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Abstract

Background: Huanglongbing (HLB), the most devastating disease of citrus, is associated with infection by
Candidatus Liberibacter asiaticus (Calas) and is vectored by the Asian citrus psyllid (ACP). Recently, the molecular
basis of citrus—HLB interactions has been examined using transcriptome analyses, and these analyses have identified
many probe sets and pathways modulated by Calas infection among different citrus cultivars. However, lack of
consistency among reported findings indicates that an integrative approach is needed. This study was designed to
identify the candidate probe sets in citrus—HLB interactions using meta-analysis and gene co-expression network
modelling.

Results: Twenty-two publically available transcriptome studies on citrus—HLB interactions, comprising 18 susceptible
(S) datasets and four resistant (R) datasets, were investigated using Limma and RankProd methods of meta-analysis. A
combined list of 7,412 differentially expressed probe sets was generated using a Teradata in-house Structured Query
Language (SQL) script. We identified the 65 most common probe sets modulated in HLB disease among different
tissues from the S and R datasets. Gene ontology analysis of these probe sets suggested that carbohydrate
metabolism, nutrient transport, and biotic stress were the core pathways that were modulated in citrus by Calas
infection and HLB development. We also identified R-specific probe sets, which encoded leucine-rich repeat proteins,
chitinase, constitutive disease resistance (CDR), miraculins, and lectins. Weighted gene co-expression network analysis
(WGCNA) was conducted on 3,499 probe sets, and 21 modules with major hub probe sets were identified. Further, a
miRNA nested network was created to examine gene regulation of the 3,499 target probe sets. Results suggest that
csi-miR167 and csi-miR396 could affect ion transporters and defence response pathways, respectively.

Conclusion: Most of the potential candidate hub probe sets were co-expressed with gibberellin pathway (GA)-related
probe sets, implying the role of GA signalling in HLB resistance. Our findings contribute to the integration of existing
citrus—HLB transcriptome data that will help to elucidate the holistic picture of the citrus—HLB interaction. The citrus
probe sets identified in this analysis signify a robust set of HLB-responsive candidates that are useful for further
validation.
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Background

Citrus are among the most popular fruit crops in the
world, providing energy (carbohydrates) and nutrients,
and are an important component of the daily diet in many
parts of the world [35]. Fresh citrus is also a good source
of dietary fibre and vitamins B and C. Citrus fruits and
fruit products are globally important from nutritional and
economic perspectives [56]. However, there are various bi-
otic and abiotic challenges to citrus production, among
which Huanglongbing (HLB), or citrus greening disease, is
the most devastating [5, 25, 61]. HLB was first reported in
China in the early 1900s and is now well established in
many citrus-producing regions, including India, China,
the United States, Indonesia, the Philippines, the Arabian
Peninsula, Brazil, and Africa [24, 25]. Brazil and the
United States produce more than 90 % of the world’s sup-
ply of orange juice, and HLB is a current threat to the U.S.
and the Brazilian citrus industry. HLB was first found in
2005 in Florida, the second-largest orange producing re-
gion in the world. Since then, HLB has reached epidemic
proportions in Florida and has caused more than $4 bil-
lion in economic losses between 2005 and 2011 [27]. HLB
attacks all important commercial citrus, including or-
anges, grapefruit, and tangerines [5, 20]. Sweet oranges
and mandarins are considered highly susceptible, and sour
oranges and grapefruits are moderately susceptible. It
seems that some lemons are tolerant to HLB and some
trifoliate orange (a close relative of citrus) are resistant of
HLB disease [20].

HLB is a bacterial disease caused by gram negative and
phloem-restricted Liberibacter species, which are vectored
by the Asian citrus psyllid (Diaphorina citri Kuwayama)
[21, 30]. D. citri feeds on new leaf growth, rendering
twisted and curled leaves [36]. The disease can also be
transmitted to healthy trees by grafting of diseased bud-
wood [36]. Among the three known liberibacters that
cause HLB disease, Candidatus Liberibacter asiaticus
(CaLas) is the most widespread. The other two species are
more geographically constrained; Ca. L. africanus is
present primarily in Africa [30], and Ca. L. americanus
has only been found in Brazil and China [54]. The bacter-
ium resides in phloem tissues and causes phloem collapse,
which leads to decreased productivity. The HLB disease
causes a rapid tree decline with blotchy mottling of leaves,
and small, misshapen, irregularly coloured, bitter fruit
with aborted seeds [11, 23]. At present, there are no effect-
ive control methods for HLB, except for the use of HLB-
free budwood for plant propagation, removal of infected
trees to minimize inoculum, and insect vector control [5].
The full genome sequencing of CalLas (1.23 Mb) has made
genome-based identification of virulence factors associ-
ated with HLB symptoms possible [15]. However, CaLlas
has not been cultured and a full understanding of the mo-
lecular basis of citrus—HLB interactions is lacking [17]. It
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is difficult to create HLB-tolerant citrus cultivars via con-
ventional breeding because of a lack of any known resist-
ance (R) genes against HLB and because of the complex
biology of the citrus host. However, examination of citrus
genomics through transcriptome and proteome analysis
can elucidate the differentially expressed genes/proteins as
potential candidate to study citrus—HLB interactions.

Several transcriptomic studies of citrus—HLB interactions
have been published so far [1-3, 18, 19, 31, 34, 39-41].
These studies showed that the expression of genes in
carbohydrate metabolism, nutrient transport, cell wall
synthesis, and defence- and hormone-response path-
ways were reprogrammed by Calas infection and HLB
disease development. These studies also suggested that
disruption in carbohydrate source and sink pathway
and phloem plugging were likely the main cause of
HLB symptoms [34, 39, 40]. Numerous differentially
expressed probe sets have been identified in these stud-
ies, but there was only a limited level of overlapping
among the studies in terms of differentially expressed
gene probe sets, possibly because of technique-, tissue-,
or genotype-specific effects. Furthermore, some studies
focused only on fully symptomatic plants, while others
followed a time course of events during HLB develop-
ment. Collective interrogation of this collection of tran-
scriptomic studies should provide a better understanding
than could be gained from analysis of individual studies.
However, there are significant challenges to meta-analyses
with respect to data comparability, normalization, and
analysis tools. Meta-analysis of microarrays has been used
extensively in animal systems to define robust, regulated
probe sets [42, 45]. Recently, meta-analyses have also been
used to identify differentially expressed probe sets in
plants [4, 9, 50, 55]. A recent study presented a meta-
analysis of HLB-responsive probe sets in citrus, but this
study used a small number of datasets (six), and only one
R genotype (US-897) was included for comparison [69].
To fill this gap, we performed a comprehensive meta-
analysis using a larger dataset (22 studies) that included
tissue-specific, susceptible, and resistance-specific HLB-
responsive probe sets, and we further analysed these probe
sets using co-expression and miRNA nested network
approaches.

Our objective was to investigate the citrus—HLB in-
teractions in detail using available transcriptome data
and to identify robust probe sets in citrus that are
regulated by Calas infection and HLB development.
To do this, we analysed 46 publicly available citrus—
HLB transcriptome microarray datasets from the Affy-
metrix GeneChip Citrus Genome Array using the
Limma and RankProd methods. We identified the
most statistically important tissue-specific probe sets
and pathways, which we further analysed for enrich-
ment of Gene Ontology (GO) terms using MapMan
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and AgriGO. In addition, we identified common
probe sets that provided information on core citrus
pathways and resistance-specific probe sets that gave
clues about defence responses in citrus against CaLas
infection. Correlations among common probe sets
identified with both Limma and RankProd were ex-
amined using WGCNA co-expression network ana-
lysis. We identified potential hub probe sets that
showed the greatest number of interconnections and
contributed most to citrus—HLB interactions. We also
characterised the miRNA-mediated nested network in
response to Calas infection. These findings provide
potential candidate probe sets that can be used to
dissect citrus—HLB interactions in detail.

Results

Meta-analysis of HLB-responsive transcriptome data

We used 22 datasets, including 18 datasets from sus-
ceptible citrus plants (S datasets, one each for root
and stem tissue, eight for leaf tissues, and eight for
fruit) and four from leaf tissues of HLB-resistant cit-
rus plants (R datasets) (Table 1). We retrieved the
Gene Expression Omnibus (GEO) CEL files for the
above-mentioned datasets that include 46 array samples
and performed Robust MultiChip Analysis (RMA)
normalisation using the affy package in the R program.
Differentially expressed probe sets were identified
using two statistical approaches, Limma and RankProd,
in the Bioconductor package. In the Limma method,
probe sets were identified based on a moderated ¢ stat-
istic, P < 0.05 and a false discovery rate (FDR) < 0.1. We
did not use FDR < 0.05 because we could have missed
many differentially expressed probe sets from some
datasets (especially those for roots). The RankProd
method was used under more stringent conditions
(FDR<0.01) to detect probe sets at a higher level of
statistical significance. Hence, fewer probe sets were
identified with RankProd than with Limma. More probe
sets were identified with the Limma method also
because we added common probe sets from Fan et
al. [19] and fruit data [34, 40] using an in-house
Teradata SQL script. We identified 7,412 probe sets
using Limma and 4,221 using RankProd (Additional
file 1). The above-mentioned studies reported a total of
7,326 differentially expressed probe sets. Of these,
6,634 were common in the Limma results and 3,184
were common in RankProd results (Fig. 1); 3,499 probe
sets were differentially expressed in both Limma and
RankProd.

Gene enrichment and pathway analysis of differentially
expressed probe sets

Gene enrichment and pathway analysis of differen-
tially expressed probe sets were conducted using
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MapMan and AgriGO (Additional file 2). The Map-
Man ontology was designed specifically for plants
[59], where probe sets were assigned into largely
non-redundant and hierarchically organized BINs
based on their annotation. Of the 7,412 probe sets
identified with Limma, 5,003 were mapped to 34 dif-
ferent BINs by MapMan, 2,083 fell under a ‘not
assigned’ category, and the remaining 2,920 probe
sets were mapped to different metabolic pathways.
Signalling (P < 7.2e-7, cell wall (P<4.9¢™%), and carbohy-
drate metabolism (P < 0.002) were among the top signifi-
cant MapMan categories. Of the 4,221 probe sets
identified with RankProd, 1,703 were ‘not assigned, and
the rest 2,518 were mapped to different pathways. The
RankProd analysis suggested that carbohydrate metab-
olism was the most significant class modulated by HLB
disease in citrus.

AgriGO is a web-based tool designed specifically for
GO analysis of agricultural species [14]. GO terms for
differentially expressed probe sets from Limma and
RankProd were assigned to biological processes,
molecular functions, or cellular components. Among
biological processes, ‘response to stimulus’ (Limma,
FDR = 9.4¢"°%; RankProd, FDR = 0.0013) was the most
significant class. Among molecular functions and
cellular component terms, ‘catalytic activity’ (Limma,
FDR =0.00023; RankProd, FDR=1.2¢"%°) and ‘extra-
cellular region’” (Limma, FDR= 8.7e7 %%, RankProd,
FDR = 9.8¢ °®) were the most significant classes. The
GO analysis of differentially expressed probe sets, using
hypergeometric statistics with the Yekutieli FDR multi-
test adjustment (FDR <0.01), indicated that carbohy-
drate metabolism, secondary metabolism, response to
stimulus, cell wall metabolism, nutrient transport,
and response to stress were among the most signifi-
cant metabolic pathways modulated in citrus—HLB
interactions.

To study the distribution of these six metabolic path-
ways (carbohydrate metabolism, cell wall metabolism, hor-
mone metabolism, signalling, secondary metabolism, and
transport) among the 22 datasets, we analysed them using
the Wilcoxon test in PageMan [58]. The results were di-
vided into an S dataset (one each from roots and stems
and eight from leaves), an R dataset (resistant leaves), and
a fruit dataset (Additional file 3: Figure S1, Additional file
4: Figure S2, Additional file 5: Figure S3, Additional file 6:
Figure S4, Additional file 7: Figure S5, Additional file 8:
Figure S6). Carbohydrate metabolism generally showed
down-regulation in the fruit dataset and during early
stages of Calas infection in both the R and S data-
sets. Probe sets related to starch degradation were
up-regulated in the fruit dataset but down-regulated
in the R dataset. However, starch synthesis-related
probe sets were up-regulated in the resistant citrus



Table 1 Details of microarray studies used for meta-analysis

Dataset Designated in Reference  Genotype Number of ~ Tissue Time after Calas GSE Dataset ~ Analysis method  Analysis statistic Up-regulated Down- regulated
present analysis samples infection Probesets Probesets
Root dataset Valencia root [3] Valencia 6 3C"+3N Root 16 months GSE33004 Limma R Package Unadjusted P < 0.05 56 55
FC>2
Stem dataset  Valencia stem [3] Valencia 6 3C+3l) Stem 16 months GSE33004 Limma R Package Unadjusted P < 0.05 551 334
FC>2
Susceptible (S) Valencia [1] Valencia 5@C+3l) Leaf 5-9 week GSE33459 local pooled Error  Adjusted P (FDR < 0.05) 195 84
leaf dataset 5-9 wai® (LPE) FC>2
Valencia 11 Valencia 5 Leaf 13-17 week GSE33459 local pooled Error  Adjusted P (FDR < 0.05) 310 205
13-17 wai (2C+3l) (LPE) FC>2
Sweet orange  [31] sweet orange 6 3C+3l) Leaf 8 months GSE33003 Limma R Package Unadjusted P < 0.05 307 317
FC>2
Madam Vinous  [18] Madam Vinous 6 (3C+3l)  Leaf 7 months GSE29633 Limma R Package Unadjusted P < 0.05 943 1060
FC>2
Cleopatra [2] Cleopatra 6 3C+3l)  Leaf 32 week GSE30502 Partek suit two Adjusted P (FDR < 0.05) 326 68
way ANOVA FC>4
Madam Vinous  [19] Madam Vinous 6 3C+3l) Leaf 5 week Not available ~Limma R Package Unadjusted P < 0.05 83 101
5 wai FC>2
Madam Vinous  [19] Madam Vinous 6 3C+3l)  Leaf 17 week Not available  Limma R Package Unadjusted P < 0.05 614 414
17 wai FC>2
Madam Vinous ~ [19] Madam Vinous 6 3C+3l)  Leaf 27 week Not available  Limma R Package Unadjusted P < 0.05 1955 1523
27 wai FC>2
Resistant (R) RLP 5 wai [19] Rough Lemon 6 3C+3l) Leaf 5 week Not available  Limma R Package Unadjusted P < 0.05 239 447
leaf dataset FC>2
RL 17 wai [19] Rough Lemon 6 3C+3l)  Leaf 17 week Not available Limma R Package Unadjusted P < 0.05 260 154
FC>2
RL 27 wai [19] Rough Lemon 6 3C+3l) Leaf 27 week Not available Limma R Package Unadjusted P < 0.05 867 190
FC>2
Us-897 [2] US-897 6 3C+3l)  Leaf 32 week GSE30502 Partek suit two Adjusted P (FDR<005) 17 none
way ANOVA FC>4
Fruit dataset Immature fruit  [40] Valencia 10 (5C+5l)  Fruit  _ SRP022979 DESeq package _ 45 24
Mature fruit [40] Valencia 10 5C+5l)  Fruit  _ SRP022979 DESeq package _ 234 73
Hamlin_Jv© [34] Hamlin 8 (4C+4lh)  Fruit _ GSE33373 Limma R Package Adjusted P (FDR<0.01) 174 116
FC>2
Hamlin_vTd [34] Hamlin 8 (4C+4l)  Fruit  _ GSE33373 Limma R Package Adjusted P (FDR<0.01) 398 471
FC>2
Hamlin_FF¢ [34] Hamlin 8 (4C+4l)  Fruit  _ GSE33373 Limma R Package Adjusted P (FDR<0.01) 696 706

FC>2
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Table 1 Details of microarray studies used for meta-analysis (Continued)

Valencia_JV [34] Valencia 8 (4C+4l)
Valencia_VT [34] Valencia 8 (4C+4l)
Valencia_FF [34] Valencia 8 (4C +4l)

Fruit

Fruit

Fruit

GSE33373

GSE33373

GSE33373

Limma R Package

Limma R Package

Limma R Package

Adjusted P (FDR < 0.01) 291
FC>2

Adjusted P (FDR< 0.01) 288
FC>2

Adjusted P (FDR<0.01) 210
FC>2

110

257

324

2weeks after inoculation, "Rough Lemon, “Juice Vesicle, Vascular Tissue, *Flavedo, ‘Control and Infected
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Limma method

Published reports

458

RankProd method

Fig. 1 Venn diagram showing distribution of HLB-responsive
differentially expressed probe sets in citrus. Figure is displaying
comparison of differentially expressed probe sets of citrus-HLB
interactions identified from previous published reports (blue circle)
and, from the present meta-analysis by ‘Limma’ (yellow circle) and
‘RankProd’ (green circle) methods

variety US-897 and S datasets but down-regulated in
the fruit dataset (Additional file 3: Figure S1). In
total, 125 probe sets related to the cell wall were in-
duced. Most cell wall-related probe sets were induced
at 17 weeks after infection (wai) with CaLas and were
up-regulated in the R dataset and down-regulated in
the S dataset. Probe sets related to cell wall synthesis,
such as a-expansin 3 and pectinesterase were in-
duced in tolerant citrus variety Rough Lemon (RL),
but cell wall-modification-related probe sets were
up-regulated in resistant US-897 (Additional file 4:
Figure S2). In hormone metabolism, brassinosteroid
and GA pathway-related probe sets were up-regulated
in the R dataset. Few salicylic acid (SA)-responsive
probe sets were up-regulated with ethylene-signalling
probes in the S dataset (Additional file 5: Figure S3). In
the signalling, all of the probe sets were up-regulated
in the R dataset except RL 27 wai and coded for sugar
and nutrient signalling, leucine-rich receptor, or wall-
associated kinase receptor. Calcium signalling related
probe sets were down-regulated in the S but not in the
R dataset (Additional file 6: Figure S4). We found 217
probe sets that were related to transport. Among
these, six probe sets encoding aquaporin were up-
regulated only in RL 17 wai and were down-regulated
in the S dataset. ABC transporters coding probe sets
were up-regulated only in the S dataset (Additional
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file 7: Figure S5). In the defence and stress pathway,
19 probe sets coding for PR proteins or chitinase
were induced in 12 datasets and showed up-regulation in
R datasets (US-897 and RL 17 wai). Seventeen probe sets
encoding miraculin, a member of the Kunitz serine and
trypsin protease inhibitor family proteins, was also in-
duced. Five miraculin-encoding probe sets were up-
regulated in RL 17 wai, and six were down-regulated in
RL 27 wai (Additional file 8: Figure S6).

Tissue-specific gene expression in citrus—HLB interactions
An in-house Teradata SQL script was used to extract
fruit data corresponding to the identified 7,412 probe
sets. Differentially expressed probe sets were further
classified according to tissue specificity (root, stem,
leaf, or fruit datasets) (Fig. 2, Additional file 9). The
root dataset included 92 probe sets (Fold change >= 2
or <= -2), of which 45 were common to other datasets
and the remaining 47 probe sets were specific to root
data. Only 17 of these 47 probe sets were annotated in
citrus or Arabidopsis genome databases, and they coded
for Cu/Zn superoxidase dismutase, ent-kaurenoic oxi-
dase, MYB transcription factor (two probe sets), and
polygalacturonase. Stem dataset showed significant
expression changes for 672 probe sets, of which 542
probe sets were common to other datasets and 130
probe sets were specific to the stem dataset. These
probe sets mainly coded for transporter (n=9), pro-
tein signalling (n=8), and the cell wall (n=6). All
transport-related probe sets that coded for protein
transporters (1 = 6), peptide and oligopeptide transporters,
and ABC transporters were up-regulated in HLB-
diseased citrus. Cell wall-related probe sets coding for
xyloglucan endotransglycosylase and expansin were
down-regulated in the stem dataset. Among signalling-
related probe sets, those involved in calcium signalling
were down-regulated, but those related to sugar and
nutrient physiology were up-regulated in stems. Most
of the transcriptome studies for citrus—HLB interac-
tions were performed using leaf tissues, and we
retrieved 12 leaf datasets. A total of 7,182 probe sets
showed differential expression in at least one leaf data-
set, and 5,327 probe sets were unique to leaf datasets,
showing no expression changes in other tissues. These
5,327 probe sets were further grouped into four R and
eight S datasets; 318 probe sets were specific to the R
datasets, 4,003 were specific to the S datasets, and
1,006 were common to both datasets. There were 288
probe sets present in at least one of the four R datasets,
and 30 were present in more than two R datasets. From
4,003 probe sets in S datasets, 3,923 were from at least
one dataset, and 80 were present in more than four
datasets. For the eight fruit datasets, 1,345 probe sets
showed significant fold changes in at least one dataset.
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Meta-analysis of Citrus-HLB transcriptome data
(22 dataset)
(7412 probe sets)
Root data Stem data Leaf data Fruit data
(1 dataset) (1 dataset) (12 dataset) (8 dataset)
92 probe sets 672 probe sets 7182 probe sets 1345 probe sets
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present at least
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Fig. 2 Classification of tissue-specific probe sets from 22 sample datasets. Figure represent the number of differentially expressed probe sets that
are unique and common among different citrus tissues datasets (root, stem, leaf and fruit). R and S represent resistant and susceptible datasets of
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Because we used fruit datasets only for comparison
with our meta-analysis, no probe sets were specific to
these datasets.

Conserved expression of top common probe sets from
both meta-analysis methods

Using the TopGene function in RankProd, we identified
the top 100 common probe sets (50 up-regulated and 50
down-regulated). We searched the status of these 100
probe sets with Limma results and taken into account
only those showed differential expression at least in four
datasets. Thus, the 65 most common probe sets from
both methods were identified and analysed. Because
these 65 probe sets are expressed in most datasets,
whether or not in a tissue-specific or response-specific
manner, these probe sets should signify core pathways in
citrus—HLB interactions. We performed hierarchal clus-
tering of these common probe sets with the 22 datasets
using Karl Pearson correlations with average linkage
[16]. The clusters revealed relatedness among the data-
sets for expression of the common probe sets. Using a
distance threshold of 0.9, we calculated groups/nodes
among differentially expressed probe sets and datasets
and found five vertical clusters for probe sets and four
horizontal clusters for datasets from the main hierarch-
ical clusters (Fig. 3, Additional file 10). Cluster I com-
prised 21 probe sets; of these, 11 were of unknown

functions, and others mainly coded for orcinol-O-meth-
yltransferase (Cit.12172.1.51_at and Cit.10244.1.S1_s_at),
phloem protein 2(PP2)-B15 (Cit.35955.1.S1_at), NAC
domain-containing protein (Cit.12214.1.51_s_at), and
glucose-6-phosphate/phosphate translocator 2 (GPT2)
(Cit.9625.1.S1_s_at and Cit.22602.1.S1_at). Out of 21 probe
sets, only four were induced in fruit datasets, and all four
showed down-regulation. All probe sets were up-regulated
in the R and S leaf datasets, except orcinol-O-methyltrans-
ferase and PP2-B15, which were not induced in any of the
R datasets. Cluster II consisted of 26 probe sets that coded
for Zn transporter 5 (Cit.11459.1.S1_s_at, Cit.11460.1.S1_at,
and Cit.28305.1.51_at), GASA1 (Cit.10032.1.S1_x_at),
ADP-glucose pyrophosphorylase large subunit (APL3)
(Cit.13437.1.S1_s_at), starch synthase (Cit.9504.1.S1_s_at),
AtWRKY40 (Cit.10816.1.S1_at), CDR (Cit.28117.1.S1_s_at),
Cu/Zn superoxide dismutase (Cit.28102.1.S1_s_at), and
20G-Fe(II) oxygenase family protein (Cit.15355.1.51_at).
Cluster III consisted of six probe sets: [-amylase
(Cit.39675.1.51_at and Cit.36677.1.S1_at), nodulin (Cit.4972.
1.S1_s_at), ripening-related proteins (Cit.18669.1.S1_at), and
membrane protein-encoding probe sets (Cit.16855.1.51_at).
Cluster IV was made up of two probe sets that coded for
chalcone synthase (Cit.13366.1.S1_at) and amino acid
transport (Cit.18023.1.S1_at). Cluster V consisted of
10 probe sets mainly coding for ABC transporter
(Cit.6534.1.S1_at), peroxidase (Cit.6534.1.S1_at), and
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Fig. 3 Hierarchical clustering of 65 common probe sets identified by both meta-analysis methods. The expression datasets were gene-wise
normalized and, the clusters for 65 probe sets and 22 datasets were made using Pearson correlation coefficients. Heatmap showed four vertical
clusters and four single nodes for 22 datasets. Five horizontal clusters were made for 65 probe sets
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Cit.11460.1.51_at
Cit.7043.1.51_at
Cit.28102.1.51_s_at
Cit.33707.1.51_at
Cit.29171.1.51_at
Cit.10032.1.51_x_at
Cit.10032.1.51_s_at
Cit.13437.1.51_s_at
Cit.9504.1.81_s_at
Cit.28305.1.51_at
Cit.28099.1.51_at
Cit.23598.1.51_s_at
Cit.25273.1.51_at
Cit.10816.1.51_at
Cit.15355.1.51_at
Cit.3534.1.81_s_at
Cit.5367.1.51_at
Cit.36935.1.51_s_at
Cit.14500.1.51_at
Cit.28117.1.51_s_at
Cit.40325.1.51_s_at
Cit.8206.1.51_s_at
Cit.25075.1.51_s_at
Cit.4972.1.81_s_at
Cit.39675.1.51_at
Cit.36677.1.51_at
Cit.18669.1.51_at
Cit.16855.1.51_at
Cit.23318.1.51_s_at
Cit.13366.1.51_at
Cit.18023.1.51_at
Cit.29914.1.51_s_at
Cit.10010.1.51_at
Cit.38752.1.51_at
Cit.15540.1.51_at
Cit.14954.1.51_at
Cit.18360.1.51_s_at
Cit.6534.1.51_at
Cit.17235.1.51_s_at
Cit.9760.1.51_s_at
Cit.14903.1.51_s_at

9-cis-epoxycarotenoid dioxygenase 2 (Cit.17235.1.51_s_at).
In cluster V, all of the probe sets were down-regulated in
S datasets, but four were up-regulated in one R dataset
(RL 17 wai).

The 22 datasets (Table 1) were grouped into four clus-
tered and four single nodes. Madam Vinous 5 wai,

Madam Vinous 27 wai, Valencia root, and RL 27 wai
were not part of any cluster and remained as single
nodes; US-897 and Valencia 13—-17 wai were clustered
together. All of the fruit data clustered together except
for mature and immature fruit datasets from Martinelli
et al. [40], which clustered with RL 5 wai, RL 17 wali,
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and the stem dataset. The remaining S datasets were
clustered together. RL 5 wai and RL 17 wai showed gene
responses similar to those of the stem dataset, but the
US-897 response for common probe sets was similar to
that for Valencia 13—17 wali.

Differentially expressed probe sets specific to the R
datasets

Thirty differentially expressed probe sets were identified
in at least two of the four R datasets (Fig. 2). The hier-
archical cluster analysis using Pearson correlation at a
distance threshold of 0.9 showed three vertical clusters
for 30 probe sets (7, 10, and 13 probe sets) and one hori-
zontal cluster for two R datasets (US-897 and RL 17
wai). The other two R datasets (RL 5 wai and RL 27 wai)
were present as single nodes (Fig. 4a, Additional file 11).
The seven probe sets comprising cluster I encoded GA-
responsive protein (Cit.18244.1.S1_at), leucine-rich re-
peat (LRR) VIII-2 (Cit.5979.1.S1_at), terpene synthase
(Cit.38319.1.51_s_at), aquaporin (Cit.8763.1.S1_s_at), lectin-
related protein precursor (Cit.35004.1.S1_s_at and
Cit.8609.1.S1_x_at), and SNARE 11 (Cit.37265.1.S1_at).
These seven probe sets were up-regulated in RL 17 wai
and down-regulated in RL 27 wai. However, both of
the lectin-related protein-coding probe sets were up-
regulated in US-897 and RL 17 wai. In cluster II,
eight of 10 probe sets were down-regulated in RL 5
wai and RL 17 wai encoding cinnamoyl-CoA reductase
(Cit.1800.1.S1_at and Cit.28372.1.S1_at), C,H, Zn family
protein (Cit.6562.1.51_at), DNAJ heat shock family pro-
tein (Cit.2424.1.S1_s_at), putative ABC transporter protein
(Cit.23189.1.S1_at), and unknown function proteins
(Cit.14457.1.51_at, Cit.17300.1.S1_s_at, and Cit.28939.1.-
S1_at). One probe set from Cluster II that encoded an oxi-
doreductase 20G-Fe(II) oxygenase family protein
(Cit.940.1.51_s_at) was up-regulated in US-897 and RL 17
wai. Four probe sets from Cluster III that encoded 5-
AMP-activated protein kinase beta-1 subunit-related
(Cit.24484.1.51_at and Cit.14610.1.S1_s_at), abscisic stress
ripening-like protein (Cit.8661.1.S1_x_at), and unknown
protein (Cit.21210.1.S1_s_at) were up-regulated at RL 5
wai and RL 27 wai. Four probe sets that coded for B-box
Zn family protein (Cit.18262.1.S1_at), jumonji tran-
scription factor (Cit.7734.1.S1_at), mutT domain
protein-like (Cit.23890.1.S1_at), and unknown protein
(Cit.7734.1.S1_at) were up-regulated at RL 5 wai and
RL 17 wai. From the remaining probe sets of Cluster III,
two that encoded an unknown protein (Cit.23443.1.S1_at)
were up-regulated in rough lemon at all three time points,
and one that encoded NADH dehydrogenase subunit 4
(Cit.29311.1.S1_at) was down-regulated in US-897 and RL
17 wai. Cluster of US-897 and RL 17 wai suggested that
both had similar expression changes against CalLas infec-
tion for these 30 R-specific probe sets. However, RL 5 wai
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and RL 27 wai showed distinct regulation patterns of R-
specific probe sets.

We further analysed the relevance network of these 30
probe sets (Fig. 4b, Additional file 11). A relevance net-
work is a group of probe sets whose expression profiles
are highly predictive of one another. Each pair of probe
sets is related by a correlation coefficient greater than a
minimum threshold (0.97) and less than a maximum
threshold (1.0) [7]. The relevance network analysis re-
sulted in six tightly correlated sub-networks that showed
either positive or negative effects of one probe set on the
expression of the other member of the pair (red and blue
lines, respectively, Fig. 4b). Sub-network 1 consisted of
seven probe sets that regulated one another’s gene expres-
sion in coding for unknown proteins (three probe sets),
cinnamoyl CoA reductase (two probe sets), heat shock
protein, and C,H, Zn finger protein. Except for unknown
protein Cit.14457.1.S1_at, which negatively regulated the
expression of the other six probe sets, these probe sets
positively regulated one another’s expression. Sub-
network 2 consisted of five probe sets (LRR-VIII-2,
SNAREI1, terpene synthase, aquaporin, and abscisic
stress ripening coding protein). LRR-VIII-2 positively
regulated the cell vessel transport SNARE 11. However,
both of these probe sets were negatively regulated by
abscisic stress ripening coding protein. Sub-network 3
consisted of four probe sets, two of which encoded
unknown proteins, and one each for mutT domain
protein-like and myo-inositol-1-phosphate synthase.
Sub-network 4 included three probe sets that encoded
5-AMP-activated protein kinase beta-1 subunit-related
(two probe sets) and an unknown protein. Sub-
network 5 contained two probe sets, one each for diac-
ylglycerol kinase and an unknown protein, and sub-
network 6 included two probe sets for lectin-related
proteins.

Gene co-expression network analysis

Using WGCNA package [33], we constructed a weighted
co-expression network of the 3,499 probe sets identified
by both Limma and RankProd. This network has helped
to elucidate tightly co-expressed modules and to identify
hub probe sets in the respective modules [33, 46]. Our
network construction yielded 2,071 nodes and 134,217
edges with a Pearson correlation coefficient of 0.85 and
scale-free topological matrix. The global network was
further clustered into 27 co-expressed modules using
topological overlap-based average hierarchical clustering
and a dissection threshold of 0.2 (Fig. 5). We computed
the module eigengene (ME), which is the first principal
component of each module, and we merged highly cor-
related MEs to yield 21 modules. A dendrogram showing
gene modules before and after merging is illustrated in
Additional file 12: Figure S7. A heat map was generated



Rawat et al. BMC Plant Biology (2015) 15:184

Page 10 of 21

b

Cit.28939.1.S1_at

g
Cit.28372.1.51_at

Cit.14457.151_at

-2.3865006
0.6932503

0.0

-1.0
®
2 >
10 e
a @
x =]

Cit.1800.1.51_at

Cit.17300.1.51_s_at

RL 17 wai

1.0

RL 27 wai

-2.260045

0.6300225

18244.1.81_at

.1.81_at
.1.51_s_at
Cit.8661.1.S1_x_at
Cit.4566.1.51_at
.1.51_at
.1.81_at
.1.51_at
.1.81_at

Cit.7734.1.51_at
3359.1.51_at
Cit.23890.1.51_at

Cit.8661.1.81_x_at Cit.23890.1.S1_at

Cit.5979.1.81_at

Cit.2424.1.51_s_at

“Cit.6562.1.51_at

Us-897 RL5wai  RL 17wai

Cit.14610.1.S1_s_at

Cit.21210.1.51_s_at

RL 27 wai

Cit.24484.1.51_at

-4

Us-897 RL 5wai  RL 17wai

Fig. 4 (See legend on next page.)

RL 27 wai

Cit.38319.1.51_s_at

Cit.30453.1.S1_at Cit.7734.1.81_at
- -

Cit.37265.1.51_at
Cit.8763.1.51_s_at L 3350.1.91 at
4 6
3 4
2 2
! 2
-1 4
-2 -6
-3 :B
4 USRT Riowar ALTiwar ALZ! wal US-897  RL5wai RL17wai  RL 27 wai
Cit.10996.1.51_at Cit.4566.1.51_at Cit.8609.1.51_x_at Cit.35004.1.51_s_at
s 6
3 4
2 2
! 2
-1 :4
-2 6
3 3
-4
- - i USBS7  RLGwai AL i7wal AL 27 wai
us-897 RL 5wai  RL 17wai RL 27 wai




Rawat et al. BMC Plant Biology (2015) 15:184

Page 11 of 21

(See figure on previous page.)

(US-897, RL 5, 17 and 27 wai) are shown in rectangle boxes

Fig. 4 a Hierarchical clustering of 30 R-specific probe sets. The expression datasets were gene-wise normalized and, the clusters for 30 probe sets
and four datasets were made using Pearson correlation coefficients. Heatmap showed one vertical cluster and two single nodes for four datasets.
Three horizontal clusters were made for 30 probe sets. b Relevance network of 30 R-specific probe sets. Six relevance sub-networks were
generated using 30 R-specific probe sets. Sub-networks showed that the expression of one probe set affected the expression of the other probe
set either positively (shown in red line) or negatively (shown in blue line). The expression profiles of these probesets among resistant datasets

to visualise topological overlap values between pairs
of co-expressed probe sets in the modules (Additional
file 13: Figure S8). Functional analysis showed that
six of the 21 modules had probe sets with overrepre-
sented biological functions from pathways such as
carbohydrate metabolism, stress, cell wall, signalling,
and secondary metabolism. These six modules to-
gether contained 2,043 probe sets (Additional file 13:
Figure S8: blue =715, red =439, black = 315, yellow =
245, magenta = 165, and purple = 164), which repre-
sented 58 % of all probe sets used for co-expressed
network construction.

Functional enrichment analysis of HLB-responsive
modules and identification of hub probe sets

To understand the biological relevance of the co-
expressed modules, we conducted GO and pathway ana-
lyses using AgriGO tool and MapMan. Hub probe sets
having maximum connections were identified from each
module (Additional file 14). Here, we describe the ‘blue’
module in detail because it contained the largest number
of nodes (probe sets) and connections. Functional anno-
tation by AgriGO revealed that carbohydrate metabolic
processes (GO: 0005975, P=1.7¢ '), response to en-
dogenous stimulus (GO: 0009719, P =0.002), hydrolase
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Violet module module ’ ..
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Fig. 5 Co-expression network of 3,499 common probe sets identified in the meta-analysis. The edges with r 2 0.95 are shown in red and r < -0.9
are show in black color. Different modules are color-coded. Circle represent a node (probe set) and edges represent connections. The network

was drawn and analyzed using Cytoscape 3.1.1

Yellowgreen

.;/'v Purple module

Yellow module o P e

Black module
Blue module

|




Rawat et al. BMC Plant Biology (2015) 15:184

activity (GO: 0016787, P=69¢"%), and cell wall (GO:
0005618, P=9.3¢ %) were among the most significant
GO terms in the ‘blue’ module. Using MapMan analysis,
nodes were classified into different metabolic pathways,
including cell wall (51 nodes), RNA and transcription
factors (46 nodes), signalling (45 nodes), secondary me-
tabolism (42 nodes), hormone metabolism (33 nodes),
and transport (19 nodes) (Fig. 6). Next, the top hub
probe sets were identified in each category based on
Kuyithine and Kexgractea >50 and node degree >500 from
the 21 modules. Hub probe sets in the secondary me-
tabolism pathway coded for alkaloids, transferase, and
O-methyltransferase. Top probe sets in the signalling
pathway encoded for LRR-XI. In relation to hormone
signalling, hub probe sets encoded GA-induced pro-
teins, and bHLH and pepsin A protease were the hub
probe sets for transcription factors group. Pathway
details, Kithin, and Kexiracteqa for other modules are
provided in Additional file 14.

We also analysed the co-expression network to iden-
tify the hub probe sets among the top 65 common and
30 R-specific probe sets. All of the top 65 common
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probe sets were connected among different modules in
the network. For example, probe sets for lipoxygenase
and O-methyltransferase were co-expressed in the ‘black’
module; probe sets coding for glucose transporter
(GPT2) was co-expressed with WRKY40 in the ‘grey’
module; probe sets for phloem protein (PP2-B8) and
three probe sets encoding Zn transporters (ZIP5) were
co-expressed in the ‘paleturquoise’ module. Probe sets
for Cu/Zn superoxide dismutase, WBC11, miraculin
protein, and CDR were co-expressed in the ‘midnight-
blue’ module (Additional file 14). Interestingly, the ‘mid-
nightblue’ module also contained six probe sets that
encoded miraculin and others that encoded disease re-
sistance proteins such as NBS-LRR, chitinases, and LRR
transmembrane protein kinase. In contrast to the top 65
common probe sets, only 11 of the 30 R-specific probe
sets were co-expressed among modules in the network.
Lectin protein kinase (two probe sets) and terpene syn-
thase encoding probe sets were co-expressed in the
‘blue’ module. Three probe sets coding for nucleotide
binding, Zn finger protein, and NADH dehydrogenase
subunit were co-expressed in the ‘greenyellow’ module.
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The remaining five R-specific probe sets were distributed
among different modules (Additional file 14).

MicroRNA-probe set nested networks

Recently, Zhao et al. [68] identified HLB-responsive
miRNAs in susceptible citrus cultivars after 10 and
14 weeks post inoculation (wpi) with CaLas. We ana-
lysed these functionally validated miRNAs and found
their targets among the 3,499 common probe sets identi-
fied here. Interestingly, 10 miRNA classes were identified
as targeting 24 probe sets (Additional file 15). We
searched these 24 target probe sets in the co-expressed
networks and used them as seed nodes to create a
nested network by connecting them with first-degree
neighbouring nodes. Thus, we identified nested net-
works for five miRNA classes (csi-miR396, csi-miR166,
csi-miR156, csi-miR167, and csi-miR172) (Fig. 7).

The nested network of csi-miR396 targeted four probe
sets: cytosolic ascorbate peroxidase (Cit.8235.1.S1_at), pa-
pain-like cysteine protease (Cit.26437.1.51_s_at), nu-
clear matrix constituent protein (Cit.16271.1.S1_at),
and cysteine protease (Cit.18551.1.S1_at). Among these,
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cysteine protease was linked to two large hub probe
sets coding for LRR transmembrane protein kinase
(Cit13717.1.51_at) and cellulose synthase (Cit.3390.1.S1_at),
which in turn were connected to the 36 stress- and second-
ary metabolism-related probe sets with a clustering coeffi-
cient of 0.6. The expression of csi-miR396 was reduced at
both time points (10 and 14 wpi) after CaLas infection
[68]; therefore, its targeted probe sets should be up-
regulated. Except for cytosolic ascorbate peroxidase, the
other target probe sets (n = 3) were up-regulated in at least
one S dataset (Additional file 15).

The nested network of csi-miR166 targeted five probe
sets coding for unknown protein (Cit.12380.1.S1_at),
HD-ZIPIII protein (Cit.7481.1.S1_at), spermine synthase
(Cit.14666.1.S1_at), HD-Zip protein (Cit.15346.1.S1_s_at),
and homeodomain-leucine zipper protein (Cit.11989.
1.51_at). Of these, the first three targets were connected
to stress, secondary metabolism, and hormone-related
hubs with 213 nodes at a clustering coefficient of 0.65.
The strongest connectivity was shown by four hub
probe sets coding for oxidoreductase (Cit.3648.2.51_at),
RHM1/UDP-glucose-4,6-dehydratase (Cit.39620.1.S1_s_at),
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ferredoxin (Cit.6529.1.51_at), and GA-regulated protein
(Cit.30950.1.51_at). The expression of csi-miR166 was
down-regulated at 14 wpi [68]. All five target probe sets
were down-regulated in at least two S datasets, while un-
known protein (Cit.12380.1.S1_at) was up-regulated in R
datasets (RL17 wai).

The nested network of csi-miR156 targeted two
probe sets, an unknown protein (Cit.14355.1.S1_at)
and the SQUAMOSA promoter-binding protein
(Cit.15466.1.S1_at), which were connected to the de-
velopmental pathway by three hub probe sets. These
hub probe sets coded for NAC domain-containing protein
(Cit.26317.1.S1_at), unknown protein (Cit.6138.1.S1_at),
and G protein signalling (Cit.13023.1.S1_at). The expres-
sion of csi-miR156 was up-regulated at 14 wpi, and our
data suggested that both the connected target probe sets
were down-regulated in S datasets.

The nested network of csi-miR167 targeted two
probe sets: an unknown protein (Cit.22035.1.S1_a_at)
and potassium transporter (Cit.22029.1.S1_at). The un-
known protein was connected to oxidoreductase and
20G-Fe(II) oxygenase family protein. A potassium
transporter encoding probe set was co-expressed with
many transport-related probe sets, such as sulphate,
phosphate (P), metal, peptide, metabolite, and ABC
transporters. The expression of csi-miR167 was down-
regulated at 10 wpi and up-regulated at 14 wpi in
susceptible citrus [68]. Our data suggested that an un-
known protein-encoding probe set was up-regulated
while the potassium transport probe set was down-
regulated in S datasets.

The nested network of csi-miR172 targeted three
probe sets: MYB transcription factor (Cit.13801.1.S1_at),
GDSL-motif lipase (Cit.30073.1.S1_at), and an unknown
protein (Cit.19822.1.S1_s_at). The MYB transcription
factor was connected to three hub probe sets coding
for gluconeogenesis (Cit.18718.1.S1_s_at), Rubisco
(Cit.20550.1.S1_at), and senescence-associated protein-
related (Cit.17917.1.S1_at) at a clustering coefficient of
0.77. GDSL-motif lipase was connected with two hub
probe sets coding for serine-type endopeptidase and cell
wall pectinesterase family protein. Down-regulation of csi-
miR172 was reported at both time points (10 and 14 wpi)
in citrus [68]. Among the target probe sets, MYB tran-
scription factor and unknown protein showed up-
regulation in two S datasets, and GDSL-motif lipase
showed down-regulation in one S dataset.

Discussion

Development of HLB-resistant or tolerant citrus culti-
vars would be the most effective, economic, and eco-
logically friendly approach for managing HLB. To date,
no R genes against HLB disease have been reported, and
identification of the best candidate genes for functional
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dissection of the Calas response in citrus remains a
daunting challenge. Several transcriptome studies have
been conducted to identify potential citrus candidates
against HLB and that have yielded more than 8,000 dif-
ferentially expressed genes/probe sets (DEGs). However,
information about interactions between the identified
DEGs is lacking. We conducted a thorough meta-analysis
and network co-expression analysis of publically available
citrus transcriptome data and identified 65 common and
30 resistance-specific HLB-responsive candidate probe
sets. Our study aimed to identify specific features that de-
fine the host response and targets manipulated by CaLas
infection and HLB development. Prior to this study, only
one meta-analysis of citrus—-HLB interactions was con-
ducted [69], which included four datasets. The authors
evaluated early and late HLB-responsive probe sets and
suggested that hormone and defence pathways play vital
roles in citrus—HLB interactions. Here, we performed a
more comprehensive analysis using 22 datasets, a miRNA
network, and a co-expression network to expand our un-
derstanding of citrus—HLB interactions.

We used two statistical approaches (Limma and Rank-
Prod) to identify probe sets in this meta-analysis, and we
restricted the study to experiments conducted on the
Affymetrix GeneChip to reduce potential technical bias
in transcriptome measurements. The identified differen-
tially expressed probe sets were subjected to Gene enrich-
ment analysis. Our results suggested that carbohydrate
metabolism, phloem plugging, transport, cell wall, hor-
mone, defence, and stress-related pathways were the most
important classes of probe sets regulated by CaLas infec-
tion in citrus. We also found that very few probe sets were
modulated in the citrus root dataset and those were not
from any specific pathway. Further, transport-related
probe sets were abundant in the stem dataset, while leaf
datasets included the probe sets from many metabolic
pathways. R datasets for leaves consisted mostly of cell
wall-related probe sets, gibberellin signalling, and aquapo-
rin transporters; S datasets for leaves were characterized
by down-regulation of Ca signalling and up-regulation of
ethylene signalling and ABC transporters. We also found
that most of the HLB-responsive probe sets were modu-
lated at intermediate stages (17 wai) rather than at early
(5 wai) or late (27 wai) stages of infection. Fruit and leaf
datasets were characterised by opposing directions of
gene regulation; most probe sets that were up-regulated
in the leaf dataset were down-regulated in fruit datasets
or vice-versa. These results indicate that different tis-
sues of a citrus plant respond in distinct ways to CalLas
infection and further susceptible and resistant responses
of citrus add up the complexity of the interactions. To
explore this further, we identified the 65 most common
probe sets that were present in a maximum number of
datasets and that had higher levels of expression change
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in their respective fold values. The 65 most common
probe sets indicated that three core pathways were
modulated by CalLas infection. These pathways coded
for carbohydrate metabolism, transporters, and hor-
mone- and stress-related probe sets and were abundant
in at least 10 of 22 citrus datasets. Hierarchical cluster-
ing of the 65 probe sets showed that six fruit datasets
and five S datasets clustered separately, suggesting tight
regulation of these core pathways among different tis-
sues. Because the stem dataset was clustered with two R
datasets, we speculate that stem tissues of a susceptible
citrus can withstand better than its leaf tissue against
CaLas infection. Further, US-897 clustered with Valencia
(13 and 17 wai), suggesting that 17 wai could be a crucial
time point for the divergence of gene expression among
susceptible and resistant citrus. We unveiled connections
among common probe sets through WGCNA co-
expression and miRNA nested networks. The integrated
connections among these probe sets have not been
characterised in earlier reports, and therefore our study
suggests novel candidates for citrus—HLB interactions.

Carbohydrate metabolism

Carbohydrate metabolism is a critical pathway in citrus—
HLB interactions. HLB-diseased citrus trees are charac-
terised by the accumulation of excessive amounts of
starch and sucrose in leaves, which disrupts the starch—
sucrose pathway between source (leaves) and sink (fruit)
tissues. Several reports have shown that genes coding for
ADP-glucose pyrophosphorylase (AGPase) large subunit,
the rate-limiting enzyme in starch synthesis, was up-
regulated and that B-amylase, the rate-limiting enzyme
in starch degradation, was down-regulated in HLB-
diseased citrus plants [1, 3, 31]. Another gene coding for
glucose-6-phosphate/phosphate translocator (GPT) me-
diates the import of glucose-6-phosphate, an essential
substrate for starch synthesis in plastids. GPT, like
AGPase, is associated with the characteristic starch ac-
cumulation in HLB-affected plants [31]. In this study,
these three genes were among the 65 most common
probe sets. Co-expression analysis revealed that probe
sets for starch synthase and AGPase were tightly con-
nected with a hub probe set encoding NAC domain pro-
tein in the ‘plum 1’ module (Additional file 14). NAC
domain transcription factors (TF) are related to plant
development and have been implicated as transcriptional
switches that regulate secondary wall synthesis [70].
Over-expression of NAC TFs in Arabidopsis leaves
causes activation of secondary wall biosynthetic genes
that leads to extensive deposition of secondary walls in
cells [70]. Our results suggest that up-regulation of this
NAC TF could control carbon deposition in citrus sec-
ondary cell walls and subsequent thickening in the leaves
due to Calas infection. This study also revealed that
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GPT was co-expressed with WRKY40, MYBI15, and
ethylene signalling genes in the ‘grey60’ module. Previ-
ous reports also suggested the role of these genes
(WRKY40 and MYB) in HLB-symptomatic citrus leaves
[1, 3, 31]. Interestingly, the same MYB-like gene was in-
duced nearly 200-fold in symptomatic leaves of suscep-
tible plants infected with CaLas, but not in the resistant
(US-897) genotype [1, 3, 31]. MYB genes have been
reported as key regulators of sugar-responsive genes
during sugar starvation in rice [37]. We suggest that the
NAC domain, MYB15, and WRKY40 TFs may play im-
portant roles in the transcriptional regulation of carbo-
hydrate metabolism in citrus—HLB interactions.

Phloem plugging and nutrient transport

Excessive starch accumulation in citrus phloem cells in-
duced by CalLas infection affects nutrient transport and
other transporter genes due to vascular blockage, caused
by callose deposition and phloem plugging. Phloem pro-
tein encoding probe set (PP2-BIS), from the 65 most
common probe sets, is involved in phloem blockage [69].
Three probe sets encoding bZIP5 were co-expressed with
PP2-B15 and ankyrin-repeat family encoding protein in
the ‘paleturquoise’ module. Our findings were in agree-
ment with Zheng and Zhao [69], who suggested that Zn
transporters and phloem protein were linked in the co-
expression network. PP2-B15 was induced only in the S
datasets; further, HLB symptoms resemble those caused
by Zn deficiency. Hence, phloem plugging by PP2-B15
could disrupt Zn transport in infected citrus leaves and
may cause symptoms of Zn deficiency. However, the role
of ankyrin-repeat protein in phloem plugging needs to be
clarified. Cationic plant nutrients such as Ca, K, Mg, Fe,
Cu, Mn, and Zn play important roles in citrus—HLB inter-
actions [43]. HLB-responsive miRNA (miR399) is up-
regulated during phosphorous (P) starvation in susceptible
plants [68]. Our integrated miRNA nested network
showed that an HLB-responsive miRNA, csi-miR167, is
linked to a hub probe set that codes for potassium (K)
transport, which in turn is connected to the nodes of
sulphate, phosphate, metal, peptide, and metabolic
transport-related probe sets. K-deficient plants tend to be
more susceptible to infection than those with an adequate
supply of K [49, 62]. Furthermore, it has been suggested
that foliar fertilization with several mineral elements (Zn,
Fe, Ca, K, and Mn) reduced HLB symptoms on infected
trees [47]. Our study suggests that the expression of csi-
miR167 could regulate the hub gene for K-transporters,
which in turn may modulate the expression of other
transport-regulated genes such as P transporters.

Hormone and stress response
Gene reprogramming in plants against pathogen is initi-
ated by rapid respiratory burst and redox as a part of
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their basal defences [48]. The 65 most common probe
sets showed enrichment of oxidoreductase, 20G-Fe(II)
oxygenase, Cu/Zn superoxide dismutase, peroxidases,
and catalase. Previous reports suggested that these probe
sets could sequester free radicals and maintain cell
homeostasis in citrus—HLB interactions [18, 43]. Present
study showed that 20G-Fe(II) oxygenase was co-expressed
in the ‘Orangered4’ module connected to a hub probe set
that encoded a CCCH-type Zn finger protein. Cu/Zn
superoxide dismutase was co-expressed with many PR-
encoding probe sets in the ‘Midnightblue’ module, which
in turn was connected to a hub probe set that encoded a
protease inhibitor. We suspect that up-regulation of pro-
tease inhibitor after insect vector feeding in turn may up-
regulate these free radical-sequestering systems related
genes in order to restrict the HLB disease-related mem-
brane damage after CaLas infection.

R-specific probe sets in citrus-HLB interactions

We identified 30 R-specific probe sets that coded pri-
marily for chitinase, lectins, terpene synthase, miracu-
lins, aquaporin, GA-responsive protein, and Zn finger
(CyH; and C,C, type) family proteins. Calas is charac-
terised as being more parasitic than pathogenic [15] and
as lacking a type III secretion system (T3SS). T3SS is re-
quired for bacterial effector proteins to be secreted into
the host plant, and these effector proteins interact with
host R proteins to induce a defence pathway cascade [8].
The most common group of R genes in plants is that of
the nucleotide binding site-leucine-rich repeat (NBS-
LRR) class. Calas is also known to suppress plant de-
fences [61]. Here, none of the eight NBS-LRR-coding
probe sets showed a specific pattern of expression in the
R datasets. Similar results were reported by Aritua et al.
[3], who showed that NBS-LRR and other resistance
gene probe sets were down-regulated after CalLas infec-
tion. The Calas genome contains most flagellin genes
(fla), including flg22 peptide, which could act as a
pathogen-associated molecular pattern (PAMP) [71].
Flagellin, a well-characterized PAMP, is recognized by
the LRR receptor kinase XII (FLS2) in Arabidopsis [32].
Here, among various LRR kinases modulated by HLB,
LRR-II and LRR-XII were up-regulated in the R datasets
(RL17 wai) and down-regulated in at least three S data-
sets. These LRR-family probe sets were also among the
hub probe sets in the ‘blue’ module and were connected
to a csi-miR166 target probe set encoding HD-Zip III
protein. The role of these LRR probe sets in recognizing
CualLas effector molecules needs to be investigated.

A large number of pathogenesis-related probe sets were
more abundant in the R than in the S datasets. Two of
these probe sets encodel,3-B-glucanase and chitinase, and
they were also implicated in Bois noir phytoplasma in-
fection of grapevines [28]. Like CalLas, phytoplasma
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(Candidatus Phytoplasma asteris) is a cell wall-less bac-
teria that parasitises plant phloem sieve cells and lacks
bacterial T3SS. Co-expression network analysis showed
that five probe sets coding for chitinase were co-
expressed in the ‘black’ module and connected to the
WRKY23-encoding hub probe set. Other R-specific
probe sets coded for protease inhibitors such as miracu-
lin and CDR. A large number of miraculin-encoding
probe sets (18) were induced in citrus in response to
Calas. Miraculin-like proteins have been reported in
the leaves of rough lemon [57]; proteomics studies have
shown higher accumulation of miraculin proteins after
HLB disease [18], and miraculin-like proteins were up-
regulated in lime trees by phytoplasma [53]. The present
study showed that probe set coding for miraculin was
co-expressed in the ‘midnightblue’ module along with
PR4, MLO-like protein, and chitinase encoding probe
sets. The roles of miraculins in HLB resistance require
investigation. Another protease gene, CDR, was thought
to be involved in the US-897 resistance mechanism
against CaLlas and it encodes aspartic protease, which
can release endogenous peptides for defence responses
[64]. Our results showed that CaLas-induced csi-miR396
targets protease probe sets that are co-expressed with
LRR receptor hubs, indicating a role of proteases and LRR
receptor kinase in HLB defence responses. It should be
noted that expression of csi-miR396 decreased with CaLas
infection. Reduced expression of miR396 was also docu-
mented in transgenic Arabidopsis expressing phytoplasma
effector protein SAP11 [38]. It has been suggested that
miR396 is required for cell proliferation during root and
leaf development [38]. The role of miR396 in HLB defence
mechanisms needs to be clarified in future studies.

Citrus defence against HLB disease seems not to be
characterised by jasmonic acid (JA) and/or salicylic acid
(SA) signalling [31, 61]. CaLas encodes salicylate hydroxy-
lase, which converts SA into catechol, a product that does
not induce resistance [60]. The effects of different plant
growth regulators have been studied in phytoplasma-
affected plants [10]. Phytoplasma are also known to
suppresses JA signalling responses in plant against insect
vectors and also down-regulate the SA-mediated defence
responses against bacterial effector protein SAP11 [38].
Phytoplasma manipulates development and defence hor-
mone biosynthesis by suppressing the JA pathway and by
modulating phosphate homeostasis through triggering the
P starvation response [52]. Down-regulation of the JA
pathway and P starvation has also been documented in
CaLlas infection [31, 68]. Zhao et al. [68] reported that
phosphate deficiency worsened HLB symptoms, while ap-
plication of exogenous P reduced the symptoms. It has also
been suggested that under P starvation, plants accumulate
sugars and starch in their leaves [26]. In the present study,
LRR receptor kinase and PR encoding probe sets were
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co-expressed with the GA signalling pathway related
probe sets. GA signalling-related genes such as GASA
and GAST were up-regulated in the R datasets but
down-regulated in the S datasets. Our results were in
concordance with Martinelli et al. [41] showing an oppos-
ite pattern of GA-related genes expression; down regulated
in fruits but up regulated in leaves. The authors [41] also
suspected that change in fruit sugar metabolism might be
linked with the down-regulation of GA pathway which in
turn regulate energy and carbohydrate metabolism. It has
also been documented that GASAS was constitutively
more expressed in resistant US-897, and expression levels
were significantly induced in response to infection [2]. GA
deficiency has been implicated in phytoplasma diseases
[12]. Ding et al. [12] suggested that in potato purple-top
phytoplasma infection in tomato, increased GA signalling
is required to activate the defence-related enzymes [3-1,3-
glucanase and chitinase. We propose that GA signalling
could co-ordinate defence responses in citrus—HLB inter-
actions. Effect of different plant growth regulators on phy-
toplasma affected plants has been studied [10].

We found that lectin precursor probe sets were up-
regulated in US-897 and RL 17 wai but not in the S data-
sets. Lectins are a unique group of plant proteins that can
recognise and bind to glycol conjugates present on the ex-
ternal bacterial surface [44]. Weintraub [63] reported that
lectins might have direct effects on the insect vector dur-
ing phytoplasma infection. Snowdrop lectins bind to the
insect midgut and are not fully degraded by midgut prote-
ases. Because Cal.as is mediated through the insect vector
citrus psyllid, we propose that lectins may have direct roles
by inhibiting insect feeding on citrus plants. Engineering
plants with these lectin genes may deter citrus psyllid, and
subsequently HLB incidence.

Conclusion

Here, we have assembled currently available transcriptome
data on differential gene expression in citrus after CaLas
infection and upgraded it from mere a ‘list’ to ‘intercon-
nections’ through co-expression and miRNA network ana-
lyses. By integrating transcriptomic information, we
identified major hub genes for susceptible and resistant re-
sponse of citrus—HLB interaction. Our data showed that
carbohydrate metabolism is regulated by hub genes coding
for MYB, NAC and WRKY transcription factor. Further
reduced ion transport in susceptible plants could be re-
store by regulating csi-miR167. Our analysis identified 30
R-specific probe sets as potential candidates against HLB
disease. We hypothesise that basal defences in citrus
against HLB could be mediated by degradation of CaLas
-derived PAMPs such as flagellin or by other unknown ef-
fectors which could be recognised by LRR family receptor
proteins and chitinases. R gene-mediated defences against
HLB may be mediated by plant proteases such as miraculin
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and CDR. Analysis also suggest that citrus proteases
are regulated by csi-miR396 after CaLas infection and
csi-miR396 may have a role in defence pathway. Our
study indicate that GA signalling could play a vital role
in HLB resistance.

Methods

Microarray data acquisition and pre-processing

We included 14 studies from six reports that are available
from the NCBI Gene Expression Omnibus (GEO) data-
base (http://www.ncbinlm.nih.gov/geo) [1-3, 18, 19, 31].
All of these studies were based on the Affymetrix system.
The GEO series datasets were available for eight stud-
ies from five reports (GenBank: GSE33004, GSE33003,
GSE33459, GSE30502, and GSE29633). The remaining
six studies were from the data of Fan et al. [19]. The
14 studies included one dataset for roots (GenBank:
GSE33004), one dataset for stems (GenBank: GSE33004),
and 12 datasets for leaf tissues (GenBank: GSE29633,
GSE30502, GSE33003, GSE33459, and Fan et al. [19]).
Our study did not include meta-analysis of fruit tissues,
but we included fruit transcriptome data from two pub-
lished studies [34, 40] and compared it with our dataset
using an in-house Teradata database SQL script (http://
www.teradata.com/products-and-services/database). From
different combinations of fruit studies mentioned in these
reports, we included HLB-symptomatic fruit probe sets
against their respective healthy controls in order to reduce
the complexity of the fruit data. We included six fruit
datasets from Liao and Burns [34] and two datasets from
Martinelli et al. [40]. Therefore, this study analyse tran-
scriptional changes in HLB-responsive probe sets from 22
datasets after including eight studies on fruit datasets.
These 22 datasets include different time points (early and
late time points after Calas infection), different tissues
(roots, stems, leaves, and fruit), and different host re-
sponses against HLB disease (susceptibility and tolerance/
resistance). The susceptible group consisted of 18 datasets,
and the resistant group included four datasets. The acces-
sion numbers for the data sets are indicated in Table 1.
Background correction and normalisation of the raw data
sets were performed using RMA implemented in the affy
package in R [22].

Statistical analysis and identification of differentially
expressed probe sets

To identify differentially expressed probe sets, two meta-
analysis approaches were applied to the normalized gene
expression datasets. The first approach, the Limma
method (linear modelling of microarray data) used the
Limma package of Bioconductor [51]. Limma computes
moderated ¢-statistics and log-odds of differential ex-
pression by empirical Bayes shrinkage of standard er-
rors towards a common value. Probe sets with P < 0.05
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(FDR < 0.1) and fold change were considered. Limma
generated separate files for each study, and these files
were combined using an in-house SQL script on the
Teradata database (http://www.teradata.com/products-
and-services/database). A second nonparametric meta-
analysis, the RankProd method, combines P values for
identifying probe sets from individual experiments [6].
We used the RPadvance function in the Bioconductor
package [29], which is specifically designed for meta-
analysis. The RankProd output was a single file in the
form of Tables 1 and 2 (down-regulated and up-regulated
HLB-responsive probe sets, respectively), gene expression,
FC, P-values, and percentage of false predictions (PFP).
The number of permutation tests was set to 250, and the
TopGene function with a PFP cut-off value of <0.01 was
used to identify the top differentially expressed probe sets
among the studies.

Functional enrichment analysis of differentially expressed
probe sets

We used the singular enrichment analysis method
AgriGO (http://bioinfo.cau.edu.cn/agriGO/) with de-
fault settings for Fisher’s t-test (P < 0.05) and FDR cor-
rection by the Hochberg method for the GO analysis.
Probe sets were annotated against the Arabidopsis
genome, and citrus orthologs were identified using the
HarvEST database (http://harvest-web.org). Functions
and metabolic pathways of probe sets were visualized
using MapMan with the Citrus sinensis mapping file
(Csinensis_154.txt) (http://mapman.gabipd.org/). The
PageMan analysis plugin of MapMan was used to visualise
differences among HLB-responsive tissue-specific meta-
bolic pathways using Wilcoxon tests, no correction, and
an over-representation analysis (ORA) cutoff value of 1.0.
Hierarchical clustering of microarray data, using Pearson
correlation and average linkage method with distance
threshold of 0.90, was performed using multiarray viewer
software from TIAR (http://www.tm4.org/mev.html).

Weighted gene co-expression network construction

Differentially expressed probe sets were taken to infer a
weighted gene co-expression network by using the
WGCNA package in R version 1.27.1 [33]. Pairwise
Pearson correlations (*) were calculated for probe sets
across all samples to find correlations and to generate
similarity matrices. Similarity (S;) in correlation between
the i™ and /™ probe sets was calculated using the follow-
ing equation [6]: S; =abs|cor(X; — X;)|, where, X; and
X;=log (base 2) ratio of expression of the ith and jth
genes across the samples, respectively; cor = Pearson
correlation coefficient; and abs = absolute value. The ab-
solute value of the Pearson correlation coefficient was
used to generate an undirected, weighted network. The
similarity matrix was weighted to adjacency matrices by
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raising it to a power (B). The PickSoftThreshold func-
tion of WGCNA was used to choose the appropriate
power for the network topology from various soft-
thresholding powers. The scale-free network was rendered
by raising the soft thresholding power (p) to 14. At this
threshold power, the model was fitted with 7* < 0.85. This
similarity matrix was transformed into the adjacency
matrix, which was transformed into a topological overlap
matrix (TOM) similarity measure, a robust measure of
pairwise interconnectedness [65]. The TOM matrix of
probe sets was coupled with average linkage hierarchical
clustering to cluster the probe sets into distinct modules
using the Dynamic Tree Cut algorithm (cutreeDynamic
method; deepSplit = 3, cutheight = 0.993; minimal module
size =40) [33]. Further, similar modules were merged
using parameter cut height=0.2. The co-expressed net-
work was visualised using Cytoscape version 3.1.1 and
analysed using the Network Analyser plugin [13]. We con-
sidered edges only above a threshold of 0.2 to simplify and
concentrate on relevant functions of the co-expressed net-
work. Hub probe sets in the constructed network were
identified as suggested by Puniya et al. [46].

miRNA target prediction and nested network construction
We obtained the list of miRNAs that targeted HLB-
responsive probe sets from three sources: PMRD, the
plant miRNA database [67], and the Citrus sinensis anno-
tation project (http://citrus.hzau.edu.cn/orange/), and vali-
dated HLB-responsive miRNAs from Zhao et al. [68].
Target genes interacting with each HLB responsive
miRNA class from Zhao et al. [68] were searched in the
Citrus sinensis annotation project (http://citrus.hzau.e-
du.cn/orange/). We identified 64 target genes for 14
miRNA classes. The corresponding probe sets for these 64
target genes were searched from our 7,412 differentially
expressed probe sets based on common Arabidopsis anno-
tation and NCBI BLASTX (http://blast.ncbinlm.nih.gov/),
resulting 24 target probe sets for 10 miRNA classes. The
nested networks of 10 miRNAs and their 24 target probe
sets were inferred using the nested network plugin in
Cytoscape 3.1.1 with default settings.

Additional files

Additional file 1: Probe sets identified in the present analysis. List
of the total number of probe sets identified with Limma and RankProd
methods of meta-analysis.

Additional file 2: Gene Ontology of identified probe sets. Gene
enrichment analysis based on MapMan and AgriGO.

Additional file 3: Figure S1. PageMan display of coordinated changes
of "major CHO metabolism” gene categories in 22 data set.

Additional file 4: Figure S2. PageMan display of coordinated changes
of “cell wall” gene categories in 22 data set.

Additional file 5: Figure S3. PageMan display of coordinated changes
of "hormone metabolism” gene categories in 22 data set.
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Additional file 6: Figure S4. PageMan display of coordinated changes
of “signaling” gene categories in 22 data set.

Additional file 7: Figure S5. PageMan display of coordinated changes
of “transport” gene categories in 22 data set.

Additional file 8: Figure S6. PageMan display of coordinated changes
of “stress” gene categories in 22 data set.

Additional file 9: List of tissue-specific probe sets. Description of
unique and common tissue-specific probe sets identified in root, stem,
leaf and fruit datasets.

Additional file 10: List of 65 top common probe sets and their
expression values. Description of hierarchical clusters identified in the
top 65 common probe sets and their fold values among 22 datasets.

Additional file 11: List of 30 R-specific probe sets and their expression
values. Description of hierarchical clusters identified in 30 R-specific probe sets
and their fold values among four HLB-resistant datasets (Sheet 1). List of probe
sets present in relevance network (Sheet 2).

Additional file 12: Figure S7. Dendrogram for co-expressed modules.
Dendrogram showing co-expressed modules before and after merging
using the WGCNA package.

Additional file 13: Figure S8. Network Heatmap plot for co-expressed
modules. Heatmap view of topological overlap values in different
modules. Red color shows highly co-expressed probe sets forming a
module.

Additional file 14: Description of WGCNA networks and hub genes.
Co-expression module connectivity and description for the identified 21
modules. Description of common and R-specific probe sets among
different co-expression modules.

Additional file 15: Detail of miRNA- probe set interactions.
Description of 10 miRNA classes and their 24 targeted probe sets with

respective expression profile among 22 datasets.
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