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Abstract

Background: Mechanized dry seeded rice can save both labour and water resources. Rice seedling establishment is
sensitive to sowing depth while mesocotyl elongation facilitates the emergence of deeply sown seeds.

Results: A set of 270 rice accessions, including 170 from the mini-core collection of Chinese rice germplasm
(C Collection) and 100 varieties used in a breeding program for drought resistance (D Collection), was
screened for mesocoty! lengths of seedlings grown in water (MLw) in darkness and in 5 cm sand culture
(MLs). Twenty six accessions (10.53 %) have MLw longer than 1.0 cm. Eleven accessions had the highest
mesocotyl lengths, ie. 14 — 5.05 cm of MLw and 3.0 — 64 cm in 10 cm sand culture, including 7 upland landraces

or varieties. The genotypic data of 1,019,883 SNPs were developed by re-sequencing of those accessions. A whole-
genome SNP array (Rice SNP50) was used to genotype 24 accessions as a validation panel, giving 98.41 % of consistent
SNPs with the re-sequencing data in average. GWAS based on compressed mixed linear model was conducted using
GAPIT. Based on a threshold of -log(P) 28.0, 13 loci were associated to MLw on rice chromosome 1, 3,4, 5,6 and 9,
respectively. Three associated loci, on chromosome 3, 6, and 10, were detected for MLs. A set of 99 associated SNPs
for MLw, based on a compromised threshold (—log(P) 27.0), located in intergenic regions or different positions of 36
annotated genes, including one cullin and one growth regulating factor gene.

Conclusions: Higher proportion and extension of elongated mesocotyls were observed in the mini-core collection of rice
germplasm and upland rice landraces or varieties, possibly causing the correlation between mesocotyl elongation and
drought resistance. GWAS found 13 loci for mesocotyl length measured in dark germination that confirmed the previously
reported co-location of two QTLs across populations and experiments. Associated SNPs hit 36 annotated genes including
function-matching candidates like cullin and GRF. The germplasm with elongated mesocotyl, especially upland landraces

or varieties, and the associated SNPs could be useful in further studies and breeding of mechanized dry seeded rice.

Background

The rice cultivation system based on transplanting of
seedlings from nursery to puddled fields, namely trans-
planting rice (TPR), was popular in China and other
Asian countries as the major rice production regions.
TPR has several advantages like higher yield potential,
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convenience in application of fertilizers and pesticides,
control of weeds, etc. But TPR requires large amount
of water, labour and energy costs in preparing the
field, and uprooting and transplanting the seedlings.
Changes in the method of rice establishment was ex-
pected in response to the rising scarcity of land,
water and labour [1, 2]. Seedling-throwing or mecha-
nized transplanting, wet or water direct seeding can
save labour costs. However, preparing the puddled
fields still requires large amounts of water, together
with higher costs from labour, farm animals or ma-
chines than the preparation of dry fields. Manual dry
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seeding can save water, but are labour costing. So
mechanized dry seeding is probably the most efficient
way of rice seedling establishment, saving 30 % labour
than machine-transplanting rice (MTPR) as estimated
in Korean trials [3].

In rainfed areas or areas of inadequate irrigation,
transplanting rice could completely fail or delay in years
with less and/or delayed rainfall. As an example, a mini-
mum of 600 mm of cumulative rainfall was required to
complete field puddling and transplanting of rice in the
Philippines, much higher than 150 mm cumulative rain-
fall required by dry seeding [4]. In 1 year of every 4 years,
a delay of 20 days for dry seeding could happen, much
shorter than 40-day delay for transplanting [5]. MDSR
has been widely adopted and will expand to much larger
area if effective managements are available to control
weeds and to maintain uniform plant density, e.g. fine
tillage, better land levelling, more appropriate seed
placement, improved nutrient application, varieties with
higher seedling vigor and lodge resistance [6]. So far, the
appropriate techniques are not fully available yet to
ensure the perfect seedling establishments.

Rapid and well seedling establishment is important for
weed competitiveness and good harvesting of DSR, de-
termined by sowing depth and a few other factors. The
seedling establishment and shoot dry weight were critic-
ally affected by the depths of soil and water layer in low-
land wet seeded rice [7]. Hanviriyapant et al. reported
the well establishment and strong seedlings of a tall,
vigorous-growing cultivar and higher sensitivity of semi-
dwarf cultivar to sowing depth and time of sowing after
irrigation [8]. An experiment of gradient sowing depths
showed that the seedling establishment of wheat was not
affected by sowing depths from 2.3 to 8.3 cm, but
declined to about 6 % at 14.3 cm [9].

Elongation of both mesocotyl and coleoptile can facili-
tate the seedling establishment of rice when sown deep in
soil or under water layer [10, 11]. Mgonja et al. reported
the association between mesocotyl elongation and seed-
ling vigor [12]. Alibu et al. found that coleoptile length
was more enhanced under submergence while mesocotyl
elongated more in soil-sand culture. Sown 8 cm deep, the
emergence of only a few genotypes was determined by
varied mesocotyl elongation, not the variation of coleoptile
lengths [13], similar to an early observation in indica rice
[14]. Mesocotyl elongation has been found to be the cause
of deep-seeding tolerance in maize [15, 16].

Mesocotyl elongation has been measured in several
sets of germplasm, e. g. 128 weedy rice or Korean culti-
vars [11], 27 diverse cultivars [17], near 100 rice acces-
sions [18] and 1500 accessions [19]. Low percentage of
rice germplasm has highly elongated mesocotyl (e. g.
longer than 1.0 cm). Genetic analysis showed that meso-
cotyl length had high heritability [17], but was controlled
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by different genetic effects [20, 21]. Linkage mapping
found 3-8 QTLs for mesocotyl length of rice seedlings
in different populations [22-27]. Two QTLs on rice
chromosome 1 and 3 were repeatedly detected and
showed large effects across different experiments.

Genome-wide association study (GWAS) based on SSR
[28] or single nucleotide polymorphism (SNP) markers
[29-33] has been widely used in model plant species in-
cluding rice. Extremely high resolution can be achieved by
dense SNPs identified in diverse germplasm panels based
on the 2nd generation genome sequencing or SNP array
approaches [29-35]. In this study, GWAS based on re-
sequencing approach was conducted in a set of rice land-
races or varieties for mesocotyl elongation as a key charac-
ter enhancing rice seedling emergence, especially after dry
seeding with relatively higher sowing depth.

Results

Phenotypic variations of mesocotyl elongation among
rice germplasm accessions

A wide range of mesocotyl lengths in different rice
germplasm accessions, from almost no elongation to a
maximum of 5.05 cm, were observed in the dark ger-
mination experiment. Mesocotyl length varied from
nearly zero to a maximum of 2.05 cm among those rice
accessions when measured in 5 cm sand culture.
ANOVA showed highly significant variance among rice
germplasm accessions, together with less or no signifi-
cant variance between replications for ML in dark ger-
mination with water (MLw) and ML in sand culture
(MLs) (Table 1).

As shown in Fig. 1, only a low proportion of germ-
plasm accessions had largely elongated mesocotyl. The
MLw of 26, 29 and 192 accessions were higher than
1.0 c¢m, in the range of 0.5-1.0 cm and shorter than
0.5 cm, respectively. MLs showed similar general trend
with MLw, but had some deviation around MLw (Fig. 1).
The mesocotyl lengths measured in dark germination
(MLw) and in sand culture (MLs) had highly significant
correlation (r = 0.784**; Additional file 1: Table S1).

Table 1 ANOVA of mesocotyl length of rice seedlings in dark
germination in water (MLw) or 5 cm sand culture (MLs)

Traits Sources Df SS MS Fvalue P value

MLw (cm)  Line 246 2072965 08427 10499  0.0000
Rep 1 0.0452  0.0452 563 00184
Residuals 246 19744 0.0080

MLs (cm) Line 246 753382 03050 6.17  0.0000
Rep 1 0.0046  0.0046 009  0.7610
Residuals 246 12167900  4.9500
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Fig. 1 Varied mesocotyl lengths among rice landraces or varieties,
measured in seedlings from dark germination in water (MLw) or
5 c¢m sand culture (MLs)

A third experiment was conducted to confirm previ-
ous results and to check the reaction of mesocotyl
elongation to higher depth of sand or soil covering
layers, using 30 landraces or varieties representing acces-
sions with low, medium and high mesocotyl elongation.
As sorted by MLw on the axis of abscissa (Fig. 2),
ascending lines showed consistent trends between the
measurements of mesocotyl lengths in all experiments.
The seedlings had similar mesocotyl lengths in either
sand or soil culture. The reaction of mesocotyl elong-
ation to two seeding depths showed different patterns
among rice accessions. The first 10 accessions (on the
left in the chart) had almost same mesocotyl lengths for
both depths, i.e. no more increase under 10 ¢cm sand
culture as a more favoured condition, implying that the
measurements here represented the maximum capacity
of mesocotyl elongation of those accessions. Another 10
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accessions (in the middle) had a little longer mesocotyl
lengths under 10 ¢cm than under 5 cm covering layers,
suggesting their maximum capacity up to 2.5-3 cm that
was equivalent to or a little higher than the detectable
limit in experiment of 5 cm sand or soil culture. For the
last 10 accessions, mesocotyl lengths were higher in
10 cm than in 5 cm depth. It is obvious that those land-
races or varieties had capacities of mesocotyl elongation
from 3 to 6 cm, fully expressed in 10 c¢cm, but not in
5 cm culture. The low measurements (2-3 c¢m) in 5 cm
sand or soil culture were perhaps the result of light
inhibition after the emergence of coleoptiles or leaves of
the seedlings.

Eleven rice accessions, TAINUNG 67, HAOGANG,
YUNLU 8, BAYUENUO, IR65907-116-1-B, MOWANG
GUNEI, HAOHAI IAC1246, MAGUZI, ZHONGNONG
4 and ZAXIMA, possessed high mesocotyl lengths in all
experiments, i. e. 1.4 — 5.05 cm in dark germination and
3.0 — 6.4 cm in 10 cm soil or sand culture. Among them,
seven accessions were upland landraces (HAOGANG,
MOWANGGUNEI, HAOHAI and ZAXIMA) or upland
varieties (YUNLU 8, IR65907-116-1-B and 1AC1246).

SNP validation and population structure analysis

A subset of 24 accessions, including 9 from C collection
and 15 from D collection, were genotyped using the
RiceSNP50 whole-genome SNP array [31]. There are
10,851 SNP loci shared by the genotypic data sets from
re-sequencing SNP calling and SNP array. Each acces-
sion has effective data on 8,313-10,746 common SNP
loci after excluding loci with missing data in either SNP
calling or array. The accuracy of SNP calling and missing

=4 =Soil (10cm)
=<=Soil (5cm)

5 4 =— Sand (10cm)
++®--Sand (5¢cm)

Mesocotyl lengths (cm)
~

Fig. 2 Mesocotyl lengths of 30 rice germplasm accessions measured in sand or soil culture with two seeding depths
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genotype imputation, represented by the percentage of
consistent SNPs in total number of common loci,
reached 98.41 % in average and ranged from 97.01 to
99.53 % for each accession (Additional file 2: Table S2).

The population structure was estimated using a subset
of 144,995 SNP loci with less than 10 % missing data in
D collection before imputation (as the total SNP number
called from the sequencing reads of the accessions in the D
collection is much lower than that in the C collection).
Using genotypic data before imputation could avoid the
possible influence from imputed values on genetic distance
and LD levels. A two sub-population structure, highly
matching the two subspecies in rice, was observed among
those accessions in this study (Fig. 3; Additional file 3:
Figure S1). Among 4 aus accessions, DULAR and N22
were grouped into indica while AUS 454 and LAMBAYE-
QUE into japonica subpopulation.

Genome-wide association study (GWAS)

Forward model selection procedure provided the largest
Bayesian information criteria (BICs) for both traits when
zero PCs/covariates were included in the GWAS models
(Additional file 4: Table S3). This result suggested that
the PCs estimated from SNP data had weak covariance
with the phenotypic data. Using -log(P) 28.0 as the
threshold at a significant level of 0.01 after Bonferroni
multiple test correction, a total of 13 loci were declared
to have highly significant association with the mesocotyl
lengths (MLw). Those associated loci were located on 6
chromosomes of rice, including 3, 3, 1, 2, 2, 2 loci on
chromosome 1, 3, 4, 5, 6 and 9, respectively (Fig. 4a).
Seven peaks with -log(P) values larger than 10 in Man-
hattan plot indicated very strong signals of association
between the trait and the chromosomal regions, espe-
cially four regions on chromosome 3, 5, 6 and 9 which
host sharp -log(P) peaks.
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The Manhattan plot of MLs shows totally different
pattern (Fig. 4b). Only three associated SNPs were de-
tected at the significant level of -log(P) 28.0, including
two SNPs locating in the same regions associated to
MLw on chromosome 3 and 6, one SNP on chromo-
some 10 with no association to MLw.

As Bonferroni correction was recognized to be too con-
servative [36], a compromised threshold of —log(P) >7.0
was used to screen out a set of 99 SNPs associating to
MLw and 7 SNPs to MLs (Additional file 5: Table S4).
Among MLw associated SNPs, 52, 16, 24, 3, 3, 1 SNPs
located in intergenic regions, intron, promoter, CDS-
synonymous, CDS-nonsynonymous and 5" UTR regions
of 36 annotated genes, respectively. Two MLs associated
SNPs hit the promoter region of LOC_Os03g40390 while
another SNP and the remaining four SNPs located in the
intron of LOC_Os10g20860 and the intergenic regions,
respectively.

In about 15.7Kb interval (29288539-29304267) on rice
chromosome 1, five MLw associated SNPs located in the
promoter, CDS-nonsynonymous or intergenic regions of
three putative genes (LOC_Os01g50970, LOC_Os01
g50980, LOC_0Os01g50990). Those genes have been an-
notated as expressed protein with unknown function,
putatively expressed cullin and FBD domain containing
protein, respectively. One associated SNP (0430137498)
located in the promoter of rice gene LOC_Os04g51190,
annotated as a growth-regulating factor.

Discussion

Retrieving the character of mesocotyl elongation to
develop varieties for mechanized dry seeded rice

In the past several decades, many labour-saving methods
of seedling establishment have been developed and
widely used in rice production in Asian countries where
hand transplanting rice became common during 1950—

-

Fig. 3 Neighbor joining tree of 270 rice accessions showed a two-subpopulation structure in consistence with the classification of indica (in red)
and japonica (in blue) subspecies. Four aus accessions (in green) were grouped into two subpopulations
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70s. Among them, mechanized dry seeded rice (MDSR)
is probably the system using the least water and labour
resource [3—5]. As the majority of modern rice varieties
were developed for transplanting system in irrigated en-
vironments, their performance has not been optimized
for direct seeding, especially in drought-prone environ-
ments. Early maturing, high-yielding rice varieties that
can withstand drought and compete with weeds are ur-
gently required in the dry-seeded rice system. In this
case, well establishment and vigorous growth of the rice
seedlings become very important [4].

In order to obtain quick and uniform seedling emer-
gence, shallow sowing with a narrow range of depth (e.g.
2-3 cm) is required in drill seeding for most semidwarf
rice varieties. Seedling establishment decreases remark-
ably, together with the delayed seedling emergence and
poor early growth, when seeding depth is higher than
5 cm [3]. But shallowly sown seeds are vulnerable to bird
damage while the derived plants are possibly sensitive to
lodging at late stage [36]. In drought prone areas, the
quick lost of moisture in shallow soil layer would cause
delayed or failed seed germination and seedling emer-
gence. This is the major reason why the period from
pre-irrigation to sowing has critical influence on seedling
establishment of DSR [8]. Narrow tolerant range of seed-
ing depth will cause high risk of inadequate management
in mechanized seeding if the soil was not finely tilled
and levelled or the seed drill did not give precise seed
placement. So rice varieties with tolerance to varied
seeding depth, would reduce such kind of risk or add-
itional requirements to farm machinery, then facilitate
the expanding of mechanized dry seeded rice.

An early observation confirmed the association of
mesocotyl elongation with seedling vigor in rice [12] and
a wide range of genetic variation of this trait among rice
germplasm [11, 13, 17-19], even though the percentage
of germplasm with mesocotyl length higher than 1.0 cm
was low, e.g. less than 1 % in a set of 1500 accessions [19].
In this study, 26 accessions had mesocotyl length (MLw)
higher than 1.0 cm, showing much higher percentage
(10.53 %) than previous reports (Fig. 1). Among 11 acces-
sions with most elongated mesocotyl in this study, there
are 7 upland accessions (4 landraces and 3 varieties), ac-
counting for a quite high proportion. Larger genetic vari-
ation could be expected in core or mini-core collection of
germplasm. And it seems reasonable that more upland
rice accessions have highly elongated mesocotyl [18].

A few publications described the failed emergence of
semidwarf rice varieties and/or the successful emer-
gence of tall, vigorously growing varieties when sown
deep [8, 10]. It should be true that most modern rice
varieties, developed for transplanting cultivation, have
lost the character of mesocotyl elongation. But an im-
portant question is whether mesocotyl elongation is
tightly linked to plant height. Mgonja et al. found no
correlation between mesocotyl elongation and charac-
ters of mature plants like plant height and internode
length L1 [20]. In this study, the same set of rice acces-
sions were evaluated in field for drought resistance
using water regimes (data not shown). Both MLw and
MLs are correlated to plant height in both conditions
(r=10.250 ~ 0.349; P<0.01; Additional file 1: Table S1);
correlated to grain yield and spikelet fertility in drought
treatment, but not in well watered condition. These
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results did not necessarily indicate the linkage or plei-
otropism of loci controlling mesocotyl elongation and
plant height or drought resistance. It is more likely the
consequences of the high proportion of upland land-
races or varieties in the population which had longer
mesocotyl, higher plant height and drought resistance
at the same time. So development of semidwarf varieties
possessing both mesocotyl elongation and drought resist-
ance is necessary for mechanized dry seeded rice and
achievable by using those potential germplasm screened
in this study.

Mesocotyl elongation QTLs and candidate genes

Among 3-8 QTLs for mesocotyl length reported in
different mapping populations [22-27], two QTLs (gMel-
1, gMel-3) on rice chromosome 1 and 3 were repeatedly
detectable and showed large effects across experiments
[22-24, 26, 27, 37]. Substitution mapping confined gMel-
1 into a 3,799Kb interval from RM5448 to RM5310 and
gMel-3 into a 6,964Kb region from RM3513 to RM1238,
containing 490 and 700 putative genes, respectively [27].
In this study, one SNP marker at the bottom of chromo-
some 1 was associated with MLw (P =2.57E-09), about
0.17 Mb away from the interval of RM5448-RM5310.
Strong association signals were detected in gMel-3 region
represented by the sharp -log(P) peaks in the Manhattan
plots for both MLw and MLs (Fig. 4), including 3 SNPs
within a 50 Kb region. The positions of those associated
SNPs were not within, but about 2.59 Mb beyond the
interval between RM3513 and RM1238. If confirmed in
further studies like candidate gene cloning, the results
demonstrate the high power of GWAS based on high
dense SNPs.

The threshold of genome-wide association test using a
large number of SNP markers remains an issue under
controversy. Nakagawa suggested that both standard and
adjusted Bonferroni procedures should be abandoned
because of reduced statistical power [38]. Controlling of
false discovery rate (FDR) was introduced by Benjamini
[39] and recommended as a better statistical reference
to set the threshold of associated loci. In this study, both
P values and FDR adjusted P values showed similar
effect in locating loci if referring to the peaks of signifi-
cance above —log(P) 26 or —log(FDR adjusted P) =3
(Additional file 6: Figure S2A). In general, —log(FDR
adjusted P) values increased as —log(P) values did
(Additional file 6: Figure S2B). However, -log(FDR
adjusted P) values remained unchanged around 3
while —log(P) varied from 6 to 7. Declared at the threshold
of —log(FDR adjusted P) =23, the number of associated
SNPs, 401 for MLw, seems too large. So a compromised
threshold at —log(P) =7 were used to select significant
SNPs (99 for MLw; 7 for MLs). Forty seven SNPs located
in different positions of 36 annotated genes (itional file 5,
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Table S4). Among them, one cullin gene and OsGRF3 had
putative functions related to growth regulation. Cullin
proteins was found as part of the scaffolds of multiple E;
ligase [40], including the E; ubiquitin ligase SCE™™! that
mediates ubiquitination of auxin/IAA proteins [41]. The
first growth regulating factor gene (OsGRFI) was identi-
fied as a transcript factor in rice, responding to gibberellin
(GA) and showing potential regulatory role in stem
growth [42]. Choi et al. [43] analyzed the expression pat-
terns of OsGRFI and its 11 homologs in the rice genome.
Seven genes showed induced expression by GAjz. Almost
all OsGRF genes had high expression in primary leaves
and the highest node containing shoot apical meri-
stem or intercalary meristem and part of the elong-
ation zone. As a candidate gene hit by the associated
SNP in our study, OsGRF3 was the only GRF gene
that had strong level of expression in mesocotyls and
coleoptiles.

Conclusions

Higher proportion and extension of mesocotyl elong-
ation were observed in a population of landraces and
varieties from the mini-core collection of Chinese rice
germplasm and a collection of parental varieties for
drought tolerant rice breeding. High proportion of up-
land rice accessions within those having top mesocotyl
lengths (7 of 11 accessions) could be the cause of the
correlation between mesocotyl elongation and drought
resistance, implying the important role and reserva-
tion of this character in upland rice germplasm.
GWAS found 13 loci for mesocotyl length measured
in dark germination that confirmed the previously re-
ported co-location of two QTLs across populations
and experiments. Associated SNPs hit 36 annotated genes
including putatively function-matching candidates like
cullin and GRF. The germplasm with elongated mesocotyl,
especially upland landraces or varieties, and the associated
SNPs could be useful in further studies and breeding of
mechanized dry seeded rice.

Methods
Rice germplasm and phenotypic experiments
The materials used in this study consisted of two sets of
rice germplasm. One is part of the mini-core collection
of Chinese rice germplasm, provided by Huazhong Agri-
cultural University and China Agricultural University
(170 accessions, denoted as C Collection) [33, 44] and a
set of varieties collected for the breeding program of
water-saving and drought -resistant rice (WDR) [45] by
Shanghai Agrobiological Gene Center (100 accessions,
denoted as D Collection) (Additional file 7: Table S5).
Two experiments were conducted to measure the
mesocotyl length of rice seedlings grown in water (MLw,
cm) in darkness or under 5 cm sand layer (MLs, cm) for
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10 days. In each of two replications of the dark germin-
ation experiment, 20 seeds of each accession were steril-
ized with 3 % H,O, solution, rinsed by tap water three
times, submerged in water for pre-soaking by 24 h. Then
seeds were put on one layer of filter paper above a
sponge sheet in a plastic box with cover (L x W x H =
12x12x2 cm). The boxes were kept in darkness in
carton boxes that were placed in the incubator with con-
stant temperature of 25 °C. The mesocotyl lengths of five
normal seedlings from each box were measured using
rulers.

The sand culture experiments had two replications
that were arranged with 3d interval to allow quick finish
of the measurements in each replication. Stainless steel
boxes without bottom (LxW xH=90x30x30 cm)
were placed on a levelled sand bed. After adding 5 cm
sand layer, 12 seeds from each accession were placed on
sand surface in a single row (about 2 cm apart between
seeds) along the width of the box. The space between
two rows is about 5 cm. Another 5 cm sand layer was
added over the seeds and saturated with water by sprinkler
until leaking from the bottom of the boxes. Mesocotyl
lengths of 10 seedlings were measured using rulers after
all seedlings were taken out from the sand and washed by
water. This experiment was conducted in late May to early
June in a green house. The air temperature was within the
range from 20 to 38 °C while the temperature in sand
layer ranged from 20 to 31 °C. There were 247 accessions
that had effective phenotypic data of both MLw and MLs
after removing accessions with missing data caused by
inadequate seed samples or failed germination in one
experiment or both experiments.

Thirty accessions, including those with longest MLw
and a few accessions with low or moderate mesocotyl
elongation, were used in an additional experiment to
check the mesocotyl elongation when seeds germinated
under 5-10 cm layers of sand or soil. This experiment
was conducted using the same boxes and procedure as
described above, but setting two depth of cover layer
and using dry soil as another medium.

ANOVA and Pearson’s correlation analysis with two-
tailed significance were conducted using SPSS v16.0.

Genotyping by re-sequencing and SNP validation

Whole genome re-sequencing was conducted for two
germplasm sets using Solexa Hiseq 2000 system. Ac-
cessions in the C Collection and D collection were
re-sequenced for 2.5 and 5x average genome cover-
age, respectively. The same pipelines with similar
parameters [33], using the softwares BWA, SAMtools
and BCFtools [46, 47], were used to call SNPs from
sequencing reads for both collections using the rice
reference genome of Nipponbare (MSU Rice Genome
Annotation Project Release 6.1) [48, 49]. A merged
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genotypic data set was built by obtaining the intersec-
tional loci of the two SNP data sets from C and D
collections. Imputation procedure was conducted by
using FillGenotype program (Filling missing genotype
(Fimg), http://www.ncgr.ac.cn/fimg/intr.html) based on
K-nearest neighbor (KNN) algorithm, using the de-
fault parameters (w=80, p=-7, k=5, and f=0.7)
[29]. For the whole set of germplasm, the final geno-
typic data consists of 1,019,883 SNP loci.

In order to evaluate accuracy of SNP calling and im-
putation pipeline, a high-density whole-genome SNP
array, RiceSNP50 [34], was used to genotype a validation
panel of 24 accessions including 9 from C collection and
15 from D collection. DNA amplification, fragmentation,
chip hybridization, single base extension, staining and
scanning were conducted by Life Science and Technology
Center, China National Seed Group Co., LTD (Wuhan,
China), according to Infinium HD Assay Ultra Protocol
(http://www.illumina.com/). The RiceSNP50 array con-
tains about 51K evenly distributed SNP markers [34].
About 43K SNPs with high quality were used in the
comparison with the SNP calls from re-sequencing.
The percentages of consistent SNP loci were calcu-
lated by dividing the number of identical SNPs by the
effective SNP number within the common set of SNP
loci (n=10,851) between array and SNP calls from
re-sequencing (Additional file 2: Table S2).

Population structure analysis and genome-wide association
mapping

Based on a subset of 144,994 SNPs that had less than
10 % missing data in D Collection (with much lower total
SNP number than in C collection) before imputation, we
used the Dnadist program to generate a pairwise distance
matrix that was used to construct the unrooted and un-
weighted neighbour-joining tree by the Neighbor program
from the software PHYLIP (V3.695, http://evolution.gene
tics.washington.edu/phylip.html) [50]. The exported phylo-
genetic tree in Newick format was modified in format
using an online tool Interactive Tree of Life [51]. In
addition, the genetic structure of rice population was
estimated by the model-based program STRUCTURE ver-
sion 2.3.4 (http://pritch.bsd.uchicago.edu/structure.html)
[52, 53]. Adopting an admixture model allowing for corre-
lated allele frequencies among populations, with no link-
age model, we used the run-length parameters as the
burn-in period of 2,000 and the number of MCMC repli-
cations after burn-in of 5,000. Ten independent simula-
tions using K-value ranging from 2 to 11, with eight
replications, yielded consistent results. The inferred
groups between successive K values were decided to iden-
tify the real number of clusters of individuals based on
Evanno’s methods [54].
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As the majority of the germplasm accessions in this
study are landraces or varieties from China (Additional
file 7: Table S5), most accessions could be classified into
indica or japonica subspecies, according to their regis-
tration information from the databases like China
National Rice Data Center (http://www.ricedata.cn/var
iety/) and the International Rice Information System
(http://www.iris.irri.org/germplasm2/), together with the
clustering results of this study. Only four accessions
were specified as aus type. Population structure estima-
tion, i.e. calculation of PCA and Kinship (K) matrixes,
and genome-wide association analysis (GWA) based on
the compressed mixed linear model [55] were conducted
using the R package of Genomic Association and Predic-
tion Integrated Tool (GAPIT) [56]. A forward model
selection procedure was run to determine if any and
how many PCs/covariates should be included in associ-
ation mapping.

The whole set of 1,019,883 SNPs were used in associ-
ation mapping, setting a minor allele frequency (MAF)
criterion of 5 %. A genome-wide threshold of -log(P) = 8.0,
calculated from the formula of “-1og10(0.01/effective num-
ber of SNPs)”, i.e. the threshold at a significant level of 1 %
after Bonferroni multiple test correction (0.01/1019883).
As the Bonferroni correction probably had low power,
false discovery rate (FDR) [39] was recommended as a bet-
ter method to set the significant level [38]. The effects
of screening significant SNPs associated to MLw
based on both -log(P) and -log(FDR adjusted P) were
compared (Additional file 6: Figure S2). A compro-
mised threshold at -log(P) >7.0 was used to screening
SNPs in candidate gene annotation.

Availability of supporting data

The raw Illumina sequencing data from this study have
been submitted to NCBI Sequence Read Archive (SRA)
under the accession number PRJNA171289 [30] and
PRJNA260762.
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