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Abstract

might be involved in brassinosteroid signaling.

Background: Grain length, as a critical trait for rice grain size and shape, has a great effect on grain yield and
appearance quality. Although several grain size/shape genes have been cloned, the genetic interaction among these
genes and the molecular mechanisms of grain size/shape architecture have not yet to be explored.

Results: To investigate the genetic interaction between two major grain length loci of rice, GS3 and gGL 3, we developed
two near-isogenic lines (NILs), NIL-GS3 (GS3/gGL3) and NIL-ggl3 (gs3/qgl3), in the genetic background of 93-11 (gs3/qGL3)
by conventional backcrossing and marker-assisted selection (MAS). Another NIL-GS3/qgl3 (GS3/qgl3) was developed by
crossing NIL-GS3 with NIL-gg/3 and using MAS. By comparing the grain lengths of 93-11, NIL-GS3, NIL-gg/3 and NIL-GS3/
qgl3, we investigated the effects of GS3, gGL3 and GS3 X gGL3 interaction on grain length based on two-way ANOVA.
We found that GS3 and gGL3 had additive effects on rice grain length regulation. Comparative analysis of primary panicle
transcriptomes in the four NILs revealed that the genes affected by GS3 and gGL3 partially overlapped, and both loci

Conclusion: Our data provide new information to better understand the rice grain length regulation mechanism and
help rice breeders improve rice yield and appearance quality by molecular design breeding.
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Background
When breeding cereal crops, the choice of a larger grain
can increase the yield of crop varieties when other yield-
related traits remain relatively stable. Among the three
key components of rice yield (grain weight, panicles per
plant and grain number per panicle), grain weight has
high heritability [1]. Rice grains display a comparatively
geometric shape, which can be broken down into grain
length (GL), grain width (GW) and grain thickness (GT).
These size/shape traits combined with grain density can
explain the rice grain weight trait effectively.

Through linkage and association mapping, many quanti-
tative trait loci (QTLs) for grain size/shape have been
identified in different mutants or natural populations [2].
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Only a small portion of these loci have been cloned, in-
cluding GS3 [3-5], GL3.1/qGL3 [6, 7] and TGW6 [8] for
grain length, and GW2 [9], GW5/¢gSW5 [10, 11], GS5 [12]
and GWS8 [13] for grain width. Some grain size/shape
QTLs, such as gw8.1 [14], GW6 [15], gGL7 [16], gGL7-2
[17], GS7 [18] and ¢SS7 [19], were also mapped to a nar-
row chromosome region. Additionally, several small (or
short) seed phenotype causal genes were identified by
map-based cloning, including D1 [20-22], BU1 [23], SRS1
[24], SRS3 [25], SRS5 [26], and SGI [27].

There are few reports about the genetic interaction of
these characterized genes [2]. Yan et al. (2011) found
genetic interactions between GS3 and gSW5. The effect
of gSW5 on seed length was masked by GS3 alleles, and
the effect of GS3 on seed width was masked by gSW5 al-
leles. No significant QTL interaction was observed be-
tween the two major grain width genes, GW2 and
qSW5/GWS5, suggesting that they might work to regulate
grain width in independent pathways [28]. GS7 was ef-
fective in the presence of the GS3 non-functional A-
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allele and ineffective when combined with the functional
GS3 C-allele [18]. However, how these genes work to-
gether or interact with others has not been deeply ex-
plored. The genetic interaction between two major grain
length QTLs, GS3 and ¢GL3, also remains unclear. At
least four different alleles for GS3 were identified by Mao
et al. (2010): GS3-1 (Zhenshan 97), GS3-2 (Nipponbare),
GS3-3/gs3 (Minghui 63) and GS3-4 (Chuan 7). GS3-1 and
GS3-2 are functional short grain alleles, and GS3-4 is a
stronger functional extra-short grain forming allele. GS3-3
has a premature termination, resulting in a non-functional
long grain allele. At the cellular level, GS3 controls grain
size largely by modulating the longitudinal cell number in
grain glumes. Its organ size regulation domain in the N-
terminus is necessary and sufficient for it to function as a
negative regulator and act as a dominant allele [3]. One of
its homologs in the rice genome, DENSE AND ERECT
PANICLE], also functions as a negative regulator of rice
grain length [29, 30]. Recently, its homolog in Arabidop-
sis, AGG3, was shown to be an atypical heterotrimeric
GTP-binding protein (G-protein) y-subunit that positively
regulated organ size [31, 32]. Another major grain-length
locus, GL3.1/gGL3, was map-based cloned and character-
ized by two independent groups [6, 7]. GL3.1/qGL3
encodes a putative protein phosphatase (OsPPKL1) con-
taining two Kelch domains. Transgenic studies showed
that the Kelch domains functioned as a negative regulator
and were essential for the biological function of OsPPKLI.
At the cellular level, gGL3 functions by negatively modu-
lating the longitudinal cell number in grain glumes.

In this study, we focused on the genetic interaction be-
tween two major grain length QTLs, GS3 and gGL3.
The functional and non-functional alleles of GS3 and
qGL3 were individually or simultaneously placed in the
genetic background of 93-11 (an indica rice cultivar) to
evaluate their genetic interaction. To understand these
interactions at the molecular level, we analyzed the tran-
scriptomes of young panicles (3—6 c¢m, glume develop-
ment stage) of the NILs combining different alleles of
GS3 and gGL3 through microarray assays. Our work
could be helpful to better understand the genetic and
molecular mechanisms of grain length regulation and
molecular design rice breeding.

Results

The additive effects of GS3 and gGL3 on grain length
Functional GS3 and non-functional gg/3 were introduced
into the 93-11 genetic background (genotype gs3/qGL3)
to generate NIL-GS3 (genotype GS3/qGL3) and NIL-
qgl3 (genotype gs3/qgl3), respectively. By crossing NIL-
GS3 with NIL-ggl3, and marker-assisted selection (MAS),
we created a third line, NIL-GS3/qgl3 (genotype GS3/
qgl3). The grain lengths of these three NILs and their re-
current parent 93—11 with different allele combinations of
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GS3 and gGL3 were analyzed (Fig. la). We applied a
two-way analysis of variance (ANOVA) for grain length
(four NILs) and genotype (GS3 and ¢gGL3), and ob-
served significant additive effects on grain length for
GS3x gGL3 (P=1.27 x107%), gGL3 (P =3.71 x 107*3), and
GS3 (P=4.4x10""%) (Table 1). Considering NIL-GS3
(GS3/qGL3) as the control background, the loss of GS3 in-
creased the grain length from 8.5 mm (GS3/qGL3) to
10.2 mm (gs3/qGL3), the loss of gGL3 increased the grain
length from 8.5 mm (GS3/¢gGL3) to 11.2 mm (GS3/qgl3),
and the loss of both increased the grain length from
8.5 mm (GS3/qGL3) to 12.2 mm (gs3/qgl3). Loss of gGL3
increased grain length more in the functional GS3
background (~2.7 mm) than in the non-functional gs3
background (~2.0 mm). Similarly, loss of GS3 increased
grain length more in the functional gGL3 background
(~1.7 mm) than in the non-functional gg/3 background
(~1.0 mm) (Table 2). According to these data, we con-
cluded that GS3 and gGL3 had additive effects larger
than genetic interaction on rice grain length regulation
and that the effects of gGL3 were stronger (Table 1).

The genetic interactions between GS3 and qGL3 on the
expression levels of commonly regulated genes
Based on the microarray data, by comparing the differ-
entially expressed genes in gs3/qGL3 vs. GS3/qGL3,
GS3/qgl3 vs. GS3/qGL3, and gs3/qgl3 vs. GS3/qGL3, we
found that seven genes were commonly up-regulated
by > 1.5-fold (Fig. 1C, D and Table 3) and 37 genes were
down-regulated by < 0.67-fold (Fig. 1c, d). Using gene
expression levels (in 93-11 and its three NILs) and
genotype (GS3 and gGL3) as the main factors, we ap-
plied a two-way ANOVA to the datasets from all four
microarrays to identify the seven up-regulated genes sig-
nificantly affected by GS3 and gGL3 (Table 3). There
were significant GS3 x ¢GL3 interactions for the expres-
sion levels of the seven up-regulated genes with P-values
< 0.05, except for Os03g40400 and Os04g59000 (Table 3).
Based on two-way ANOVA analysis, we found a signifi-
cant genetic interaction between GS3 and gGL3 accord-
ing to the expression levels of the genes down-regulated
by GS3 and gGL3 (Additional file 1: Table S7). Interest-
ingly, the effects of GS3 and ¢gGL3 on grain length was
additive, on the expression levels of the commonly regu-
lated genes it showed significant genetic interaction.
Among the seven genes up-regulated (>1.5-fold) by
both gs3 and ¢gg/3 (Fig. 1d), we found some encoded re-
ceptor protein kinases that might operate in the same
signaling pathways to increase grain length in rice and
explain the additive effects of gs3 and ggl3. Another
commonly up-regulated gene, Os11g44880, was found to
encode a kinesin-4, whose homolog, SRS3 (kinesin-13),
was reported to positively regulate rice grain length [25].
Among the genes commonly down-regulated by gs3 and
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Fig. 1 Grains and plants of the NILs and comparison of their expression profiles. a Grains of the three NILs and their genetic background, 93-11.
Scale bar, 10.0 mm. b Plants of three NILs and their genetic background, 93-11. Scale bar, 20.0 cm. ¢ Venn diagram of the genes from different
comparisons; red numbers indicate up-regulation, black indicates down-regulation. d Expression profiles of the genes commonly regulated by the
comparisons gs3/qGL3 vs. GS3/qGL3, GS3/qgl3 vs. GS3/qGL3 and gs3/qgl3 vs. GS3/qGL3
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qgl3 (Fig. 1d), we found that gs3 and gg/3 down-regulated a
gene (Os07g43670) encoding a ribonuclease T2 family
domain-containing protein by 46- and 34-fold, respectively.

Profiling of gene up- and down-regulation and gene
ontology analysis of DEGs in different genotypes

To reveal the genes affected by gs3 and ¢ggl3, we com-
pared the transcriptomes of the primary panicles of 93—
11 (gs3/qGL3) and its three NILs through microarray

Table 1 gGL3 x GS3 interactions resolved by two-way ANOVA
for grain length

analysis. Compared with the NIL-GS3 (GS3/¢GL3) back-
ground, 92 genes were up-regulated by > 1.5-fold and
546 genes were down-regulated by < 0.67-fold in 93-11
(gs3/qGL3) (Fig. 1c). Comparing the transcriptomes of
NIL-GS3/qgl3 (GS3/qgl3) with those of NIL-ggl3 (gs3/
qgl3) and NIL-GS3 (GS3/gqGL3) as well as 93-11 (gs3/
qGL3), we found that 11 genes were up-regulated
(Additional file 1: Table S1) and 15 genes were down-
regulated (Additional file 1: Table S2). Among the 11

Table 2 Grain length of the genetic background 93-11 and its
three NiLs

Trait  Variation SS MS df  F P-value NIL Name (Genotype) Grain length (mm) AGrain length (mm)
GL qGL3 543 543 1 7407.29 371x 10" NIL-GS3 (GS3/qGL3) 85+0.18 -

GS3 1645 1645 1 2245251 44x10°"° 93-11 (gs3/qGL3) 102+0.14 ~17

qGL3xGS3 039 039 1 537.57 127x107® NIL-GS3/qgl3 (GS3/qg13) 112+0.15 ~2.7

Error 00058 00007 8 NIL-qgi3 (gs3/qg13) 1224015 ~37

qGL3 x GS3, qGL3-by-GS3 interaction; SS, MS, df, F, and P-values are from
two-way ANOVA

Data are presented as means + standard error. A Grain length shows the
difference in grain length compared with NIL-GS3
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Table 3 gGL3 x GS3 interactions resolved by two-way ANOVA for the expression level of commonly up-regulated genes

MSU_Gene_Symbol Variation SS MS df F P value

LOC_Os11g44880 qGL3 2285 2285 1 104.14 729%107%
GS3 3436 3436 1 156.61 156x10°%°
qGL3 x GS3 2001 2001 1 9123 119%x10°%
Error 176 22 8

LOC_0s03g40400 qGL3 452326 452326 1 32525 9.17x107%
GS3 86328 86328 1 62.08 487 %107
qGL3x GS3 85 85 1 0.06 0.810638
Error 11126 1391 8

LOC_0s03g64050 qGL3 9804786 9804786 1 196.20 6.55% 107
GS3 5377938 5377938 1 107.61 6.45x107%
qGL3 X GS3 871662 871662 1 17.44 0.003095
Error 399791 49974 8

LOC_0s01g59990 qGlL3 45189064 45189064 1 750.84 339%x107%
GS3 24588257 24588257 1 408.55 375%x107%
qGL3 x GS3 3695841 3695841 1 6141 507x10°%
Error 481476 60185 8

LOC_0s04g59000 qGL3 4655 4655 1 746 0.025761
GS3 23058 23058 1 36.98 0.000296
qGL3x GS3 3165 3165 1 508 0.05433
Error 4989 624 8

LOC_0s01g60280 qGL3 5192 5192 1 17059 1.12x107%
GS3 3204 3204 1 105.27 7x107%
qGL3 % GS3 3152 3152 1 10357 745%107%
Error 243 30 8

LOC_0s03g40020 qGL3 57233 57233 1 719.34 402x107%
GS3 13718 13718 1 17241 108x107%°
qGL3 x GS3 19992 19992 1 25127 251x10°"
Error 637 80 8

gGL3 x GS3, qGL3-by-GS3 interaction; SS, MS, df, F, and P-values are from two-way ANOVA

commonly up-regulated genes, one gene (Os03g27530)
showed 18.7-fold induction under the NIL-GS3 (GS3/
qGL3) background and 41.4-fold induction under the
NIL-ggl3 (gs3/qgl3) background. It encoded a putative
serine carboxypeptidase of the peptidase S10 family
(Additional file 1: Table S1). Furthermore, we analyzed
the genes commonly up- and down-regulated by
qgl3 in both the NIL-ggl3 (gs3/qgl3) and NIL-GS3
(GS3/qGL3) backgrounds and found 33 up-regulated
genes and 30 down-regulated genes (Additional file 1:
Tables S3 and S4). By comparing the transcriptomes of
the panicles of NIL-ggl3 (gs3/qgl3) and NIL-GS3 (GS3/
qGL3), we found that 249 genes were up-regulated by >
1.5-fold and 237 were down-regulated by < 0.67-fold
(Fig. 1c). Among these, we found a down-regulated
gene, 0s03g63970, encoding a GA20 oxidase involved
in the GA pathway. We also discovered that some genes

involved in BR signaling were differentially expressed, such
as a glycogen synthase kinase (CGMC_GSK) family gene
(Os05g04340) (Additional file 1: Table S6). The number of
down-regulated genes was higher than the number of up-
regulated genes for 93—-11 and its three NILs.

To determine the identities of the differentially expressed
genes (DEGs), we categorized them based on their known
functions using gene ontology (GO) classifications. The
DEGs between combination I (GS3/gGL3 vs. gs3/qGL3
and GS3/qgl3 vs. gs3/qgl3), combination II (GS3/gGL3 vs.
GS3/qgl3 and gs3/gGL3 vs. gs3/qgl3) and combination III
(GS3/qGL3 vs. gs3/qgl3) were used to analyze the GO
pathways. These genes were associated with diverse bio-
logical, molecular and cellular functions, as shown in
Tables 4, 5 and 6. This functional grouping primarily serves
to facilitate data visualization. The functional classifications
of the DEGs regulated by gs3 were mainly associated
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Table 4 Significant functions of DEGs regulated by gs3

GO term Description Input  BG/Ref p-value  FDR
GO: 0008152  Metabolic process 5 7746 0018 0018
GO: 0005488  Binding 8 8681 5.90E-05 0.00018
GO: 0003824 Catalytic activity 7 8329 0.00052  0.00078

GO terms, such as “biological process”, “molecular function” and “cellular
component”, were identified using AGRIGO (http://bioinfo.cau.edu.cn/agriGO/
index.php) with default significance levels (FDR < 0.05). Input, gene number in
input list; BG/Ref, gene number in BG/Ref

with metabolic processes, catalytic activity, and binding
(Table 4). The gene Os03g27530, which is also called
OsSCP16, was associated with the GO:0008152 and
GO0:0003824 classifications. Its homolog in Arabidopsis
thaliana is BRS1, which might participate in the BR
signaling pathway. Interestingly, we also found this
gene in combination III. The DEGs regulated by gg/3
were mainly associated with metabolic processes, cell
parts, catalytic activity, and binding (Table 5). According
to q-PCR verification, the gene Os02g56310 encoding a
calcium-dependent protein kinase was tremendously up-
regulated in NIL-ggl3 (gs3/qgl3), NIL-GS3/qgl3 (GS3/qgl3)
and 93-11 compared with NIL-GS3 (GS3/qGL3). Ca**
sensor protein kinases are prevalent in most plant species
including rice. OsCPK31, which also encodes a calcium-
dependent protein kinase, played a significant role in the
grain filling process and eventually reduced the crop dur-
ation in overexpression plants [33]. The DEGs regulated
by both gs3 and ¢ggl3 were associated with 51 GO terms,
which included the GO terms of gs3 and ggl3 (Table 6). Of
these GO terms in Table 6, many transcripts encoded pro-
teins involved in cellular metabolic process such as NB-
ARC domain containing protein, F-box domain containing
protein, zinc ion binding proteins and calcium-dependent
protein kinase isoform AKI. In addition to genes associ-
ated with cellular metabolic process, genes associated with
Leucine-Rich-Repeat (LRR) family protein and the cal-
cium/calmodulin depedent protein kinases were annotated
with the GO term “signal transduction”. Os03g27530 and
0s02g56310 were also among the DEGs regulated by gs3
and gg/3. In addition, Os07g05880 encoding F-box domain
and kelch repeat containing protein, overlapping

Table 5 Significant functions of DEGs regulated by gg/3

GO term Description Input  BG/Ref p-value  FDR
GO:0008152  Metabolic process 12 7746 1.00E-05 0.00012
G0O:0005488  Binding 13 8681 420E-06  3.50E-05
GO:0003824  Catalytic activity 10 8329 0.00083  0.0035
GO:0043169  Cation binding 5 2582 0.0037 0.0076
G0O:0043167  lon binding 5 2584 0.0037 0.0076

GO terms, such as “biological process”, “molecular function” and “cellular
component”, were identified using AGRIGO (http://bioinfo.cau.edu.cn/agriGO/
index.php) with default significance levels (FDR < 0.05). Input, gene number in
input list; BG/Ref, gene number in BG/Ref
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expression of rice F-box protein encoding genes during
floral transition as well as panicle and seed develop-
ment [34]. These results indicated that gs3 and ggl3
might participate in the same or parallel signaling path-
ways to regulate grain length.

Metabolic pathways, cellular response and cell regulation
analysis for DEGs

To identify genes related to metabolic reconfiguration in
the different combinations, the MapMan tool was used
to select and display the significantly regulated metabolic
pathways. From our results, the up- and down-regulated
genes were classified into 36 BINs.

By MapMan analysis of the DEGs regulated by gs3, we
found that most of the genes associated with the cell
wall, lipids, light reactions and secondary metabolism
showed down-regulation (Fig. 2a). Some genes related to
the cell wall were down-regulated by gs3, implying that
down-regulation of these cell wall-related genes may
negatively regulate cell wall formation. In our regula-
tion overview, protein degradation and receptor ki-
nases were the most frequent categories (Fig. 2d). In
the hormone metabolism BIN, it was found that
0s03g08500 was related with ethylene synsesis. Using
the cell regulation and cell response overview function
of MapMan, we found that genes related to protein
degradation, biotic/abiotic stress, enzyme families, and
transport were highly induced (Fig. 2¢). In the protein
degradation BIN, four up-regulated genes (Os03g28990,
0s03g39230, Os03g27530 and Os03g37950) and one
down-regulated gene (Os07g05880) were involved in it.
0s03g27530 was in the protein degradation BIN and might
participate in the BR signaling pathway. Os03g28990
encoding a von Willebrand factor type A (VWA) do-
main containing protein might regulate rice vegetative
growth and development. However, in the cellular re-
sponse overview we only found one gene (0s03g28190)
related with biotic stress (Fig. 2b). DEGs associated
with the cell wall, lipids, light reactions and secondary
metabolism showed up-regulation, while some genes
associated with the cell wall, lipids, and ascorbate and
glutathione metabolism were down-regulated by gg/3
(Fig. 3a). In the cellular response and cell regulation
overview, genes related to hormones (auxin signal
transduction), biotic/abiotic stress, RNA regulation of
transcription, protein degradation, receptor kinase signal-
ing, the cell cycle and protein modification were the most
abundant (Fig. 3b, c¢). We further investigated three
genes that were in the cell cycle BIN, 0s02g55720,
0s02g52360 and Os04g28420, all of which were up-
regulated by ggl3. Os02g55720 encoded a kind of cyclin
related to grain size regulation [6]. Os04g28420 encoded a
kind of peptidyl-prolyl isomerase, which was up-regulated
17.97-fold by ggl3 under the NIL-gs3/ggl3 background


http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=443624378&GO=GO:0008152
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=443624378&GO=GO:0005488
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=443624378&GO=GO:0003824
http://bioinfo.cau.edu.cn/agriGO/index.php
http://bioinfo.cau.edu.cn/agriGO/index.php
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=657524951&GO=GO:0008152
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=657524951&GO=GO:0005488
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=657524951&GO=GO:0003824
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=657524951&GO=GO:0043169
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=657524951&GO=GO:0043167
http://bioinfo.cau.edu.cn/agriGO/index.php
http://bioinfo.cau.edu.cn/agriGO/index.php

Gao et al. BMIC Plant Biology (2015) 15:156

Table 6 Significant functions of DEGs regulated by both gs3 and gg/3
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GO term Description Input BG/Ref p-value FDR
G0:005089%6 Response to stimulus 16 1462 1.90E-13 2.10E-11
GO:0006950 Response to stress 13 885 1.50E-12 8.50E-11
GO:0009987 Cellular process 28 8160 1.50E-11 5.60E-10
GO:0008152 Metabolic process 24 7746 1.20E-08 340E-07
GO:0044238 Primary metabolic process 21 6775 1.90E-07 4.30E-06
GO:0065007 Biological regulation 12 2280 1.00E-06 1.90E-05
GO:0007165 Signal transduction 7 604 1.70E-06 2.80E-05
GO:0044237 Cellular metabolic process 19 6475 240E-06 3.40E-05
GO:0008219 Cell death 6 429 3.50E-06 4.00E-05
GO:0016265 Death 6 429 3.50E-06 4.00E-05
GO:0016310 Phosphorylation 8 1080 7.60E-06 6.80E-05
G0:0009719 Response to endogenous stimulus 5 277 7.30E-06 6.80E-05
GO:0019538 Protein metabolic process 12 2770 7.50E-06 6.80E-05
GO:0006796 Phosphate metabolic process 8 1206 1.70E-05 0.00013
GO:0006793 Phosphorus metabolic process 8 1206 1.70E-05 0.00013
GO:0006468 Protein amino acid phosphorylation 7 887 2.00E-05 0.00014
GO:0043687 Post-translational protein modification 8 1236 2.00E-05 0.00014
GO:0043170 Macromolecule metabolic process 16 5520 2.60E-05 0.00016
GO:0044267 Cellular protein metabolic process 10 2166 3.00E-05 0.00018
GO:0006464 Protein modification process 8 1359 3.90E-05 0.00023
GO:0043412 Macromolecule modification 8 1406 5.00E-05 0.00027
GO:0044260 Cellular macromolecule 14 4801 9.40E-05 0.00049
GO:0050789 Regulation of biological process 9 2112 0.00015 0.00073
GO:0016043 Cellular component organization 5 618 0.00031 0.0015
GO:0050794 Regulation of cellular process 8 1964 0.00048 0.0022
GO:0009058 Biosynthetic process 10 3129 0.0006 0.0026
GO0:0001883 Purine nucleoside binding 15 171 1.40E-13 4.80E-12
GO:0001882 Nucleoside binding 15 mn 1.40E-13 4.80E-12
GO:0030554 Adenyl nucleotide binding 15 171 1.40E-13 4.80E-12
G0:0017076 Purine nucleotide binding 15 1317 7.30E-13 1.50E-11
GO:0005524 ATP binding 14 1071 8.20E-13 1.50E-11
G0:0032559 Adenyl ribonucleotide binding 14 1074 8.50E-13 1.50E-11
G0:0032555 Purine ribonucleotide binding 14 1218 4.50E-12 5.90E-11
GO:0032553 Ribonucleotide binding 14 1218 4.50E-12 5.90E-11
GO:0000166 Nucleotide binding 15 1686 2.30E-11 2.70E-10
GO:0005488 Binding 27 8681 5.00E-10 5.20E-09
GO:0003824 Catalytic activity 25 8329 8.60E-09 8.20E-08
GO:0004713 Protein tyrosine kinase activity 6 224 8.60E-08 7.50E-07
GO:0005515 Protein binding 1 1789 7.00E-07 5.60E-06
GO:0004871 Signal transducer activity 5 212 2.00E-06 1.40E-05
GO:0060089 Molecular transducer activity 5 212 2.00E-06 1.40E-05
GO:0016740 Transferase activity 12 3496 7.50E-05 0.00049
GO:0004672 Protein kinase activity 7 1102 7.90E-05 0.00049
GO:.0016787 Hydrolase activity 10 2556 0.00012 0.00069
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Table 6 Significant functions of DEGs regulated by both gs3 and qg/3 (Continued)

GO:0016773 Phosphotransferase activity
GO:0004674 Serine/threonine kinase activity
GO:0016301 Kinase activity

GO:0016491 Oxidoreductase activity
GO:0016772 Transferase activity, transferring
GO:0005886 Plasma membrane
G0:0016020 Membrane

7 1238 0.00016 0.0009

6 949 0.00028 0.0015

7 1464 0.00044 0.0022

5 1141 0.0045 0.021

7 2197 0.0045 0.021

9 494 1.00E-09 4.50E-08
12 4882 0.0016 0.036

o

GO terms, such as “biological process”,

molecular function” and “cellular component”, were identified using AGRIGO (http://bioinfo.cau.edu.cn/agriGO/index.php)

with default significance levels (FDR < 0.05). Input, gene number in input list; BG/Ref, gene number in BG/Ref

(Additional file 1: Table S3). This indicated that gGL3
might regulate grain length through regulation of the
cell cycle. The regulation overview function of Map-
Man showed that DEGs associated with transcription
factors, protein modification, and protein degradation
were significantly regulated by gg/3 (Fig. 3d). In the
transcription factor BIN, it was found that some tran-
scription factors, Os01g62130 encoding C2H2 zinc

finger family protein, Os04g49450 encoding MYB related
transcription and Os03g44540 encoding a CCAAT-box
binding protein. The MapMan analysis indicated that
some metabolic pathways were changed by allelic alter-
ations at both loci, GS3 and ¢GL3 (Fig. 4a). We found
that genes associated with photorespiration, light reac-
tions, lipids, the cell wall and secondary metabolism
were up-regulated, while genes related to lipids, the

Feguiaton of
Transcaption

@ e = T

change; blue, down-regulation

//-_ _--.\\
f Biotic Stress. Ablotic Stress Redox ol division \
[=a=)
_ (Ascarty Glutha Sell crcle
=] =] =
i) [l |
™ .

\ - y /I
.‘.\\H__ __'__./'
(=] () (e, N
=) (=) (=) Qe

[smmenne ] [sn) (e
M
= =
=
(L6 Proteins |
=
)
L s I

Fig. 2 Overview of the differentially expressed genes between GS3/qGL3 vs. gs3/qGL3 and GS3/qgl3 vs. gs3/qgl3. a Metabolism overview in MapMan.
b Cellular response overview in MapMan. ¢ Cell requlation overview in MapMan. d Regulation overview in MapMan. Red, up-regulation; white, no



http://bioinfo.cau.edu.cn/agriGO/index.php

Gao et al. BMIC Plant Biology (2015) 15:156

Page 8 of 13

A
i Ariorbete GhAsthre Light "/ ""\\
- = :”:"cg.u ] ] "““":“ | J(/ ‘\\__
|: . "a | . = ~@,//p_-:;:;;:, Biotic Stress Rudox Cull division \.I
I swaone 7N [ =
p— O o .
| _]. J » N [Lm—
\ 7 ; -
.:’ ry \,é = | . ]' | Farmaaate - Tetrapyrrole Giutha -W cyche
o =T 5 -
| y . - = a w Wit Lectron Tranaport -
TCA' o P [
L — Amino Acids | . -] =] S0 NOy o -
b FEEEE | B . @ 50, {ﬁ
oo *a o |l == c1
- .y . b Metsh
* o b o i a
= i ) e |
S a . . : J /
- _E. y . bl . ) \'\‘____ i o /
“\\ /_quaip:lm. Pmnin“ Pratain ;\\
T e CTe o | GwlE=EEY L 5 o e
= 8 e (a]
e = o
L 1] J
- Hame
Raceptor kinases. Phosphe-
[Dmiamn] T [ Hnmmx [ mme [mm?) [m;'“:":m' . “"‘“—“]
(I 0T 1 1 11
. R =
[—anmun:waum] [Eﬂmum] [ Rede ] [ummmn [ Traaspon “
i | I I JL (W3] (ompoted] e
N s A %
Fig. 3 Overview of the differentially expressed genes between GS3/qGL3 vs.GS3/qgl3 and gs3/qGL3 vs. gs3/qgl3. a Metabolism overview in MapMan.
b Cellular response overview in MapMan. ¢ Cell regulation overview in MapMan. d Regulation overview in MapMan. Red, up-regulation; white, no
change; blue, down-regulation

TCA cycle, and ascorbate and aldarate metabolisms
were down-regulated (Fig. 4a). With cellular response
overview, DEGs associated with biotic/abiotic stress
and development were significantly regulated by both
gs3 and ¢g/3 (Fig. 4b). DEGs in BINs such as transcrip-
tion factors, protein modification, protein degradation,
receptor kinases and hormones (ethylene, IAA and
GA) were up-regulated by gs3 and ¢ggl3 (Fig. 4c, d). In
the GA synthesis overview, we found that a gene
(Os03g63970) related with GA20 oxidase was down-
regulated by both gs3 and gg/3. It is possible that BR and
GA interact closely to regulate cell elongation [35]. We
found that some DEGs encoded regulators, including two
transcription factors, a B3 DNA binding domain-containing
protein (Os03g42370) and three MYB family transcription
factor (0Os06g14670, Os11g47460 and Os05g51160).
These regulators might take part in the same signaling
pathways to increase grain length in rice, which would
explain the additive effects of gs3 and ggl/3 (Additional

file 1: Table S5). Overall, through MapMan analysis,
we found that gs3 and ¢gl3 were involved in some
common or parallel metabolic pathways to regulate
grain length.

Quantitative real-time PCR validation of DEGs

To confirm the accuracy and reproducibility of the
microarray results, eight genes commonly up-regulated
and six genes commonly down-regulated by gs3 and
qgl3 were selected for real-time PCR verification, in-
cluding five BR signaling or grain length regulation as-
sociated genes, Os11g44880, Os07g43670, 0s02g56310,
0s01g43890 and Os01g60280. The q-PCR results for
these genes were accordance with the microarray data
(Fig. 5). The eight up-regulated genes and six down-
regulated genes all showed up- and down-regulation in
93-11 (gs3/qGL3), NIL-GS3/qgl3 (GS3/qgl3) and NIL-
qgl3 (gs3/qgl3) compared with the NIL-GS3 (GS3/gGL3)
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The results indicated that gs3 and ¢gg/3 had additive ef-
fects on rice grain length regulation. Moreover, gGL3
had a stronger effect on rice grain length regulation than
GS3. On grain length, the strength of the additive signal
from GS3 and gGL3 was much larger than the genetic
interaction signal. However, there were large genetic in-
teractions between GS3 and gGL3 on the expression
levels of commonly regulated genes rather than additive
effects. This work represents the first analysis of the gen-
etic interaction between gGL3 and GS3. We used Gene
Ontology [36] and MapMan [37] bioinformatics-based
approaches for analyses aimed to interpret the biological
significance of gene expression data. Through GO and
MapMan analysis, we found that some genes regulated
by gs3 and ¢gl3 are involved in BR signaling, the cell
cycle, protein degradation, the GA/IAA family and pro-
tein modification, and might play important roles in the
regulation of grain length. The gs3 up-regulated gene,
0s03g27530, was in the protein degradation BIN, and its
homolog (BRSI) in Arabidopsis was reported to regulate
BR signaling [38]. Os05g04340 in the protein modifica-
tion BIN was down-regulated by both gs3 and ¢gg/3, and
its homolog BIN2 in Arabidopsis is a negative regulator
of BR signaling [39]. Based on the functional annotations
of the commonly regulated genes identified in this re-
search, the regulation of grain length by ¢GL3 and GS3
might involve the BR signaling pathway.

BRs are a group of steroid phytohormones ubiqui-
tously distributed throughout the plant kingdom [23].
They have essential roles in a wide range of plant growth
and development processes, and can promote cell div-
ision or elongation and enhance tolerance to environ-
mental stresses and resistance to pathogens [40]. The
signal transduction pathway of BRs has been extensively
studied [39]. The phosphorylation of BSK1 (BR-signaling
kinase 1) by the BR receptor kinase BR-insensitive 1
(BRI1) promotes BSK1 binding to the BRI1 suppressor 1
(BSU1) phosphatase. BSUL, in turn, inactivates the GSK3-
like kinase BR-insensitive 2 (BIN2) by dephosphorylating a
conserved phospho-tyrosine residue (pTyr 200) [39, 41].
qGL3 (OsPPKLI) encodes a protein phosphatase [7] and
its two homologs in Arabidopsis, BSUI and BSL1, were re-
ported to promote brassinosteroid signaling [39, 42]. They
transmit a signal by dephosphorylating and deactivating
the BIN2 kinase downstream of BR signaling [39]. More-
over, we found that genes involved in BR signaling, such
as the CGMC_GSK family genes, encoding Arabidopsis
BIN2 homologous proteins, were differentially expressed
between NIL-GS3 (GS3/gGL3) and NIL-GS3/qgl3 (gs3/
qgl3). Recently, we cloned the GSK family genes and ob-
tained additional evidence for the interaction of OsPPKL1
and GSKs via yeast two-hybrid assays (unpublished data).
These data indicated that gGL3 might participate in BR
signaling by dephosphorylating GSKs. However, gGL3 is a
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negative regulator of rice grain length [7], suggesting that
OsPPKL1-GSK interaction might play different roles in
BR signaling in rice compared with BSU1- and BSL1-
BIN2 interaction in Arabidopsis.

GS3 is a major QTL for grain length and weight and a
minor QTL for grain width and thickness [5]. GS3 was
reported to be an atypical heterotrimeric G protein y-
subunit that positively regulates organ size [31, 32]. The
heterotrimeric G protein a-subunit, known as D1/RGA1
in rice, is involved in an alternative BR-signaling path-
way, independent of OsBRI1. Recently, Hu et al. (2013)
reported that a U-Box E3 ubiquitin ligase worked as a
linkage factor between the heterotrimeric Ga subunit and
BR signaling to mediate rice growth, mainly by regulating
cell proliferation and organizing cell files in aerial organs.
In this study, we found that gs3 up-regulated a putative
serine carboxypeptidase of the peptidase S10 family. Its
homolog in Arabidopsis (BRSI) was reported to positively
regulate BR signaling [38]. We believe that this gene might
have GSS5-like properties. Overexpression of BRSI sup-
pressed the cell surface receptor for BRs in bril extracellu-
lar domain mutants [38]. One of its homologs in rice was
cloned as the grain-size gene GS5, which increased grain
width when its expression increased [12]. These data re-
veal that some members of the serine carboxypeptidase
family might act downstream of BR signaling as positive
factors. Our research implies that GS3 also takes some
part in BR signaling, and both GS3 and gGL3 might
share a common BR signaling associated pathway in
the regulation of rice grain length. We suppose that
qGL3 might directly participate in brassinolide signal-
ing by dephosphorylating GSKs, while GS3 indirectly
influences BRS1, which is parallel to the BRI-mediated
BR signaling pathway.

Among the genes up-regulated by both loci, we found
a gene encoding a kinesin-4, whose homolog SRS3 was
reported to positively regulate rice grain length in seed
formation [25]. We identified a small and round seed
mutant phenotype (srs3). The gene, which belongs to
the kinesin 13 subfamily, was designated SRS3 [25]. The
shortened seed phenotype of the srs3 mutant was prob-
ably the result of a reduction in cell length in the longi-
tudinal direction [25]. The SRS3 protein might be a
homolog of the AtKinesin 13A protein, which regulates
trichome elongation in Arabidopsis [43]. Interestingly,
among the genes commonly down-regulated by gs3 and
qgl3, we observed that a number of disease resistance re-
lated genes, encoding two NB-ARC domain containing
proteins, a stripe rust resistance protein Yrl0 and a per-
oxidase precursor, were down-regulated by both ggl/3 and
gs3, suggesting that disease resistance responses may also
be negatively correlated with grain development. In
addition, we found a gene (Os07g43670) encoding a ribo-
nuclease T2 family domain containing protein involved in
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the cytokinin signaling pathway. A major QTL, Grain
number la (Gnla), encodes a cytokinin oxidase/dehydro-
genase (OsCKX2) that catalyzes the irreversible degrad-
ation of cytokinin. Mutation in Gnla/OsCKX2 [44], which
encodes a zinc finger transcription factor that directly and
positively regulates Gnla/OsCKX2 [2, 45], caused the ac-
cumulation of cytokinin and consequently increased grain
number [2]. In many cases, increased grain number is
closely associated with reduced grain size, likely owing to
the availability of fixed carbon in the source and the effi-
ciency of transport to the sink [7, 9, 29].

The currently available evidence suggests that the
mechanisms underlying the additive effects of GS3 and
qGL3 in regulating grain length might involve phytohor-
mones (especially BRs) and key genes related to cell div-
ision or elongation. This research should help us to
understand the mechanisms of the additive effects of gs3
and gg/3, which would be useful for deciphering the gen-
etic network involved in rice seed formation and for mo-
lecular breeding.

Conclusions

With an elite indica cultivar 9311 as recurrent parent
NIL-GS3 (GS3/qGL3) and NIL-ggl3 (gs3/qgl3) were devel-
oped by conventional backcrossing and marker-assisted
selection. Another line, NIL-GS3/4g/3, was developed by
crossing NIL-GS3 and NIL-ggl3. By comparing the grain
length of 93—11 and its three NILs we concluded that gs3
and gg/3 had additive effects on rice grain length regula-
tion and that the effects of gGL3 were stronger. To reveal
the genes affected by gs3 and ggl3, we compared the tran-
scriptomes of the primary panicles of 93—11 and the three
NILs through microarray analysis. The transcriptome ana-
lysis revealed that the genes affected by GS3 and gGL3
partially overlapped, and both loci might be involved in
BR signaling.

Methods

Plant materials and development of the NiLs

The high-quality, previously sequenced [46] elite indica
rice cultivar 93-11 with non-functional gs3 and func-
tional gGL3 was used as the genetic background for
introducing the functional GS3 and non-functional gg/3
alleles. The japonica rice cultivar Koshihikari was used
as the donor parent for functional GS3. The GS3 allele
in Koshihikari was cloned and sequenced, and was found
to be the same as GS3-2 (Nipponbare) [3, 18]. The rice
accession N411 with extra-large grains was used as the
donor parent for non-functional gg/3 [7].

As the functional GS3 is a dominant allele forming
short grains, plants with 93-11-like performance with
short grains were selected from BC,F; populations of
93-11 x Koshihikari and continuously backcrossed with
93-11. To develop NIL-GS3 (genotype GS3/qGL3), we
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selected plants, from the BC,F; population, with a short
Koshihikari segment (from RM15144 to RM411) and the
GS3 allele for self-pollination. A total of 126 simple se-
quence repeat markers were employed for background
detection. NIL-gg/3 (genotype gs3/qgl3), which carries a
~113-kb segment, including the N411 ¢gg/3 allele in the
93-11 background, was described in previous studies
[7]. NIL-GS3/qlg3 (genotype GS3/qgl3) was developed
by crossing NIL-GS3 and NIL-ggl3. In the NIL-GS3 x
NIL-qgl3 F, population, plants heterozygous at the GS3
locus and homozygous at the gg/3 locus were selected to
self-pollinate naturally and the homozygous NIL-GS3/
qlg3 was selected from the F; family by MAS.

Plant growth and evaluation of agronomic traits

To evaluate the differences in grain length between the
recurrent parent 93—11 and its three NILs, all materials
including 93-11, NIL-gg/3, NIL-GS3 and NIL-GS3/qgl3
were grown in the Jiangpu Experiment Station of Nanjing
Agricultural University. The four materials were grown in
a 13.4-m? acreage (the actual used area: 1.5 m x 8.0 m).
All experimental materials were transplanted in the fields
with 15 c¢cm spacing between plants within rows and
25 cm spacing between rows. The 13.4-m? block was di-
vided into four plots (the area of one plot: 1.5 m x 2 m),
with 80 plants of each material in one plot and there were
three blocks. 10 plants selected randomly from 80 plants
of each material were measured. The mean value of the 10
plants was used for analysis. T-test was carried out to
evaluate the statistical differences in their grain length be-
tween NIL-GS3 and other three materials. Grain length
was measured as described in a previous study [7].

Microarray analysis

As reported in previous studies, GS3 and gGL3 are
expressed strongly in young panicles [4, 7]. Thus, we
used primary panicles of 3—6 c¢m length from the three
NILs and 93-11 for RNA preparation and hybridization
with the Rice Genome OneArray Microarray (Phalanx
Biotech Group, Hai Shang). Each NIL and 93-11 was
sampled three times from different tillers. The Rice
OneArray probe was set with a combination of the Rice
Genome Annotation Project (RGAP) version 6.1 and
Beijing Genomics Institute (BGI) version 2008 databases.
Long oligonucleotide probes (~60-mers) were engineered
using specific lengths to match their melting temperatures
for superior hybridization performance. Each microarray
contained 824 performance monitoring control probes for
hybridization, sample quality, and labeling reactions. RNA
isolation, purification and microarray hybridization were
conducted by the Phalanx Biotech Group. Longer grains
were regarded as being more active during the growth of
the grain or glume. We conducted a comparison of the
transcriptomes by comparing the longer grain genotype
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with the shorter grain genotype. The microarray data were
normalized using the GC-RMA algorithm followed by Log,
transformation. We used ordinary Student’s t —test (P
value < 0.05) to identify significantly differentially expressed
genes. Probe sets showing more than 1.5-fold change (four
NILs) in expression were considered as DEGs. To identify
DEGs regulated by gs3 or ggl3, we used the ratio (1.5 folds
for up-regulation and 0.67 folds for down-regulation) of the
expression level between combinations gs3/qGL3 vs. GS3/
qGL3, gs3/qgl3 vs. GS3/qgl3, GS3/qgl3 vs. GS3/qGL3, and
gs3/qgl3 vs. gs3/qGL3. To identify commonly expressed
genes in the four materials, we used the ratio (1.5 folds for
up-regulation and 0.67 folds for down-regulation) of the ex-
pression level between combination gs3/gGL3 vs. GS3/
qGL3, GS3/qgl3 vs. GS3/qGL3, and gs3/qgl3 vs. GS3/qGL3.
A two-way analysis of variance (ANOVA) with expression
levels and genotype (GS3/gs3 and qGL3/qgl3) as main fac-
tors was applied to the datasets from all four microarrays
to identify genes significantly affected by GS3, gGL3, or
GS3x qGL3 interaction. The Benjamini—Hochberg false
discovery rate (FDR) for multiple test correction was used
for the analysis [47]. Furthermore, the statistical criterion of
at least a 1.5-fold change at a P-value <0.05 was used for
gene selection.

Pathway analysis

Functional enrichment analysis of DEGs using the GO
domains “molecular function”, “biological process” and
“cellular component” was performed using the AGRIGO
website with a significance level of FDR < 0.05 [36]. The
MapMan tool [37] was employed to analyze the meta-
bolic and signaling changes in the microarray data based
on the expression value of each DEG. A metabolic path-
way overview was produced by loading the DEGs with
their Log2 expression values into the locally-installed
MapMan program and shown using color intensity.

Real-time quantitative PCR

Based on the transcriptome comparison between the
three NILs and 93-11, several DEGs were selected for
further confirmation by real-time quantitative PCR. Pri-
mary panicles of 3—6 cm length were used for total RNA
extraction with an RNA extraction kit (RNAiso Plus,
TaKaRa Bio, Inc.). Reverse transcription was performed
using 6 pg RNA and 4 pg reverse transcriptase mix (Pri-
meScript® RT Master Mix Perfect Real Time, TaKaRa
Bio) in a volume of 40 pl, according to the manufac-
turer’s protocol. Real-time PCR was carried out in a total
volume of 25 pl containing 2 pl of cDNA, 0.2 mM gene-
specific primers, 12.5 pl SYBR® Premix Ex Taq TM II,
and 0.5 pl of Rox Reference Dye II (TaKaRa Bio), using
an ABI 7500 Fast Real-Time PCR System according to
the manufacturer’s instructions. The rice 185 rRNA gene
was used as an internal control. Relative quantification
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of the transcript levels was performed using the 2744¢T

method [48].

Availability of supporting data

The microarray data for the four NILs has been submitted to
the Gene Expression Omnibus (GEO; http://www.ncbi.nlm.
nih.gov/geo/) under accession number GSE59619.

Additional file

Additional file 1: Table S1. Genes up-regulated by gs3 (>1.5-fold).
Table S2. Genes down-regulated by gs3 (<0.67-fold). Table S3. Genes
up-regulated by ggl/3 (>1.5-fold). Table S4. Genes down-regulated by
qgl3 (<0.67-fold). Table S5. Genes up-regulated by both gg/3 and gs3
(<0.67-fold). Table S6. Genes down-regulated by both gg/3 and gs3
(<0.67-fold). Additional file 1: Table S7. gGL3 x GS3 interactions resolved
by two-way ANOVA for the expression level of commonly regulated genes.
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