase (CHK) receptors and type-A and –B response
regulators (RRs) were also included in the analysis
since a functional perception and signal transduction
system is a prerequisite for the detection of, and response
to, changed iP concentrations (Table 2 and Additional
files 1, 3D and 4).



Fig. 1 Concentrations of iP and tZ in developing berries from three grapevine cultivars.iP and tZ were quantified by LC-MS/MS in developing berries of
field-grown (a) Cabernet Sauvignon, b Riesling and c Pinot Noir. All data represent means (n = 3) ± SE. “v” indicates veraison, as determined by the last time
point before a significant increase (p <0.05) in TSS levels was recorded. Asterisks mark the start of a significant increase in iP concentrations. In each cultivar,
the concentration of tZ was significantly higher (p <0.05) at one time point compared to the others, and this is denoted by an arrow. FW, fresh weight
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Adenylate IPTs catalyse the initial step in the main
pathway for cytokinin biosynthesis, the N6-prenylation of
adenosine 5′-phosphates to form iP-riboside 5′-phosphates
[51, 52]. The isoprenoid side chain can subsequently
be hydroxylated by the cytochrome P450 enzymes
CYP735A1/CYP735A2 to produce tZ-ribotides [53]. How-
ever, the single grapevine CYP735A orthologue [NCBI:
XM_002280169, CRIBI: VIT_214s0006g02970] was not
expressed in berries (data not shown) and cytokinin spe-
cies conversion was therefore not considered to be a rele-
vant mechanism in the context of this study. tRNA-IPTs
catalyse the addition of an isopentenyl group to adenine
bases in tRNAs, which can lead to the release of cZ and iP
upon hydrolysis [54]. The grapevine genome was found to
encode eight IPTs (Table 2), six of which clustered with
the Arabidopsis adenylate IPTs and two orthologues
(VviIPT2, VviIPT9) of the respective Arabidopsis tRNA-
IPTs (Additional file 3A). Inactive cytokinin ribotides pro-
duced by the action of adenylate IPTs can be converted to
active nucleobases by LOG phosphoribohydrolases [55].
Ten grapevine LOG genes were identified (Table 2),
compared with nine genes of this family in Arabidopsis



Table 1 iP concentration in berries (19.4–20.8 °Brix) of 13 grape
cultivars

Species Cultivar Colour of
berry skin

iP (pmol g−1 FW)

V. vinifera Shiraz Red 62.90 ± 0.43a

V. vinifera Cabernet Sauvignon Red 40.77 ± 1.72b

V. vinifera Durif Red 21.85 ± 5.90c

V. vinifera Pedro Ximénez White 21.16 ± 1.19cd

Interspecific hybrid Chambourcin Red 20.27 ± 4.17cd

V. vinifera Sauvignon Blanc White 15.59 ± 4.17cde

V. vinifera Barbera Red 12.82 ± 0.44def

V. vinifera Muscat Gordo Blanco White 8.79 ± 3.83ef

Vitis hybrid Rubired Red 7.97 ± 0.37ef

V. vinifera Riesling White 6.11 ± 0.77f

V. vinifera Pinot Noir Red 5.69 ± 0.60f

V. vinifera Verdelho White 5.33 ± 0.87f

V. vinifera Viognier White 4.46 ± 0.77f

iP values represent means (n = 3) ± SE and different letters indicate significant
differences between the cultivars as determined by one-way ANOVA (p <0.05)
followed by Duncan’s post hoc test
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(Additional file 3B). Inactivation of cytokinins occurs by
CKX-catalysed oxidative cleavage of the isoprenoid side
chain [56, 57]. Out of the eight grapevine CKXs
(Table 2), four were close orthologues of Arabidopsis
CKXs (Additional file 3C). One-to-one orthologues
were identified for all five grapevine CHK sequences
(Table 2 and Additional file 3D), three of which
(VviCHK2-VviCHK4) represented the bona fide cytokinin
receptors [58]. The downstream targets of the His-Asp
phosphorelay of the cytokinin signalling pathway are
RRs, which are classified as negative (type-A) or positive
(type-B) regulators of cytokinin signalling [59–61]. In con-
trast to Arabidopsis, more type-A (11) than type-B (8)
RRs (Table 2 and Additional file 4) were identified in the
grapevine genome.

The expression of a subset of cytokinin-related genes
coincides with the accumulation of iP during berry
development
In an attempt to uncover causal relationships between
the post-veraison accumulation of iP and the transcript
abundance of genes involved in the control of cellular
cytokinin concentrations, cytokinin nucleobases were
quantified in developing Shiraz berries (Fig. 2a) and the
same berry tissue was used to analyse the expression of
48 cytokinin-related genes (Table 2 and Fig. 2b). For
those genes expressed at more than two time points
(29), copy numbers and statistical data analyses are pro-
vided in Additional file 5. VviCHK1, VviCHK5 and
VviCKI were not included in this study due to their un-
clear contribution to cytokinin perception and signal
transduction [62, 63]. Splice variants have been de-
scribed for 40 % of the genes analysed in this study
(Table 2, [64]). The primer pairs used for gene-specific
amplification allowed for >90 % coverage of all known
variants and were therefore expected to provide reliable
expression patterns for each gene.
The changes in cytokinin concentration in Shiraz ber-

ries during development (Fig. 2a) followed a similar pat-
tern to those observed in Cabernet Sauvignon, Riesling
and Pinot Noir (Fig. 1). These results confirmed and ex-
panded previous data obtained for a subset of the Shiraz
samples using different methods of extraction and quan-
tification [38]. tZ concentrations remained low and un-
changed throughout development whereas a significant
increase in iP concentrations was recorded from 11 wpf
onwards reaching a maximum of 98.7 pmol g−1 FW at
15 wpf (Fig. 2a).
In total, 38 cytokinin-related genes, were found to be

expressed at one or more time point(s) in berry tissue
and hierarchical clustering revealed six groups of gene
expression profiles (Fig. 2b). Cluster 1 contained four
genes, one LOG, one CHK and two RRs, with the highest
expression between 1 and 4 wpf and moderate to low
transcript levels for the rest of development. Nine genes,
composed of two IPTs, one LOG, one CHK and five RRs,
constituted Cluster 2 and showed peaks of expression
between 1–4 wpf and 11–16 wpf with the highest tran-
script abundance in the post-veraison peak. Cluster 3
was made up of IPT12 and RR11a, which displayed a
transcript peak between 5 and 8 wpf and, in the case of
RR11a, also at 16 wpf. The expression in Cluster 4 (one
CKX, two RRs) was mainly restricted to the 4 wpf time
point. Cluster 5 was the biggest cluster, consisting of 15
genes representing all five families of cytokinin-related
genes analysed, with predominant expression in very
young berries (1–4 wpf). Cluster 6 contained two genes,
both of them LOGs, which were expressed between 9
and 16 wpf. Outside of the clusters, LOG13 and CKX6a
transcripts were only detected at one time point (2 wpf
and 10 wpf, respectively), whereas RR37 had low expres-
sion levels in young berries (1–2 wpf) and was highly
expressed from 14 to 16 wpf.

Cytokinin-related genes are characterised by diverse
expression profiles in different grapevine tissues
To gain a more complete picture of the expression and
deduced activities of components of cytokinin metabol-
ism and signalling in grapevine, the transcript accumula-
tion of the above mentioned 48 cytokinin-related genes
was also analysed in a range of other grapevine tissues
(Fig. 3). All attempts to amplify CKX10 and RR36 frag-
ments from any of the tested grapevine cDNAs for the
generation of qRT-PCR standards failed (data not
shown), so these two genes could not be included in the



Fig. 2 Changes in iP and tZ concentrations and the expression of 38 cytokinin-related genes in developing Shiraz grape berries. a Changes in
TSS, iP and tZ concentrations in field-grown Shiraz berries during the 2010/2011 season. All data represent means (n = 3) ± SE. “v” indicates veraison as
determined by the last time point before a significant increase (p <0.05) in TSS levels was recorded. The asterisk marks the start of a significant increase
in iP concentrations (p <0.05). FW, fresh weight. b Heat map showing changes in transcript levels of cytokinin-related genes expressed in berries as
determined by qRT-PCR. In order to adjust for differences in absolute copy numbers between the genes, the mean (n = 3) expression values for each
transcript were normalized by dividing by the maximum copy number obtained from the berry developmental series, making all values fall between 0
and 1. Each column represents a time point after flowering, each row represents a gene of interest. Hierarchical clustering was used to group genes
with similar expression profiles. Copy numbers for the 29 genes expressed at more than two time points and statistical analyses of the data are given
in Additional file 5
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expression analysis. Transcripts of the remaining 46
genes, including eight genes that were not expressed in
berries (Fig. 2b), were detected in at least one of the
tested tissue types with gene expression profiles cluster-
ing into seven groups (Fig. 3). Cluster 1, consisting of
RR34 and LOG12, was characterised by predominant
expression in node five (L5) and nine (L9) leaves and in
seeds 5 wpf (S5; RR34). Cluster 2 was also made up of
two genes, RR35 and CKX6b, which were expressed in
flowers and roots. Cluster 3 included five genes, one
LOG and four RRs, with transcripts detected in all tis-
sues and highest expression in flowers, L9, S5, S9 or
roots. The largest set of genes (21) was grouped in Clus-
ter 4 and was predominantly expressed in tendrils and
roots. CKX5 and CXK6a were also highly expressed in
S5. Cluster 5 contained eight genes, representing all five
families of cytokinin-related genes analysed, with highest
expression in L9 or roots. The common feature of RR26,
CKX11 and LOG13 in Cluster 6 was S14-specific expres-
sion, whereas Cluster 7 CHK3 and RR31 transcripts were
mainly detected in flowers and seeds. Three genes
showed unique expression profiles: LOG5b was mainly
expressed in internodes, LOG5a showed expression in all
tissues except seeds and RR40 transcripts were only de-
tected in roots. Copy numbers of all expressed genes are
provided in Additional files 6 and 7.

A ripening-associated increase in iP concentrations also
occurs in tomato and strawberry
Studies involving the measurement of cytokinins through-
out fruit development are scarce, which could be one rea-
son why the accumulation of iP during the ripening phase
of fruit has not been reported from any fruit species other
than grape [38]. In order to investigate if the ripening-
associated iP increase is unique to grape berries or a com-
mon phenomenon in fruit, nucleobase cytokinins were



Table 2 Names, NCBI and CRIBI accession numbers and EST and splice variant numbers of the cytokinin-related grapevine sequences
identified in this study

Name NCBI
Reference Sequence

NCBI
ESTs

Fernandes et al. [109]a CRIBI (V2)
Locus ID

Splice variants Amplified variants

VviIPT2 XM_002263711 8 VIT_206s0061g01410 1,2 1,2

VviIPT9 XM_002282976 3 VIT_219s0014g01630 1,2 1

VviIPT10 XM_002279335 0 VIT_201s0011g03640 1 1

VviIPT11 XM_002268812 0 VIT_209s0070g00710 1 1

VviIPT12 XM_002271926 2 VIT_207s0104g00270 1 1

VviIPT13 XM_003632592 0 VIT_208s0040g01010 1 1

VviIPT14 XM_002277555 4 VIT_205s0020g02630 1 1

VviIPT15 XM_002278900 5 VIT_208s0040g00100 1–5 1–5

VviLOG5a XM_010665788 6 VIT_218s0001g00210 1 1

VviLOG5b XM_002281803 4 VIT_203s0038g03420 1–3 1–3

VviLOG10 XM_002276739 38 VIT_218s0001g14030 1–6 1–6

VviLOG11 XM_002275378 0 VIT_208s0007g02480 1 1

VviLOG12 XM_002276243 1 VIT_208s0040g01780 1 1

VviLOG13 XM_002285210 15 VIT_206s0004g02680 1–7 1–7

VviLOG14 XM_002285680 2 VIT_206s0004g00590 1–4 1–4

VviLOG15 XM_002274711 0 VIT_213s0064g00740 1–8 1,3,5–8

VviLOG16 XM_002277816 0 VIT_208s0007g08340 1 1

VviLOG17 XM_002278269 5 VIT_204s0008g01040 1 1

VviCKX5 XM_002280761 21 VIT_218s0001g13200 1,2 1,2

VviCKX6a XM_002270805 1 VIT_213s0158g00320 1–3 1–3

VviCKX6b XM_002284524 1 VIT_200s0252g00040 1 1

VviCKX7 XM_002279924 15 VIT_204s0008g01880 1–3 1–3

VviCKX8 XM_002279483 0 VIT_211s0016g02110 1 1

VviCKX9 XM_003632356 0 VIT_207s0005g06025 1 1

VviCKX10 XM_002263610 1 VIT_207s0005g05960 1 1

VviCKX11 XM_002264409 0 VIT_207s0005g06010 1 1

VviCHK1 XM_002265212 2 VIT_204s0023g03680 1,2 na

VviCHK2 XM_002269941 2 VvCyt1 VIT_212s0057g00690 1–6 1–5

VviCHK3 XM_002276925 24 VvCyt2 VIT_201s0010g03780 1–4 1–4

VviCHK4 XM_002285081 10 VvCyt3 VIT_201s0011g06190 1–6 1–5

VviCHK5 XM_002271707 2 VIT_204s0069g00750 1–4 na

VviCKI XM_002270283 0 VIT_207s0005g01380 1 na

VviRR11a XM_002274637 2 VvRRb1 VIT_217s0000g10100 1,2 1,2

VviRR11b XM_002267580 1 VvRRb5 VIT_201s0010g02230 1 1

VviRR25 XM_002269335 0 VvRRb2 VIT_207s0005g01010 1 1

VviRR26 XM_002270082 0 VvRRb4 VIT_211s0052g01160 1 1

VviRR27 XM_002275106 13 VvRRb6 VIT_205s0077g01480 1–4 1–4

VviRR28 XM_002281255 20 VIT_201s0011g05830 1 1

VviRR29 XM_002270797 4 VvRRb3 VIT_211s0206g00060 1,2 1,2

VviRR30 XM_002282892 8 VIT_204s0008g05900 1–4 2,4

VviRR31 FJ822980 (partial cds) 0 VIT_201s0026g00940 1 1

VviRR32 XM_002283751 9 VvRRa1 VIT_217s0000g07580 1 1

VviRR33 XM_002280710 3 VvRRa3 VIT_213s0067g03070 1 1
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Table 2 Names, NCBI and CRIBI accession numbers and EST and splice variant numbers of the cytokinin-related grapevine sequences
identified in this study (Continued)

VviRR34 XM_002284468 1 VIT_218s0001g02540 1–4 1

VviRR35 XM_002273954 7 VvRRa2 VIT_208s0007g05390 1 1

VviRR36 XM_002266214 0 VIT_213s0067g03460 1 1

VviRR37 XM_002268316 4 VvRRa4 VIT_213s0067g03510 1 1

VviRR38 XM_002267339 0 VIT_213s0067g03450 1 1

VviRR39 XM_002267896 2 VIT_213s0067g03490 1 1

VviRR40 XM_003634849 0 VIT_213s0067g03480 1 1

VviRR41 XM_002267368 8 VIT_213s0067g03430 1 1

Phylogenetic trees for each family, using grapevine and Arabidopsis nucleotide sequences, are shown in Additional files 3 and 4. Additional file 1 contains the
TAIR accession numbers of the Arabidopsis sequences used for the analyses. na, not applicable
anames previously used by Fernandes et al. [109]

Fig. 3 Expression profiles of 46 cytokinin-related genes in different
Shiraz grapevine tissues. Heat map showing transcript levels of
cytokinin-related genes expressed in different tissues of either field
grown (flower, seeds, leaves, tendril, internode) or glasshouse grown
(root) Shiraz plants as determined by qRT-PCR. In order to adjust for
differences in absolute copy numbers between the genes, the mean
(n = 3 technical replicates) expression values for each transcript were
normalized by dividing by the maximum copy number obtained
from the tissue series, making all values fall between 0 and 1. Each
column represents a grapevine tissue, each row represents a gene
of interest. Hierarchical clustering was used to group genes with
similar expression profiles. Copy numbers for all expressed genes are
given in Additional files 6 and 7. F, flower; I, internode; L, leaf (node
indicated by number, increasing from the shoot apex); R, root; S,
seed (wpf indicated by number); T, tendril
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measured in several developmental stages of tomato and
strawberry fruit (Fig. 4). In tomato, tZ concentrations were
generally below the limit of quantification and iP concen-
trations were below 1 pmol g−1 FW in all stages tested
(Fig. 4a). However, in red firm fruit, the iP concentration
was found to be significantly increased. In strawberry, tZ
could only be detected in receptacles of pre-ripening fruit
(Fig. 4b). In small green fruit the concentration of tZ was
Fig. 4 Concentrations of iP and tZ in developing tomatoes and
strawberries. iP and tZ were analysed by LC-MS/MS in (a) small green
(SG), large green (LG), turning (Tur), red firm (RF) and red ripe
(RR) tomatoes and in (b) small green (SG), large green (LG), turning
(Tur) and red ripe (RR) strawberry receptacles with (+) and without (−)
achenes. tZ concentrations were below the limit of quantification in
tomato. FW, fresh weight; nd, not detected. Bars represent means ± SE
(n = 3) and are denoted by a different letter (a-d, iP; a’-b’, tZ) if the
means for each time point differed significantly (p <0.05) using
one-way ANOVA followed by Duncan’s post hoc test
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significantly decreased by the removal of achenes prior to
cytokinin extraction. Similar to tomato, iP concentrations
in strawberry receptacles were low, but were found to be
significantly increased in turning fruit and were even
higher in fully mature, red ripe strawberries (Fig. 4b). At
this last developmental stage, achene-containing recepta-
cles contained significantly higher concentrations of iP
than receptacles without achenes.

Discussion
Most of the published studies on cytokinins in fruit, in-
cluding grape [23–25], strawberry [20], tomato [19], apple
[65], watermelon (Citrullus lanatus (Thunb.) Mansf.) [66],
Japanese pear (Pyrus serotina L.) [67] and persimmon
[68], have utilized bioassays, based on changes in cell pro-
liferation or pigment accumulation, to determine the con-
centration of active cytokinins. Across all fruit species,
high cytokinin activity was reported in young fruit pro-
gressing through the cell division phase, whereas activities
were low or undetectable in ripening fruit. This seems
to contradict the ripening-associated increase in iP
concentrations reported for four grapevine cultivars
(Figs. 1 and 2a), tomato and strawberry (Fig. 4) in
this work, but it has to be considered that the above
mentioned bioassays were mostly using tZ, and never
iP, as the reference cytokinin. Detectable tZ concen-
trations were found to be restricted to pre-ripening
strawberries (Fig. 4) and in pre-veraison grapes, seeds
seemed to be the main tZ source as evidenced by a
high tZ concentration in seed-containing Pinot Noir
berry tissue at 6 wpf (Fig. 1c). The accumulation of
tZ during early grape seed development has previ-
ously been reported [69, 70]. Although both, tZ and
iP, are classified as cytokinins and only differ in the
hydroxylation of the side chain, they need to be con-
sidered as different and independent molecules in re-
gard to their localization and transport within the
plant, signalling outputs and biological effects. In Ara-
bidopsis, recent experiments with mutants impaired
in the trans-hyroxylation step that converts iP to tZ
have revealed that the regulation of cell proliferation
in the shoot apical meristem is a function exclusive
to tZ [71]. In further support of a functional specifi-
cation, Takei et al. [9] have reported that application
of Z-type cytokinins to maize (Zea mays L.) leaves
led to the induction of ZmRR1, whereas no changes
in ZmRR1 expression were observed in response to
iP-type cytokinins. In addition, CHK receptors [72–75]
and members of the CKX degradation pathway [57, 76]
were reported to differ in their preference for iP and tZ. A
different role for tZ and iP in the long distance signalling
pathways of plants has long been discussed since xylem
sap has been found to mainly contain tZ in the form of its
ribosides and ribotides [9, 77, 78], whereas iP ribosides
and ribotides seem to be transported through the phloem
[78, 79]. From the evidence listed above it is therefore
feasible that changes in fruit iP concentrations have previ-
ously escaped detection due to lack of activity of this cyto-
kinin in the chosen bioassays. However, from the few
examples where iP has been quantified throughout the de-
velopment of fleshy fruit, grapes ([38]; this study) were
shown to accumulate up to 100-fold more iP during the
ripening phase than tomato (this study), strawberry (this
study) and kiwifruit [21, 37] and no increase in iP concen-
tration was detected during the transition from pink to
red raspberries [22]. iP concentrations in tomato, straw-
berry and kiwifruit fall into a similar range to what has
been published for Arabidopsis seedlings [80, 81], maize
roots, leaves and kernels [82], young ‘Microtom’ tomato
ovaries [83], rice inflorescence meristem [14] and various
soybean (Glycine max (L.) Merr.) tissues [84], whereas the
iP quantities detected in grape berries are unprecedented.
This points to a specific relevance for iP accumulation in
grapes and might be related to the expansion-driven post-
veraison growth and the high rate of sugar accumulation
in these berries [85]. A study utilizing data from eight in-
dependent Arabidopsis microarray experiments revealed
the induction of 12 expansins and 18 other cell-wall-
related genes by cytokinins [86], confirming previously
reported cytokinin-induced changes of cell wall characteris-
tics, such as increased extensibility [87], or decreased thick-
ness [88]. It is therefore possible that the post-veraison
expansion of berry cells is at least in part controlled by the
observed changes in iP concentrations. The induction of
cell wall invertase genes and the large number of cytokinin-
regulated genes involved in trehalose-6-phosphate metabol-
ism [86] further indicate a possible role for iP in the main-
tenance of sink strength in ripening berries. Cytokinins are
known as positive regulators of sink strength in vegetative
organs, attracting carbohydrates and amino acids from
source tissues to sites of high cytokinin concentration
[89–92]. Studies on Chenopodium rubrum L. cell suspen-
sion cultures [93] and leaf senescence in tobacco (Nicotiana
tabacum L.) [4, 94] have suggested that sink strength
is likely to be mediated by cytokinin-inducible cell
wall invertases and hexose transporters, which are
functionally linked to the apoplastic phloem unloading
pathway and hence to the maintenance of a sucrose gradi-
ent between source and sink organs [95]. In grapes, a shift
from symplastic to apoplastic phloem unloading, coincid-
ing with the start of the ripening phase and the increased
expression of invertases and hexose transporters, has
been described [96, 97]. In support of a possible role
of iP in the maintenance of post-veraison berries as
strong sink organs, a cell wall invertase gene with an
expression profile resembling the post-veraison pat-
tern of iP accumulation has been reported in Cabernet
Sauvignon [98, 99].
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The causal connection for the large variation in maximal
iP concentration between different grapevine cultivars
observed in this study (Figs. 1 and 2a, Table 1) is unknown
and will require further investigation, but genetic as well
as environmental factors are likely contributors. The well-
described stimulatory effect of cytokinins on anthocyanin
accumulation in a number of plant species [100–102] sug-
gested a possible link between the post-veraison accumu-
lation of iP and anthocyanins in red cultivars. However, iP
data obtained from red and white skinned cultivars at a
similar berry sugar level, showed that, although the three
cultivars with the highest iP concentrations were red
skinned, a clear distinction between red and white skinned
cultivars could not be made. For example, the iP concen-
tration of Rubired berries, which in addition to the skin
also produce anthocyanins in the flesh, could not be
distinguished from white cultivars with low iP con-
centrations, e.g. Riesling or Viognier (Table 1).
A number of cytokinin nucleobases, ribosides and

ribotides, including low levels of iP-type cytokinins, have
been detected in the bleeding sap of Shiraz vines at
budbreak [103] and it cannot be excluded that the post-
veraison iP accumulation reported in this study (Figs. 1
and 2a) was the result of iP import from the phloem.
However, the spatial expression patterns of cytokinin-
related genes in tomato [83] and kiwifruit [37] indicated
that local cytokinin biosynthesis and degradation occur
in fruit and play an important role in fruit development.
This was also confirmed in grapes, where genes regulat-
ing cytokinin biosynthesis (IPTs), activation (LOGs), deg-
radation (CKXs), perception (CHKs) and signalling (RRs)
were found to be expressed in all stages of berry devel-
opment (Fig. 2b, Additional file 5). Transcripts of all
eight grapevine IPTs (Table 2) were detected in berries.
Five of them (IPT10-14) were restricted to pre-veraison
stages, the other three (IPT2, IPT9, IPT15) were expressed
pre- and post-veraison, including during the time of iP
accumulation (Fig. 2). The expression of specific IPT genes
at certain developmental stages seems to be highly regu-
lated since IPT12, which peaked between 5 and 8 wpf, has
been described as the target of two siRNAs in post-
veraison berries leading to post-transcriptional silencing
[104]. The increased expression of the two tRNA-IPTs
(IPT2, IPT9) in post-veraison berries might reflect a bigger
contribution of tRNA-hydrolysis to the cytokinin pool in
these later stages of berry development, which could
produce cZ and iP [54]. However, as was the case in a
previous study [38], cZ concentrations in Shiraz berries
remained below the detection limit throughout berry de-
velopment (data not shown). Judging from the expression
of IPT genes in other grapevine organs (Fig. 3 and
Additional file 6) and in agreement with reports from
Arabidopsis [105], tomato [83] and soybean [84], local
cytokinin biosynthesis seemed to occur throughout the
plant, in particular in roots, tendrils, and mature leaves.
The LOG-dependent pathway of producing active cytokinin
nucleobases from ribotide precursors has recently been
established as the dominant cytokinin-activating mechan-
ism in rice [55] and Arabidopsis [106]. It also appeared to
be active early (1–3 wpf) and late (9–16 wpf) in berry de-
velopment, since LOG12 and LOG17 were expressed in
pre- and post-veraison fruit, four additional LOGs were
expressed during the pre-veraison stages and expression of
LOG5a and LOG14 was post-veraison-specific (Fig. 2b)
with the transcript accumulation of LOG5a closely match-
ing the pattern of iP increase (Fig. 2). All ten LOG genes
(Table 2) were found to be expressed with distinct patterns
in at least one of the grapevine tissues tested, with predom-
inant transcript accumulation in the same organs as IPTs
(Fig. 3 and Additional file 6).
The irreversible degradation of cytokinins by CKX

enzymes is a vital part of the regulation of local cytoki-
nin concentrations [107] and in grape berries seemed to
be restricted to early developmental stages (1–4 wpf,
Fig. 2a). The progressive decrease of CKX5 transcripts has
previously been reported in two microarray studies inves-
tigating transcriptional changes in developing grape
berries [99, 108]. The lack of cytokinin degradation in
post-veraison grapes might contribute to the large in-
crease in iP concentrations, especially since iP has
been found to be more susceptible to CKX-catalysed
degradation than other cytokinins [57, 76].
All three grapevine cytokinin receptor genes (Table 2)

were expressed in every tissue (Fig. 3 and Additional file 6)
and berry developmental stage analysed (Fig. 2b), but
whilst CHK3 and CHK4 showed higher transcript accu-
mulation in pre-veraison berries, CHK2 was characterised
by a significant increase in expression during the late,
high-iP, post-veraison phase. The Arabidopsis orthologue
of VviCHK2 has been reported to preferentially bind iP,
whereas the other two receptors preferred tZ [74]. The
post-veraison increase in expression of CHK2 might there-
fore represent an amplifier for the orchestration of iP-
specific responses during the ripening phase. Supporting
this hypothesis is the expression of a set of post-veraison-
specific RRs, including four B-type RRs (RR11a, RR11b,
RR27, RR29) and three A-type RRs (RR31, RR35, RR37)
which could translate the iP signal into a ripening-specific,
transcriptional response (Table 2 and Fig. 2b). Pre-
veraison berries were characterised by the expression
of a separate set of RR genes (two B-type RRs, four
A-type RRs), whereas no RR gene with significant tran-
script accumulation in both pre- and post-veraison berry
stages was identified (Table 2 and Fig. 2b). In other grape-
vine organs, roots showed the overall highest expression
of RRs, but RR transcripts were found in all tested tissues,
with nine RRs expressed ubiquitously and nine RRs
restricted to specific organs (Fig. 3 and Additional file 7).
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Conclusions
The present study provides evidence for the occurrence
of a ripening-associated increase in iP concentrations in
a number of different grapevine cultivars, strawberry
and tomato and therefore suggests a universal role for
this cytokinin in the regulation of fruit ripening pro-
cesses. The unusually high concentrations of iP found in
post-veraison grape berries suggest a specific relevance
for iP accumulation in these fruit, possibly related to the
equally high concentrations of sugar stored in grapes.
Developmental changes in the expression of genes re-
lated to cytokinin biosynthesis, activation, perception,
signalling and catabolism indicate that the regulation of
berry cytokinin concentrations and the response to
specific cytokinin species can be controlled locally and
provide a possible explanation for the post-veraison ac-
cumulation of iP. Distinct expression patterns within
each gene family in berries and a range of other grape-
vine tissues suggest spatial and temporal specification
and hence a highly complex system for the regulation of
cytokinin concentrations and responses.
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