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Background: Generally, double-flowered varieties are more attractive than single-flowered varieties in ornamental
plants. Japanese gentian is one of the most popular floricultural plants in Japan, and it is desirable to breed elite
double-flowered cultivars. In this study, we attempted to characterize a doubled-flower mutant of Japanese gentian.
To identify the gene that causes the double-flowered phenotype in Japanese gentian, we isolated and

Results: Fourteen MADS-box genes were isolated, and two of them were C-class MADS-box genes (GsAG! and GSAG2).
Both GSAGT and GsAG2 were categorized into the PLE/SHP subgroup, rather than the AG/FAR subgroup. In expression
analyses, GSAGT transcripts were detected in the second to fourth floral whorls, while GSAG2 transcripts were detected
in only the inner two whorls. Transgenic Arabidopsis expressing GsAGT lacked petals and formed carpeloid organs
instead of sepals. Compared with a single-flowered gentian cultivar, a double-flowered gentian mutant showed
decreased expression of GsAGT but unchanged expression of GSAG2. An analysis of the genomic structure of GSAGT
revealed that the gene had nine exons and eight introns, and that a 5,150-bp additional sequence was inserted

into the sixth intron of GSAGT in the double-flowered mutant. This insert had typical features of a Ty3/gypsy-type
LTR-retrotransposon, and was designated as Tgs!. Virus-induced gene silencing of GsAGT by the Apple latent spherical
virus vector resulted in the conversion of the stamen to petaloid organs in early flowering transgenic gentian plants

Conclusions: These results revealed that GsAGT plays a key role as a C-functional gene in stamen organ identity. The
identification of the gene responsible for the double-flowered phenotype will be useful in further research on the floral

Keywords: AGAMOUS, Apple latent spherical virus vector, Double-flowers, Japanese gentian, LTR-type retrotransposon,

Background

Double-flowered plants are often preferred by con-
sumers because they are larger, more floriferous, and
more showy than single flowers [1]. Double-flowered
varieties are more common than single-floweredvarieties
for several important floricultural plants including
carnation (Dianthus caryophyllus), rose (Rosa hybrida),
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and chrysanthemum (Chrysanthemum x morifolium). In
other floricultural plants, the development of double-
flowered varieties is one of the main breeding aims
alongside improvements to floral color, size, scent, vase
life, and disease resistance.

Generally, the flowers of dicotyledonous plants are com-
posed of four types of organs; sepals, petals, stamens, and
pistils, which are arranged in four whorls. In eudicots,
floral organ identities are explained by the ABC model,
which has been established from studies on two model
plants, Arabidopsis thaliana and Antirrhinum majus [2].
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The ABC model includes many genes encoding MADS-
box transcription factors. According to this model, there
are three classes of gene functions. The A-function gene,
APETALAI (AP1, SQUAMOSA (SQUA) in A. majus), is
expressed in the first and second whorls. The B-function
genes, APETALA3 (AP3, DEFICIENCE (DEF) in A. majus)
and PISTILLATA (PI, GLOBOSA (GLO) in A. majus) are
expressed in the second and third whorls, and their
encoded proteins gain their B-function when they form
heterodimers [3]. The C-function genes are expressed
in the third and fourth whorls, and play an important
role in stamen and pistil formation. Male and female
organ identities are specified by a single C-function
gene, AGAMOUS (AG), in Arabidopsis, but by two C-
function genes, PLENA (PLE) and FARINELLI (FAR), in
A. majus [4]. The A. majus ple mutant was shown to
form petal and petaloid organs in place of stamens and
carpels, respectively [5], similar to the Arabidopsis ag-1I
mutant. A. majus PLE is an ortholog of Arabidopsis
SHATTERPROOF 1/2 (SHP1/2), which is involved in
the dehiscence of mature fruit [6], but it is not an
ortholog of AG. AG/FAR and SHP/PLE are paralogs,
but not orthologs derived from a duplication event in a
common ancestor [7].

To control floral organ identity, the B- and C-function
genes also require SEPALLATA (SEP), which is defined
as an E-function gene [8]. The proposed “quartet model”
directly links floral organ identity to the action of four dif-
ferent tetrameric transcription factor complexes com-
posed of MADS-box proteins [9, 10]. Petunia FBP6 and
FBPI1 are expressed in the ovule, and are defined as D-
class MADS-box genes [11]. Recently, the petunia C- and
D-clade genes were shown to have largely overlapping
functions specifying ovule identity and floral termination
[12]. D-function genes have also been identified in lily
(LMADS?2, [13]), Eustoma grandiflorum (EgMADS?2, [13]),
and Arabidopsis (STK, [14]).

The deficiency of C-function genes results in the con-
version of third-whorl stamens to petals, and fourth-
whorl pistils to sepals [15]. This sepal-petal-petal pattern
repeats itself many times, resulting in flowers with many
petals. In addition to its role in determining floral organ
identity, AG also plays a role in terminating flower de-
velopment [16, 17]. Double-flowered phenotypes result
from C-function deficiency in most floricultural plants,
including Ipomoea nil [18], Rosa hybrida [19], Petunia
hybrida [20], Cyclamen persicum [21], and Cymbidium
ensifolium [22]. Therefore, it is likely that double-flowers
of Japanese gentian plants result from lost or impaired
C-function gene (s), although this had not been con-
firmed experimentally.

Japanese gentian (Gentiana scabra, Gentiana triflora,
and their interspecific hybrids) is one of the most popular
floricultural plants in Japan, and is used as cut flowers and
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potted plants [23]. The genus Gentiana comprises more
than 400 species, and belongs to the family Gentiana-
ceae, which also contains the genera Eustoma, Swertia,
and Tripterospermum. The flowers of Japanese gentian
have a bell-shaped corolla with five lobes, five stamens
partly fused with petals, and one pistil. Organs known
as plicae, which are located between the lobes of the
corolla, are a typical feature of the Gentiana genus. The
petals of Japanese gentians are vivid blue, which is con-
ferred by the polyacylated anthocyanin gentiodelphin
[24]. The flavonoids of Japanese gentian, the structures
of the anthocyanins and flavones, and the biosynthetic
structural and regulatory genes associated with these
pigments have been well studied [25]. More recently,
we determined the structures of flavones that accumu-
late in the leaves and flowers of G. triflora and identi-
fied a novel glucosyltransferase gene involved in the
formation of flavone-glucosides [26].

However, there have been few studies on the floral
morphogenesis in Japanese gentian at the molecular
level. Floral homeotic MADS-box genes have been iso-
lated and characterized from E. grandiflorum, which be-
longs to the family Gentianaceae [27]. Although Mishiba
et al. [28] isolated four MADS-box genes from G. triflora
(GEMADS1-GtMADS4; Genbank accession numbers
AB189429-AB189432), these genes have not been char-
acterized in detail. To date, there have been no system-
atic characterizations of floral morphological MADS-box
genes in Japanese gentian.

Here, we attempted to characterize a double-flowered
mutant of G. scabra, a species closely related to G. triflora.
We isolated and characterized MADS-box genes expressed
in gentian flower buds, focusing on C-class MADS-box
genes. We identified 14 MADS-box genes belonging to A,
B, C, D, and E classes; these genes are presumably involved
in floral development and organ identification. Analyses of
a double-flowered mutant revealed that the phenotype was
caused by an insertion of a novel retrotransposable element
(Tgsl) into one of the C-function genes, GSAGI. This was
confirmed by suppressing GsAGI using the Apple latent
spherical virus (ALSV) vector. To our knowledge, this
is the first report of the functional characterization of
MADS-box genes involved in the floral morphogenesis of
Japanese gentian, and the involvement of a retrotranspo-
sable element in its double-flowered phenotype.

Results

Isolation of MADS-box genes from Japanese gentian

The fragments of Japanese gentian MADS-box genes
were amplified using degenerate primers designed from
the conserved domain of AGAMOUS proteins, as de-
scribed by Kramer et al. [29, 30]. After subcloning, 96
clones were sequenced, and 14 independent clones were
identified. Using 5'-RACE technology, we obtained eight
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independent clones of complete full-length cDNA se-
quences, whereas the 5'-upstream fragments correspond-
ing to the other six clones were not obtained. In a
phylogenetic analysis based on the deduced amino acid se-
quences, these Japanese gentian MADS-box genes clustered
into four functional clades (Fig. 1, Additional file 1: Figures
S1 and S2).

There were two gentian A-clade MADS-box genes;
GsAP1 (Genbank accession number LC022772) and
GsFUL (LC022780). Core eudicot species have two types
of A-class MADS-box lineage genes, euAPI and euFUL
[31]. GsAPI and GsFUL were categorized into euAPI
and euFUL, respectively (Additional file 1: Figure S1).
The deduced amino acid sequence of GsAPI showed
63.9 % identity with that of GsFUL.

We also identified another six MADS-box genes,
which were categorized as B-class genes (Additional file
1: Figure S2). The B-class MADS-box genes form three
subgroups, euAP3/DEF, TM6 (paleoAP3), and PI/GLO
[32]. GsAP3a (LC022769) and GsAP3b (LC022774) were
categorized into the AP3/DEF subgroup, while GsPII
(LC022770), GsPI2 (LC022771), and GsPI3 (LC022773)
were categorized into the PI/GLO subgroup. GsTM6
(LC022767) belonged to the TM6 subgroup derived from
the AP3/DEF subgroup. The deduced amino acid se-
quence of GsAP3a exhibited 78.0 % and 59.8 % identities
with those of GsAP3b and GsTM6, respectively. The de-
duced amino acid sequence of GsAP3b showed 60.1 %
identity with that of GSTM6. GsAP3a exhibited 60.3 %,
771 %, and 72.4 % identities, while GsAP3b exhibited
56.7 %, 71.5% and 73.1 % with Arabidopsis AP3, Antirrhi-
num DEF, and petunia GP, respectively. GSTM6 exhibited
58.8 %, 57.3 %, and 52.4 % identities with tomato TDR6,
petunia TM6, and rose MADSKO B3, respectively. GsPI1
exhibited 93.7 % and 86.3 % identity with GsPI2 and
GsPI3, respectively, while GsPI2 showed 80.2 % identity
with GsPI3. The GsPIs exhibited 55.7 %—58.9 %, 58.1 %—
64.2 %, 68.1 %—70.8 %, and 59.9 %—67.3 % identities with
Arabidopsis PI, Antirrhinum GLO, petunia pMADS2, and
petunia GLO1, respectively.

The C-clade MADS-box genes can be separated into
two subgroups, AG/FAR and SHP/PLE [7]. We isolated
two Arabidopsis AG/SHP orthologs, GsAGI (LC022775)
and GsAG2 (LC022779), from Japanese gentian floral
buds, and both belonged to the SHP/PLE subgroup (Fig. 1).
No clones in the AG/FAR subgroup were obtained by de-
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Fig. 1 Phylogenetic tree of C/D-class MADS-box proteins. Phylogenetic
tree was constructed by the neighbor-joining method using ClustalW
and visualized using MEGA6. Genbank accession numbers of amino acid
sequences used in phylogenetic analysis are as follows: Arabidopsis
thaliana AG (NP_567569), SHP1 (NP_001190130), SHP2 (NP_850377) and
STK (NP_192734); Antirrhinum majus FAR (CAB42988) and PLE (AAB25101);
Aquilegia alpina AG1(AAS45699) and AG2 (AAS45698); Cucumis sativus
CUMT (AAC08528) and CUM10 (AAC08529); Gentiana scabra GsAGT and
GsAG2 (this study); Gerbera hybrida GAGAT (CAA08800) and GAGA2
(CAA08801); Gossypium hirsutum MADS3 (AAL92522), MADSS (ABM69043)
and MADS7 (ABM69045); Ipomoea nil DP (BAC97837) and PEONY

(BAC97838); Lilium long

iflorum MADS2 (AAS01766) and MADS10

generate PCR or by searching the gentian flower normal-
ized library described by Nakatsuka et al. [33]. The
deduced amino acid sequence of GsAGI showed 63.9 %
identity with that of GsAG2. GsAGl showed 68.8 %,
66.8 %, and 65.2 % amino acid sequence identity with pe-
tunia FBP6 [34], A. majus PLENA [5], and L nil PEONY
[18], respectively, whereas GsAG2 showed 68.4 %, 63.5 %,
and 66.4 % identity, respectively.

(AJ29174); Oncidium hybrida MADS2 (AlJ29175) and MADS4 (AlJ29176);
Petunia hybrida FBP6 (CAA48635), FBP11 (CAA57445), PFG (AAF19721)
and pMADS3 (Q40885); Rosa rugosa MASAKO C1 (BAA90744) and
MADSKO D1 (BAAS0743); Thalictrum dioicum ThdAG1 (AAS45683) and
ThdAG2 (AAS45682); Zea mays ZAGT (AAA02933) and ZMM?2
(NP_001104926). Numerals beside branches indicate bootstrap
values from 1,000 replicates. Scale bar indicates 0.05 amino acid
substitutions per site
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GsSTK1 (LC022768) showed high sequence similarity to
STK (AGL11), which is encoded by a D-class MADS-box
gene in Arabidopsis and regulates ovule development [35].
The deduced amino acid sequence of GsSTK1 showed
85.1 %, 80.9 %, and 64.9 % identity with that of Eustoma
grandiflorumm MADSL1 [13], petunia FBP7 [36] and Arabi- A GsAP1
dopsis STK [14], respectively. We also isolated three SEP
orthologs, designated as GsSEP1 (LC022776), GsSEP2
(LC022777), and GsSEP3 (LC022778), all of which were
E-function MADS-box genes (Additional file 1: Figure S1).

The A-function genes included AP1-like MADS-box B GsAP3a |« @8 ws - “=|30
genes, and also AP2-like genes harboring two con-
tinuous AP2 domains. We isolated a GsAP2 ortholog .
(LC022781) from the gentian petal normalized library GsAP3b | ** - w130
described by Nakatsuka et al. [33]. The GsAP2 cDNA
was 1,813-bp long, and encoded a protein of 456

Sepal
Petal
Stamen
Pistil
Leaf
Stem

30

GSFUL | === - 28

amino acid residues (Additional file 1: Figure S3). The GsTM6 - e e 30
miR172-target nucleotide sequences of AP2 were con-
served within the GsAP2 coding regions. GsPI1 - 30

Spatial expression analysis of MADS-box genes in
different floral organ, leaves, and stems GsPI2 - e 28
The spatial expression patterns of isolated MADS-box
genes were analyzed by semi-quantitative RT-PCR in

wild-type Japanese gentian (Fig. 2). Among the A-clade GsPI3 - 30
MADS-box genes, GSAPI expression was restricted to the
first and second whorls and stem tissues, while GsFUL C GsAG1 . - 28

transcripts were detected in all of the tissues tested.
GsFUL was strongly expressed in the first and second
floral whorls and also in stem tissues. GsAG2 -— 30

The expressions of GsAP3a, GsAP3b, and GsTMe,
belonging to the AP3/DEF subfamily, were detected in

all four whorls of the floral organs. There were high D GsSTK1 . 28
transcript levels of GsAP3a and GsAP3b in the petal
and stamen, and high transcript levels of GsTM6 in E GSSEP1 |-« wa R -8

the pistil organs in addition to whorls 2 and 3. Tran-
scripts of GsAP3a, GsAP3b, and GsTM6 were detected
in stem organs, but barely detected in leaves. In con- GSSEP2 | &8 . 30
trast to the AP3/DEF subfamily, the PI/GLO subfamily
genes GsPI1, GsPI2 and GsPI3 were expressed only in
the petal and stamen organs (Fig. 2). The transcript GSSEP3 |~ == 30
levels of GsPI2 and GsPI3 were approximately equal in
the petal and stamen organs, whereas there were higher
transcript levels of GsPII in the petal than in the stamen.
The three GsPI genes were expressed at undetectable
levels in vegetative Organs.. Thus, the expression profll.es Japanese gentian. Semi-quantitative RT-PCR analysis was performed
of the GsPI genes belonging to PI/GLO subgroup dif- using total RNAs isolated from sepals, petals, stamens, and pistils of floral
fered from those of the genes in the AP3/DEF and TM6 buds, and from leaves and stems. Expression profiles of 14 MADS-box
subgroups. genes were investigated: A-clade (GsAPT and GsFUL), B-clade (GsAP3a,
The two C-class MADS-box genes, GsAGI and GSsAP3b, GsTM6, GsPI1, GsPI2 and GsPI3), C-clade (GSAGT and GsAG2),
GsAG2, were strongly expressed in the third (stamen) E—glade (GsSTKT), and E-clade (GsSEPT, GsSEP2 and GsSEP3) genes.
ctin served as the reference gene. Gene names and cycle numbers
and fourth whorls (pistil). Transcripts of GsAGI were are indicated at the left and right of panel, respectively
also present in petals. Transcripts of both GsAGI and 7
GsAG2 were at very low levels or undetected in

ACTIN |ecw gp om == - 28

Fig. 2 Spatial expression profiles of MADS-box genes in floral organs of
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vegetative tissues (leaves and stems). Transcripts of
GsSTK1 were detected only in pistils, and not in other
whorls, leaves, or stems. The three E-class MADS-box
genes, GsSEPI, GsSEP2, and GsSEP3, showed similar
expression profiles in floral organs. Transcripts of
GsSEP2 and GsSEP3 were detected all floral whorls but
not in leaves or stems, whereas GsSPE1 transcripts were
detected in all floral whorls and in stems.

Heterologous expressions of GSAGT and GsAG2 in
Arabidopsis

To investigate the functions of GsAGI and GsAG2,
we produced four and six lines of T, transgenic Arabi-
dopsis plants overexpressing GsAGI or GsAG2, re-
spectively. Ectopic expressions of C-class MADS-box
genes in Arabidopsis and tobacco have been used to
evaluate the function of AG orthologs from several
plants [37, 38]. Ectopic expressions of AG genes have
been shown to induce the ap2 mutant phenotype; that
is, pistil-stamen-stamen-pistil [39] Of the four GsAGI-
overexpressing Arabidopsis lines, three formed carpe-
loid organs instead of sepals, and showed partial
disappearance of petals (Fig. 3b—d). No morphological
changes were observed in all six GsAG2-overexpressing
Arabidopsis lines (Fig. 3e—f). These results revealed that
the biological functional ortholog of Arabidopsis AG
was GsAGI1, not GsAG2.

Expression analysis of MADS-box genes in a double-
flowered mutant

Next, we attempted to identify the cause of double-
flowers in a gentian mutant. The double-flowered mu-
tant had petaloid organs instead of stamens in the
third whorl (Fig. 4a). The petaloid organ consisted of a
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petal structure fused to a sterile stamen. Some individ-
uals of the double-flowered mutant also formed a
slightly abnormal pistil that contained another incom-
plete pistil.

To identify the candidate gene responsible for the
formation of double flowers, we compared the spatial
expression profiles of C-class MADS-box genes be-
tween the double-flowered mutant and the typical
single-flowered gentian cv. Alta (Fig. 4b). The tran-
script levels of GsAGI in the third and fourth whorls
were significantly lower in the double-flowered mutant
than in the single-flowered cultivar. In contrast, the
abundance of GsAG2 transcripts was not significantly
different between the wild-type cultivar and the double-
flowered mutant. The transcript levels of GsAP2 in
the inner two whorls were higher in the double-
flowered mutant than in the wild-type plants (Fig. 4b).
There were also differences between the wild-type
cultivar and the double-flowered mutant in the tran-
scription profiles of other A-class GsAPI and GsFUL
genes in the second and third whorls. Slight differ-
ences in the expression patterns of some genes might
be because of the different genetic backgrounds of
the single-flowered cultivar and the double-flowered
mutant. However, these results suggested that
GsAG1, a C-class MADS-box gene, was the most
likely candidate gene responsible for the double-
flowered phenotype.

Genomic structures of GsAGT and GsAG2 in Japanese
gentian

In spatial expression analyses of Japanese gentian MADS-
box genes, reduced GsAGI transcript levels were detected
in male and female organs of the double-flowered mutant

Fig. 3 Typical floral phenotypes of GsAGT- and GsAG2-expressing transgenic Arabidopsis plants. a Vector-control flower with normal sepal and
petal organs. b—d Flowers of GsAGT-overexpressing transgenic lines nos. 2, 3, and 6 with sepals and petals converted into pistiloid and stamenoid
organs, respectively. e-f Flowers of GsAG2-overexpressing transgenic lines nos. 9 and 13 with normal floral phenotypes. Expression of transgene
in each T, transgenic plant is illustrated in Additional file 1: Figure S4. Bar=10 mm
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Fig. 4 Phenotype of double-flowered gentian mutant and spatial expression analysis of MADS-box genes. a Typical floral phenotypes of single flower
cv. Alta (upper panels) and double-flowered mutant (lower panels). Bar =2 cm. b gRT-PCR analysis of floral MADS-box genes in single-flowered cultivar
(WT) and double-flowered mutant. Total RNAs were isolated from each whorl organ of floral buds at flower developmental stage 3 as defined by
Nakatsuka et al. [58]. Values are the average of four biological replicates + standard deviation. White bar indicates single-flowered gentian cv. Alta. Black
bar indicates double-flowered mutant. ** and ND indicate significant difference (P < 0.01) and no significant difference, respectively (Student's t-test)

(Fig. 4b). Therefore, we determined the genomic se-
quences of GsAGI and GsAG2 in the double-flowered
mutant and control plants.

The genome sequence corresponding to GsAG1 cDNA
was 15.3-kb long, and consisted of nine exons and eight
introns (Fig. 5a). The number and position of introns
were conserved between Arabidopsis AG and GsAGI.
The second and third introns of GsAGI1 (4.3 kb and

6.7 kb, respectively) were considerably longer than those of
the corresponding introns in AG genes in other plants
(2,998 bp and 102 bp, respectively, in Arabidopsis). The
genomic sequence of GsAG2 was 9.5-kb long and con-
sisted of nine exons and eight introns, like GsAGI
(Fig. 5b). The second intron of GsAG2 was 6.6-kb long,
but the third intron was shorter than that of GsAG1. The
second intron of Arabidopsis AG contains transcriptional
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Fig. 5 Genomic structures of GsAGT and GSAG2. a Genomic structure of GSAGT in Japanese gentian. Open boxes show untranslated regions, filled
boxes show translated regions with exons. Numerals above boxes indicate exon number. Scale bar indicates 1 kb. Open arrow indicates insertion
position of transposable element Tgs7 in gsag! in double-flowered mutant. TSD, target site duplication; LTR, long terminal repeat. Tgs7 is 5,150-bp

GSAG2 in Japanese gentian cv. Alta

long with an ORF encoding 1,431 amino acid sequences of a gag-pol polyprotein, 334 bp of LTRs, and 5 bp of TSDs. b Genomic structure of

regulation regions [7, 40]. The second intron region of
both GsAGI and GsAG2 had several cis-elements; a CArG
box (CW3@G), a LFY binding site (CCANTG) and a 70-bp
region (CCAATCA repeat) (data not shown).

Genomic structures of GsAG1 and GsAG2 in the
double-flowered mutant

Next, we compared the genomic structures of GsAGI
and GsAG2 between the wild-type cultivar and the
double-flowered mutant. Genomic PCR analyses targeting
the sixth intron region of GsAGI amplified a fragment
from wild type, but not from the double-flowered mutant
(data not shown). Therefore, we sequenced the sixth in-
tron of GsAGI in the double-flowered mutant using
genome walking technology. The sixth intron of GsAGI in
the double-flowered mutant had a 5,150-bp insertion that
was not present in wild type. This inserted sequence had
typical features of an LTR-retrotransposon, including a
5-bp target site duplication (TSD, CCCCA) and a 334-bp
perfectly matching long terminal repeat (LTR) at both
ends (Fig. 5a). The insert was designated as 7gs! (trans-
posable element of Gentiana scabra 1). Tgsl encoded a
1,431-amino acid sequence of a gag-pol polyprotein be-
longing to the Ty3/gypsy-type retrotransposon group.
There was no difference in the genomic structure of
GsAG2 between the double-flowered mutant and the
wild-type cultivar (data not shown).

Suppression of GsAG1 by virus-induced gene silencing

To confirm whether the deficiency of the GsAGI gene
contributed to the double-flowered phenotype in Japanese
gentian, we attempted to suppress the expression of
GsAGI using VIGS. We used Apple latent spherical virus
(ALSV) vectors because they have been used for reliable
and effective VIGS in a broad range of plants [41, 42].

Gold particles coated with pEALSR1 and pEALSR2L5R5
were bombarded into in vitro-grown plants of transgenic
Japanese gentian overexpressing AtFT [43]. One month
after the bombardment, the proliferation of ALSV in inoc-
ulated plants was confirmed by RT-PCR analysis. The pro-
liferation of ALSV was detected in almost all plantlets
(data not shown), confirming that the direct bombard-
ment of plasmid vectors was suitable to inoculate ALSV
into gentian.

Twenty-two and 20 AtFT-overexpressing gentian plants
were inoculated with either an empty ALSV vector
(pEALSR1/pEALSR2L5R5) or the ALSV-GsAG1 vector
(pEALSR1/pEALSR2-GsAG1), respectively. RT-PCR ana-
lysis confirmed that the biolistic inoculation of ALSV vec-
tors resulted in a 90 % inoculation frequency (data not
shown). The gentian plants inoculated with ALSV vectors
were acclimated in a closed greenhouse, and set flowers
after 1-3 months of acclimation. There was no significant
difference in flower phenotype between wild type and
plants inoculated with an empty ALSV vector (Fig. 6a).
Six out of 14 surviving plants inoculated with ALSV-
GsAG]1 formed petals in place of stamens (Fig. 6b). The
qRT-PCR analysis showed that plants showing the
conversion phenotype by infection with ALSV-GsAG1
had significantly suppressed GsAGI transcript levels,
compared with those in plants inoculated with the
empty vector (Fig. 6¢). The transcript levels of GsAG2
were not affected by ALSV-GsAGI1 infection. There
was no significant morphological change in the pistils
of ALSV-GsAG1-inoculated plants.

Discussion

In this study, we isolated 14 MADS-box genes expressed
in floral buds of G. scabra: two A-class genes (GsAPI and
GsFUL), six B-class genes (GsAPla, GsAPIb, GsTMe6,
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GsPI1, GsPI2 and GsPI3), two C-class genes (GSAGI and
GsAG2), one D-class genes (GsSTKI), and three E-class
genes (GsSEP1, GsSEP2, and GsSEP3) (Fig. 1, Additional
file 1: Figure S1 and Figure S2). Mishiba et al. [28] cloned
four MADS-box genes, GtMADSI-GsMADS4, from G.
triflora, a closely related species of G. scabra. Our analyses
confirmed that GtMADS1-GtMADS4 are orthologs of
GsFUL, GsAG2, GsAG1, and GsSEP1, respectively.

In Arabidopsis, AP1 and FUL function independently;
the former controls sepal and petal identities, and the
latter controls fruit development and determinacy [31].

In other core eudicots, plants with defective API genes
formed leaf-like sepals, but their petal identity was un-
affected [44]. Therefore, euFUL genes play an early role
in promoting the transition to reproductive meristems
and a late role in fruit development. In Japanese gentian,
GsAPI expression was restricted to the first and second
whorls of the floral bud and stem, and it was expressed
strongly in the sepals and stems (Fig. 2). Conversely,
GsFUL was expressed in all tested organs, and was
strongly expressed in petals and stems (Fig. 2). As well
as GsAPI and FUL, GsAP2 might also act as an A-
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function gene (Additional file 1: Figure S1). GsAP2 was
strongly expressed in the second whorl (Fig. 4b). In
Arabidopsis, the expression of AP2 is regulated by
miR172 through translational inhibition [45]. The nu-
cleotide sequence of GsAP2 contained a conserved
miR172 target sequence (data not shown). Therefore,
the whorl-specific expression of GsAP2 might be con-
trolled by miR172 in gentian, like in other plants.

In Arabidopsis and A. majus, B-function, which
specifies petal and stamen identities, is determined by a
heterodimer consisting of one AP3/DEF protein and one
PI/GLO protein [46, 47]. AP3/DEF lineages can be cate-
gorized into two subgroups; euAP3 and paleoAP3 [29].
euAP3 is widely distributed in higher eudicots, whereas
paleoAP3 is distributed in lower eudicots, magnoliid di-
cots, monocots, and basal angiosperms [48]. In addition,
a number of higher eudicot species contain both euAP3
and paleoAP3 (designated as TM6). AP3/DEF genes be-
longing to the euAP3 (GsAP3a and GsAP3b) and TM6
(GsTM6) groups were isolated from Japanese gentian
(Additional file 1: Figure S2). Three euAP3, one TMS6,
and two PI/GLO genes were also identified from Eustoma
grandiflorum in the family Gentianaceae [27]. Therefore,
it seems that a TM6 gene encoding a B-class MADS-box
protein is present in the family Gentianaceae, but not in
the Solanaceae [35] or Asteraceae [49]. Geuten and Irish
[50] reported that the PI/GLO lineage was duplicated
and separated into GLO1 and GLO2 lineages in the Sola-
naceae. Their results also implied that the GLO1 lineage
has been lost from the Gentianales and the GLO2 lineage
lost from the Lamiales. The results of the present study
indicated GsPI1 to GsPI3 in Japanese gentian are in the
GLO2 lineage (Additional file 1: Figure S2). GsAP3a,
GsAP3b, and GsTM6 were expressed in all floral whorls
(Fig. 2). High transcript levels of GsAP3a and GsAP3b
were detected in the second (petal) and third whorls
(stamen), and GSTM6 was expressed at high levels in
whorls 2-4. On the other hand, the expressions of the
three GsPIs were clearly restricted to the second and
third whorls (Fig. 2). These differences in expression pro-
files among euAP3, TM6, and PI/GLO were also reported
in petunia [48]. In petunia, PATM6 is mainly expressed in
third and fourth whorls and is involved in stamen devel-
opment but not petal development, while PADEF is in-
volved in both petal and stamen development [51, 48].

Both GsAGI and GsAG2 were categorized into the
SHP/PLE subgroup but not the AG/FAR subfamily (Fig. 1).
In this study, we could not find any paralogous genes
belonging to the AG/FAR subgroup by degenerate PCR
technology. In E. grandiflorum, which also belongs to the
family Gentianaceae, three SHP/PLE subgroup genes
(EgPLEI to EgPLE3) were identified, but no AG/FAR sub-
group genes [27]. The AG/FAR subgroup of C-class
MADS-box genes is responsible for male and female organ
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identity in several plant species. This subgroup of genes
includes Arabidopsis AG [52], petunia pMADS3 [53], and
L nil DUPLICATED (DP, [18]). Members of the SHP/PLE
subgroup also play a major role in floral organ identity in
A. majus [5]. Therefore, AG/FAR subgroup genes might
have disappeared from some species in the Gentianaceae,
leaving SHP/PLE subgroup genes to function as C-class
genes, although further analysis such as whole-genome se-
quencing should be conducted to confirm this hypothesis.

There is only one C-class MADS-box gene, a single
copy of AG, in Arabidopsis. However, there are two AG
paralogs in some plant species, including A. majus (PLE/
FAR, [4]), petunia (pMADS3/FBP6, [34]), cucumber
(CUM1/CUM10, [34]), maize (ZAG1/ZMM?2, [54]), L
nil (DP/IN, [18]), and cyclamen (CpAG1/CpAG2, [21]).
In maize, ZAGI transcripts accumulate in developing
ears rather than in tassels, whereas ZMM?2 transcripts
are more abundant in tassels [54]. In the ple single mu-
tant of A. majus, the fourth whorl develops as two sepal-
oid/carpeloid/petaloid organs. The fourth whorl organs
of ple/far double mutants develop as four or five well-
formed petals [4]. Thus, PLE and FAR appear to contrib-
ute unequally to the specification of male and female
organs.

GsAGI transcripts were detected in the inner three
whorls, whereas GsAG2 transcripts were restricted to the
third and fourth whorls (Fig. 2). GSAGI transcripts were
detected in petal organs (whorl 2) in the RT-PCR analysis
(Fig. 2) but not in the qRT-PCR analysis (Fig. 4). The RT-
PCR and qRT-PCR analyses were performed using floral
buds at different floral development stages, S1 (immature
bud) and S3 (just before anthesis), respectively. In general,
AG is expressed in either the third or fourth whorls [15].
Therefore, GsAG1 expression in the second whorl in
Japanese gentian appears to be a unique phenomenon.
This may be because the petals and stamens of Japanese
gentians are fused at their lower halves. Therefore, at an
early floral developmental stage, young petal organs might
contain stamen primordia. As shown in the qRT-PCR ana-
lysis (Fig. 4), no GsAGI transcripts were detected in the
second whorl because both petal and stamen organs were
completely distinguishable at the later stage of floral
development.

The heterologous expression of GsAGI in transgenic
Arabidopsis caused the conversion of sepals into carpe-
loid organs, indicating its AG function (Fig. 3b). In
contrast, GsAG2-expressing Arabidopsis showed no sig-
nificant changes in morphogenesis compared with the
empty vector control (Fig. 3c). Ectopic expressions of
Arabidopsis AG or Antirrhinum PLE specified homeotic
conversion of the first and second whorl organs, causing
sepals to develop as carpels and petals to develop as sta-
mens [37, 7]. The ectopic expression of Antirrhinum
FAR converted petals to stamens, but did not alter sepal
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identity [7]. Thus, heterologous expression analyses in
Arabidopsis do not always correctly evaluate the function
of C-class MADS-box genes from other plant species.

Most double-flowered phenotypes result from a defi-
ciency of C-function genes [2]. The qRT-PCR analysis
showed that GsAGI transcripts were markedly de-
creased in the third and fourth whorls of double-
flowered Japanese gentian, compared with those in
single-flowered wild-type Japanese gentian (Fig. 4b).
No GsAGI1 transcripts were detected in the doubled-
flower mutant by RT-PCR using several primer combi-
nations (data not shown), and no truncated GsAGI
transcripts were detected by 3'-RACE. A sequencing
analysis revealed that the double-flowered mutant had
an insertion of a 5,150-bp putative retrotransposable
element in the sixth intron of GsAGI (Fig. 5a). This
transposable element, TgsI, had the typical features of
Ty3/gypsy-type retrotransposable elements (Fig. 5a). In
the duplicated (dp) mutant of I. nil, the mutation was
due to the rearrangement of genomic structure by the
Em/Spm transposable element [18]. The Antirrhinum
ple mutant was shown to have an insertion of the
Tam3 transposable element in the second intron of
PLE, and ple mRNA was hardly detected in the floral
organs of the mutant [5]. It was also reported that a
double-flowered ranunculid mutant was associated with
the insertion of a solo LTR retrotransposon into the fourth
exon of ThAGI [55]. Thus, it is likely that the expression
of GsAGI would be interrupted by the insertion of the
long transposable element in the sixth intron.

VIGS is a useful tool for the functional analysis of
genes in horticultural plants that are recalcitrant to
other means of genetic transformation [56]. Petunia
plants in which both pMADS3 and FBP6 were silenced
by VIGS formed petaloid organs in place of carpels, de-
pending on the cultivar [57]. Most viral vectors are
excluded from meristematic tissue, and therefore, gene
silencing in the meristem is not possible in most in-
stances [56]. In this study, we used VIGS to silence
GsAGI and observed that stamens were converted into
petaloid organs (Fig. 6b). These results strongly sug-
gested that the deficiency of GsAG1 was responsible for
the double-flowered phenotype of this mutant. Enhanced
transcript levels of GsAP2 were detected in the third and
fourth whorls of the double-flowered mutant (Fig. 4b).
In contrast, the spatial expression profiles of GsAPI and
GsFUL were similar between the single-flowered cultivar
and double-flowered plants. Mizukami and Ma [39]
reported that AG antagonizes the function of AP2.
Therefore, we speculated that GsAGI controls the
whorl-specific expression of GsAP2.

In the double-flowered gentian mutant, the fourth-
whorl pistil was not converted into petals, possibly
because of the function of GsAG2. Compared with

Page 10 of 14

single-flowered gentian, the double-flowered mutant
showed increased expression of GsAG2 in the third
whorl (Fig. 4b). There were also increased transcript
levels of GsAG2 in double-flowered transgenic gentians
in which GsAGI was suppressed by VIGS (Fig. 6b). In
Antirrhinum, PLE is required for full expression of FAR,
whereas FAR negatively regulates the expression of PLE
[4]. It is possible that GSAGI negatively regulates the ex-
pression of GSAG?2 in the third whorl of Japanese gentian.
Unfortunately, there are no GsAG2-deficient mutants in
nature; therefore, to show the function of the GsAG2, the
suppression of GsAG2 by VIGS should be attempted in fu-
ture studies. In cyclamen, CpAGI is involved in stamen
formation, and the deficiency of CpAGI caused the home-
otic conversion of stamens into petals, resulting in
double-petal phenotypes [21]. Overexpression of CpAG2-
SRDX (a chimeric repressor) in the cyclamen cpagl mu-
tant resulted in a multiple-petal phenotype, and the con-
version of pistils into petals [21]. Thus, two C-class
MADS orthologs contribute to male and female organ
identity. Noor et al. [57] demonstrated that VIGS suppres-
sion of both MADS3 and FBP6 resulted in the conversion
of the stamen/carpel into petal/petaloid organs, resulting
in double flowers.

The current hypothesis is that GsAG1 plays an import-
ant role in male organ identify, while GsAG2 plays im-
portant roles in female organ identity and in terminating
flowering. To confirm this hypothesis, GsAG2- and
GsAG1/GsAG2- knockdown or knockout lines of Japanese
gentian should be generated and analyzed in further
studies.

Conclusions

We investigated the causal factor (s) of a double-flowered
mutant in Japanese gentian. We isolated and characterized
14 MADS-box genes and revealed that a novel retrotran-
sposable element (7gsI) inserted into the sixth intron of
GsAGI gene is responsible for the mutant flower pheno-
type. This was confirmed by ALSV-based VIGS system in
combination with Arabidopsis F7-expressing early flower-
ing transgenic gentian plants. Further investigations will
be required to fully understand the developmental
regulation of floral morphogenesis in Japanese gen-
tian. As variation in floral shape is currently limited
in Japanese gentians, we believe that this information
will be helpful for breeding gentian cultivars with
variation in floral shape in the future.

Methods

Plant materials

Japanese gentian (Gentiana scabra) cv. Alta was grown
in a field at the Iwate Agricultural Research Center
(Kitakami, Iwate, Japan). The double-flowered mutant
was purchased from Iwasaki-Engai Co. (Kitahiroshima,
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Hokaido, Japan) and grown as potted plants in the
greenhouse of Iwate Biotechnology Research Center.
Floral bud samples were collected at developmental
stage 1, as defined by Nakatsuka et al. [58], and then
stored at —80 °C until RNA extraction.

Isolation of MADS-box genes from gentian flower buds
Total RNAs were isolated from the floral buds of Japanese
gentian and purified using RNAiso Plus and Fruit-mate
kits (Takara-bio, Otsu, Shiga, Japan). The ¢cDNAs were
synthesized by an RNA PCR kit (AMV) Ver. 3 (Takara-
bio). The candidate gentian MADS-box genes were iso-
lated using degenerate primers as described by Kramer
et al. [29, 30]. The amplified fragments were subcloned
into the pCR4TOPO TA cloning vector (Invitrogen,
Carlsbad, CA, USA) and sequenced using a BigDye ter-
minator ver. 1.1 cycle sequencing kit and an ABI PRISM
3130x] DNA sequencer (Applied Biosystems, Foster City,
CA, USA). To obtain the full-length cDNA of each gen-
tian MADS-box gene, 5'-rapid amplification of cDNA
ends (5'-RACE) was performed using a GeneRacer kit
with SuperScript III RT (Invitrogen). The amplified frag-
ments were subcloned and sequenced as described above.
Nucleotide sequences were translated into deduced amino
acid sequences using CLC Sequence Viewer 7 (CLC bio,
Aarhus, Denmark) and compared using the BLAST net-
work service at the National Center for Biotechnology In-
formation. The phylogenetic tree was constructed using
Clustal W with neighbor-joining algorithm and visualized
using MEGA ver. 6 software [59].

The GtAP2 ortholog, which is not categorized as a
MADS-box protein, was found by BLAST searches of
in-house gentian petal cDNA library data [33], and then
the full-length cDNA was obtained using RACE technol-
ogy as described above.

Gene expression analysis

To investigate the spatial expression profiles of gentian
MADS-box genes, we performed semi-quantitative reverse
transcription-PCR (RT-PCR) and quantitative RT-PCR
(qRT-PCR) analyses. Total RNAs (1 pg) were isolated from
each organ as described above, and then genomic DNA
was eliminated and cDNAs were synthesized using gDNA
Eraser and PrimeScript RT, respectively (Takara-bio).

For the RT-PCR analyses, the reaction mixture (50 pL)
consisted of 1 x Ex Taq buffer, 02 mM dNTPs, 0.4 puM
each primer, 2.5 U Ex Taq polymerase (Takara-bio), and 1
pL template cDNA. The PCR cycling conditions were as
follows: 2 min at 94 °C, 26—34 cycles of 20 s at 95 °C, 40 s
at 55 °C, and 1 min at 72 °C, and final extension for 10
min at 72 °C. The PCR products were electrophoresed on
a 1.5 % agarose gel in TAE buffer and then stained with
ethidium bromide.
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The qRT-PCR analyses were performed with the Ste-
pOne Plus system (Applied Biosystems) using SYBR
GreenER qPCR Super Mix (Invitrogen) as described pre-
viously [33]. Briefly, the reaction mixture (10 uL) con-
sisted of 1 x Master Mix, 0.2 pM each primer, and 1 pL
template cDNA. The cycling conditions were as follows:
95 °C for 20 s, followed by 40 cycles of 95 °C for 1 s and
60 °C for 20 s. The specificity of each amplification reac-
tion was checked by a melting curve analysis. Fluores-
cence was measured at the end of each annealing step.
The data were analyzed using StepOne Plus Software
Version 2.2.2. The transcript level each gene was
calculated relative to that of the reference gene GtUBQ.
qRT-PCR analyses were performed using four biological
replicates, and data were statistically analyzed by Stu-
dent’s t-test. The sequences of all primers used in this
study are listed in Additional file 1: Table S1.

Production of transgenic Arabidopsis plants

GsAGI and GsAG2 ORFs under the control of the
CaMV35S promoter were each inserted into a binary
vector harboring the kanamycin resistance (NPTII) gene
to produce the plasmids pSkan-35S:: GsAG1 and pSkan-
35S:: GsAG2, respectively. Each binary vector was trans-
formed into Agrobacterium tumefaciens EHA101 by
electroporation (MicroPulser: Bio-Rad, Tokyo, Japan). A.
thaliana ecotype col-1 was transformed by the floral dip
method as described by Clough and Bent [60]. Positive
transformants were selected on germination medium
containing 50 mg L™ kanamycin. GsAGI- and GsAG2-
expressing T, transgenic plants (homozygous) were
obtained by self-pollination. The floral morphogenetic
phenotypes were observed in four GsAGI-expressing
lines and in six GsAG2-expressing lines.

Determination of genomic structures

of GsAGT and GsAG2

The genomic nucleotide sequences of GsAGI and
GsAG2 were obtained using genome walking technology
with a GenomeWalker Kit (Clontech, Takara-bio). Gen-
omic DNA was isolated from young leaves of G. scabra
‘Alta’ and the double-flowered mutant using Nucleon
PhytoPure (GE Healthcare Ltd., Buckinghamshire, UK).
Amplified fragments were subcloned and then se-
quenced as described above.

Virus-induced gene silencing of GsAGT in gentian plants

To investigate the function of GsAGI, we conducted
virus-induced gene silencing (VIGS) using the Apple
latent spherical virus (ALSV) vector [41]. The trigger
fragment was amplified using primers harboring Xhol or
BamHI sites (Additional file 1: Table S2), and then sub-
cloned into the pGEM-T Easy vector (Promega, Madison,
MI, USA). The fragment was excised by double-digestion
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with Xhol and BamHI, and then ligated into pEALSR
2L5R5 [61] digested with the same enzymes. Large-scale
plasmid purification was conducted using a NuleoBond
Xtra Midi plus kit (Macherey-Nagel, Takara-bio).

The ALSV vector was inoculated into G. hybrida
‘Polarno White’ plants overexpressing the Arabidopsis
FLOWERING LOCUS T (AtFT) gene. The AtFT-express-
ing gentian plants flower earlier than wild-type gentian
[43]; therefore, they are useful for studies on floral
morphogenesis. Gentian plants expressing AtFT were
grown in vitro and inoculated with ALSV vectors by the
PDS-1000/He particle Delivery system (Bio-Rad Labora-
tory). A 0.5-mg aliquot of gold particles (1.0 um diam-
eter; Bio-Rad Laboratories, Hercules, CA, USA) was
mixed with 100 pL plasmid solution, which contained 5
pug pEALSR1 and 5 pg pEALSR2L5R5 derivatives, 10 pL
10 M ammonium acetate, and 220 uL isopropanol. The
mixture was kept at —20°C for at least 1 h. Gold particles
coated with plasmid DNA were washed three times with
1 mL ethanol and re-suspended in 10 uL ethanol.
Particles were bombarded with 1,100 psi pressure at a
distance of 10 cm from the microcarrier holder. After
bombardment, virus-infected plants were acclimated and
then grown in a closed greenhouse until flowering.

Availability of supporting data
The GenBank/EMBL accession numbers of genes identified
in this study are: GsAPI (LC022772), GsFUL (LC022780),
GsAG1 (LC022775), GsAG2 (LC022779), GsSTK1 (LC022
768), GsSEPI (LC022776), GsSEP2 (LC022777), GsSEP3
(LC022778) and GsAP2 (LC022781).

Phylogenetic data have been deposited in TreeBASE
respository and is available under the URL http://purl.org/
phylo/treebase/phylows/study/TB2:517877.

Additional file

Additional file 1: Table S1. Sequences of primers used for RT-PCR and
gRT-PCR analyses. Table S2. Sequences of primers used for ALSV vector
construction. Figure S1. Phylogenetic tree of A- and E-class MADS-box
proteins. Arabidopsis thaliana, AP1 (NP_177074), CAL (NP_564243), FUL
(NP_568929), SEP1 (NP_568322), SEP2 (AAU82009), SEP3 (NP_564214),
SEP4 (NP_178466); Antirrhinum majus SQUA (CAA45228); Gentiana scabra
GsAP1 and GsFUL (this study); Petunia hybrida FBP2 (Q03489) and FBP5
(AAK21248). Phylogenetic tree was constructed using the neighbor-joining
method with ClustalW and visualized using MEGA6. Numerals beside branches
indicate bootstrap values from 1,000 replicates. Scale bar indicates 0.05 amino
acid substitutions per site. Figure S2. Phylogenetic tree of B-class MADS-box
proteins. Phylogenetic tree was constructed by the neighbor-joining method
using ClustalW and visualized using MEGA6. Genbank accession numbers of
amino acid sequences used in phylogenetic analysis are as follows: Antirrhinum
majus DEF (P23706), GLO (Q03378); Arabidopsis thaliana, AP3 (AAD51903),

Pl (AAD51984); Chrysanthemum x morifolium CDMB86 (AA022986), CDM115
(AA022985); Gentiana scabra AP3a, AP3b, PI1, P12, PI3, TM6 (this study); Gerbera
hybrida GDEF1 (Q92528), GDEF2 (Q92527), GDEF3 (ACV53813), GGLO1
(Q97526); Onchidium hybrida MADS3 (AA045824), MADS5 (ADJ67234), MADS8
(ADJ67236), MADS9 (ADJ67235); Oryza sativa MADS2 (AAB52709), MADS16
(Q944S9); Petunia x hybrida GLO1 (AAS46018), GP (CAA49567), pMADS2
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(QO7474); Phalaenopsis equestris MADS2 (AAR26628), MADS3 (AAR26629),
MADS4 (AAR26626), MADSS (AAR26627), MADS6 (AAV83997); Rosa rugosa
MASAKO B3 (BAB63261), MASAKO BP (BAB11939), MASAKO euB3 (BAC79180);
Solanum lycopersicum TDR6 (XP_004232453); Torenia fournieri DEF (BAG24492),
GLO (BAG24493). Numerals beside branches indicate bootstrap values from
1,000 replicates. Scale bar indicates 0.05 amino acid substitutions per site.
Figure S3. Phylogenic tree constructed using deduced amino acid sequences
of GsAP2 and other AP2 orthologs. Phylogenetic tree was constructed by the
neighbor-joining method using ClustalW and visualized using MEGA6. Numerals
beside branches indicate bootstrap values from 1,000 replicates. Amino acid
sequences of AP2 orthologs were used as data sets as described by Karlova et
al. [62]. Scale bar indicates 0.05 amino acid substitutions per site. Figure S4.
Expression of transgenes in GsAG1-expressing and GsAG2-expressing T,
Arabidopsis plants. Four GsAGT-expressing lines (nos. 2, 3, 5 and 6) and six
GsAG2-expressing lines (nos. 1, 3,6, 7,9 and 13) of transgenic plants were
obtained. VIC, vector control plants (harboring binary vector plG121Hm).
Semi-quantitative RT-PCR analysis was performed using total RNAs
isolated from leaves. Analyses targeted GsAGT, GSAG2, and Actin2 as a
reference gene. Gene names and cycle numbers are indicated at the
left and right of panel, respectively.
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