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Abstract

remains incomplete.

Background: Heat shock factors (Hsfs) play crucial roles in plant developmental and defence processes. The
production and quality of pepper (Capsicum annuum L), an economically important vegetable crop, are severely
reduced by adverse environmental stress conditions, such as heat, salt and osmotic stress. Although the pepper
genome has been fully sequenced, the characterization of the Hsf gene family under abiotic stress conditions

Results: A total of 25 CaHsf members were identified in the pepper genome by bioinformatics analysis and PCR
assays. They were grouped into three classes, CaHsfA, B and C, based on highly conserved Hsf domains, were
distributed over 11 of 12 chromosomes, with none found on chromosome 11, and all of them, except CaHsfAS5,

formed a protein—protein interaction network. According to the RNA-seq data of pepper cultivar CM334, most CaHsf
members were expressed in at least one tissue among root, stem, leaf, pericarp and placenta. Quantitative real-time
PCR assays showed that all of the CaHsfs responded to heat stress (40 °C for 2 h), except CaHsfC1 in thermotolerant
line R9 leaves, and that the expression patterns were different from those in thermosensitive line B6. Many CaHsfs

were also regulated by salt and osmotic stresses, as well as exogenous Ca’*, putrescine, abscisic acid and methyl
jasmonate. Additionally, CaHsfA2 was located in the nucleus and had transcriptional activity, consistent with the
typical features of Hsfs. Time-course expression profiling of CaHsfA2 in response to heat stress revealed differences
in its expression level and pattern between the pepper thermosensitive line B6 and thermotolerant line R9.

Conclusions: Twenty-five Hsf genes were identified in the pepper genome and most of them responded to heat,
salt, osmotic stress, and exogenous substances, which provided potential clues for further analyses of CaHsfs
functions in various kinds of abiotic stresses and of corresponding signal transduction pathways in pepper.
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Background

Plants as sessile organisms have formed a variety of defence
mechanisms to protect themselves from persistently chan-
ging stress factors, such as extreme temperature, salt and
drought [1]. Temperature, especially high temperature, can
affect crop growth and development, severely reducing the
yield and quality [2—4]. Under heat stress (HS), the plant
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cells rapidly respond to a high temperature by inducing the
expression of genes encoding heat shock proteins (Hsps),
which are involved in preventing heat-related damage and
confer plant thermotolerance [5, 6]. Many Hsps function
as molecular chaperones in preventing protein misfolding
and aggregation, consequently maintaining protein homeo-
stasis in cells and causing the plant’s acquired thermotoler-
ance [7-9].

Heat shock factors (Hsfs) regulate the expression of
Hsps by recognizing heat shock elements (HSEs) within
the promoters of Hsps [1, 10]. HSEs are characterised by
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multiple inverted repeats of the nGAAn sequence, and at
least three HSE motifs are required for efficient Hsf oligo-
mer binding in eukaryotic organisms [11, 12]. Under non-
stress conditions, Hsfs are maintained in inactive states
and form cytoplasmic complexes with Hsp90/Hsp70
chaperone complexes [8, 13]. Under HS conditions, as
the result of a cytosolic protein response, Hsfs are re-
leased from chaperone complexes and bind to the HSEs
of target genes after undergoing phosphorylation, sumoy-
lation, trimerisation and nuclear import [1, 13, 14].

Hsf families share a conserved modular structure. Des-
pite considerable variability in size and sequence, their
structures and functions are conserved throughout the
eukaryotic kingdom [8, 15]. In plant Hsfs, the highly
conserved DNA-binding domain (DBD), which is com-
posed of an antiparallel four-stranded S-sheet (51, 52, 53
and B4) and three helical bundles (a1, a2 and a3) in the
N-terminus is required for the positioning and recogni-
tion of HSEs [16—18]. The oligimerisation domain (OD
or HR-A/B region), responsible for the transcription fac-
tor activity, is connected to the DBD by a flexible linker
[1] and is composed of a heptad pattern of hydrophobic
amino acid residues [19-21]. In addition, a cluster of
basic amino acid residues, the nuclear localisation signal
(NLS), essential for nuclear import, a leucine-rich nu-
clear export signal (NES) for nuclear export, short pep-
tide motifs (AHA motifs) for activator functions, and a
repressor domain (RD), characterised by the tetrapeptide
LFGYV in the C-terminus, exist in some Hsfs [1, 22—24].

The number of Hsf genes varies greatly among differ-
ent eukaryotic organisms. Drosophila melanogaster, Cae-
norhabditis elegans and Saccharomyces cerevisiae have a
single Hsf gene, and vertebrate genomes contain four
Hsf genes [25]. In contrast to the low numbers of Hsf
genes in animals and yeasts, plants possess large Hsf
families, with 21 Hsf genes in Arabidopsis (Arabidopsis
thaliana), 25 in rice (Oryza sativa), 30 in maize (Zea
mays), 52 Hsf genes in soybean (Glycine max), and at
least 24 in tomato (Solanum lycopersicum) [1], indicating
that plant Hsfs in various species may have multiple
functions in preventing stress damage [1, 26]. Based on
the peculiarities of the HR-A/B regions, plant Hsfs are
divided into three classes, A, B and C [20]. Class A and
C Hsfs contain an extended HR-A/B with 21 and 7
amino acid residues between the HR-A and HR-B re-
gion, respectively, whereas class B Hsfs have a compact
HR-A/B region lacking an insertion [15, 20]. Addition-
ally, class A Hsfs contain aromatic (W, F, Y), hydropho-
bic (L, I, V) and acidic (D, E) AHA activation domains
that are absent in class B and C Hsfs [24]. Class B Hsfs,
except HsfB5, contain the RD in the C-terminus, which
is speculated to function as a repressor motif, making
HsfB members act as repressors [27-30]. However, Ara-
bidopsis HsfB1 is able to positively regulate the acquired
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thermotolerance [29]. This apparent contradiction re-
mains to be elucidated in future research.

Many plant Hsf genes from various species have been
isolated and comprehensively studied. In Arabidopsis,
HsfA1l and HsfA2 can synergistically activate target
genes by forming superactivator heterodimers [31].
While negatively regulating the expression levels of
heat-inducible Hsfs, HsfB1 and HsfB2b are necessary
for acquired thermotolerance [29]. The expression of
HsfA9 increases during embryogenesis and seed matur-
ation [32], whereas HsfA5 is inactive and inhibits
HsfA4 activity in tomato [1]. HsfA2 can enhance the
tolerance of plants to multiple abiotic stresses, such as
HS [1], salt/osmotic stress [33], oxidative stress [34]
and anoxia [35]. HsfA2 in tomato contributes to fruit
set during HS by activating the protection mechanisms
in the anther [26, 36].

Pepper (Capsicum annuum L.), a very important eco-
nomic crop, is sensitive to HS; however, investigations
regarding the molecular mechanisms of heat tolerance
have been limited [37, 38]. The Hsf gene family has, so
far, been fully characterised only in a few model species,
such as Arabidopsis, rice, maize, wheat and Chinese cab-
bage [8, 20, 39-41]. The genome sequence of pepper has
been published recently [42, 43], which enables the char-
acterisation of the pepper Hsf family and their responses
to various stresses at the molecular level. In this study,
the genome-wide identification of the pepper Hsf family
members is performed using bioinformatics and gene
expression analyses. A total of 25 Hsf family members
from pepper are identified using bioinformatics analysis
and PCR tests. The gene structure, conserved domains,
chromosomal location, gene duplication and phylogen-
etic analyses are presented. In addition, we analyze the
expression patterns of Hsf genes in different pepper
tissues, as well as their responses to various stresses.
The results provide a foundation for further functional
research on Hsf genes in pepper and will help to reveal
the functions of Hsf genes in other plant species.

Results

Identification of the Hsf gene family in pepper

The Hidden Markov Model (HMM) profile of the Hsf
DBD domain (Pfam: PF00447) (http://pfam.sanger.ac.uk/)
was used as a BLAST query against the pepper genome
database PGP (http://peppergenome.snu.ac.kr/), and the
Hsf proteins in Arabidopsis, Vitis vinifera and Populus tri-
chocarpa from the PTFD (Plant Transcription Factor Data-
base, http://plntfdb.bio.uni-potsdam.de/v3.0/) were also
used as BLAST query against PGP. A total of 26 candidate
Hsf genes were originally obtained from pepper cultivar
CM334, aligned with the corresponding genes in the culti-
var Zunla-1 genome, and the different sequences were re-
amplified to correct the corresponding pepper Hsf genes
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sequences. One candidate gene (Gene ID: CA01g30350)
was discarded due to an incomplete DBD domain as iden-
tified by Pfam, SMART (http://smart.embl-heidelberg.de/)
and Heatster (http://www.cibiv.at/services/hsf/). As a re-
sult, 25 Hsf candidate genes, whose classification and nam-
ing were based on the rules of Hsf families from
Arabidopsis and tomato [1], were identified in pepper
(Table 1). The coding sequence sizes for CaHsfs ranged
from 606 bp (CaHsfBS) to 1,518 bp (CaHsfA1b), deduced
proteins from 201 to 505 amino acids in length, respect-
ively, and molecular weights from 23.37 kDa to 56.06 kDa,
respectively. The predicted isoelectric points of CaHsfs
were divergent, ranging from 4.65 to 9.20. Among the 25
pepper Hsf genes (CaHsfs), 17 members belonged to class
A (CaHsfAs) and seven members belonged to class B
(CaHsfBs), while only one Hsf gene was a class C member
(CaHsfC). In CaHsfA, the subclasses of CaHsfA9 (four
members, A9a, b, ¢ and d), CaHsfAl (three members, A1b,
d and e), CaHsfA4 (three members, A4a, b and ¢) and
CaHsfA6 (three members, A6a, b and ¢) were larger than

Table 1 The list of CaHsf members identified
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the other subclasses, while subclass CaHsfA7 had no
members.

Identification of conserved domains in pepper Hsf
proteins

The MEME web server (http://meme-suite.org/tools/
meme) was used to analyze motifs in CaHsf proteins
(Fig. 1, Table 2). Motif 1 and 3 were found in all 25 pep-
per Hsf members, while motif 2 was absent in CaHsfA5
and motif 5 was absent in CaHsfCl. Some motifs only
existed in certain members, such as motif 4, which was
found in most CaHsfA and CaHsfC members, but not in
CaHsfB. Generally, the number of motifs in the CaHsfBs
was less than those in the CaHsfAs.

To better understand the structural characteristics of
the CaHsf family, the conserved domains were predicted
using Heatster (Table 3). Six conserved domains, DBD,
HR-A/B, NLS, AHA, RD and NES, were identified in
three CaHsf classes. As the most conserved domain in
the Hsfs, DBD (corresponding to motif 1 and parts of

Number Gene name Sequenced ID Chr. ORF Length (bp) No. of AA Mol. Wt. (kDa) pl

1 CaHsfA1b CA03g21660 3 1518 505 56.06 5.08
2 CaHsfA1d CA01g07540 1 1509 502 5562 4.65
3 CaHsfAle Capana06g000777% 6 1443 480 54.18 5.98
4 CaHsfA2 CA08g05000 8 1089 362 41.19 4.69
5 CaHsfA3 CA09g01450 9 1350 449 50.28 4.77
6 CaHsfA4a CA04g01070 4 1209 402 45.81 5.18
7 CaHsfA4b CA07g15920 7 1299 432 49.29 538
8 CaHsfA4c CA02913280 2 1215 404 45.74 583
9 CaHsfA5 CA12g20590 12 1362 453 5092 5.60
10 CaHsfA6a CA03g06850 3 1089 362 4230 528
11 CaHsfA6b CA06g08710 6 1011 336 38.75 4.74
12 CaHsfA6¢c CA03g11650 3 1080 359 4113 523
13 CaHsfA8 CA09g11190 9 1206 401 46.11 4.75
14 CaHsfA9a Capana07g000898% 7 1107 368 4259 552
15 CaHsfA9b Capanal2g002488% 12 777 258 30.09 9.20
16 CaHsfA9c CA02g13320 2 987 328 37.05 6.86
17 CaHsfA9d CA02g16840 2 1143 380 4353 4.95
18 CaHsfB1 CA02g11030 2 915 304 3369 4.99
19 CaHsfB2a CA03g16300 3 981 326 36.37 5.01
20 CaHsfB2b Capana01g000273% 1 1008 335 36.37 5.01
21 CaHsfB3a CA05900840 5 705 234 2742 9.13
22 CaHsfB3b CA10g20440 10 735 244 2828 8.09
23 CaHsfB4 CA04918550 4 1140 379 4292 7.62
24 CaHsfB5 CA02g16000 2 606 201 2337 9.02
25 CaHsfC1 Capana09g000311% 9 978 325 36.12 6.52

ORF: open reading frame; AA: amino acid; Mol. Wt.: molecular weight; pl: isoelectric point. Pentagram (%) marks that sequenced IDs are from Zunla-1 genome,

and others without pentagram from CM334 genome
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Fig. 1 Motifs identified by MEME tools in pepper Hsfs. In total, 25 motifs were identified and are indicated by increasing numbers from 1 to 25.
Because motif 13 was the same as motif 8, it was labelled as motif 8. Different motifs are indicated by different borders and colours. The names
of the Hsf members from pepper and their combined P-values are on the left side of the figure, and the motif sizes are indicated at the bottom
of the figure. The same number in different Hsfs refers to the same motif

motifs 2 and 3 in Fig. 1) was found in all 25 CaHsf
members (Additional file 1: Fig. S1). The DBD domain
was composed of three helical bundles (a1, a2 and a3)
and four antiparallel S-sheets (51, 82, 3 and f34), while
no al and intact 1 were detected in the DBD domain
of CaHsfA5, which resulted in its sequence being shorter
than those of the other CaHsfs. In addition to DBD, HR-
A/B, another core conserved domain, was also presented
in all CaHsf proteins, while the other four conserved do-
mains were only found in specific CaHsfs members. For
the CaHsfAs, the NLS domain was found in all 17 mem-
bers. CaHsfA9a had the longest NLS sequence (from the
57th to 248th amino acid), which covered the DBD and
HR-A/B domains, while CaHsfA9b, A9c and A9d had
the shortest NLSs of two amino acids. Three and four
AHA domains, the specific domain that characterizes
CaHsfAs, were identified in CaHsfA2 and CaHsfA3,

respectively, while none were found in CaHsfA9b. For
the CaHsfBs, CaHsfB1 and B5 did not contain the NLS
domain, and similar to CaHsfA9a, CaHsfB3a also pos-
sessed a long NLS sequence (from the 10th to 218th
amino acid) covering the DBD and HR-A/B domains.
The tetrapeptide motif LFGYV, as the core of the RD, was
identified in all CaHsfB members except CaHsfB5, but
only CaHsfB4 contained the NES domain. Interestingly,
only two domains, DBD and HR-A/B, were identified in
CaHsfCl.

Phylogenetic and sequence structure analysis in pepper
Hsf proteins

To discover the phylogenetic relationships among the
Hsf families, the Hsf conserved amino acid sequences
(from the start of the DBD domain to the end of the
HR-A/B region) [1, 41] of 25 proteins from pepper, 21
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Table 2 Motif sequences indentified by MEME tools

Motif Width Multilevel consensus sequence

1 50 FIVWDPPEFARDLLPKYFKHNNFSSFVRQLNTYG
FRKVDPDRWEFANEWF

2 29 CHGNAPPPFLTKTYEMVDDPSTDDIISWN

3 26 LRGQKHLLCNIHRRKPWHNHSHQCCH

4 41 RQHQQGTDHQIQAMTERLQATEHRQQQMMSF
LAKAMQNPGF

5 21 YEEEIERLKREKNVLMMELVK

6 20 VPTGVNDVFWEQFLTERPGC

7 24 DGQIVRYQPPMNEAAKALLQQICK

8 26 QIMQQKGKRKELEEAIRKKRRRPIDH

9 8 CVEVGKFG

10 42 LDESRSCADSPAMSYPQLDIDVGPKVSGIDMN
SEPNGNPTPD

1 14 HMNNLAEQMGHLTS

12 48 HLMSDSGFPFNSCLSVMPEIQYSPTWPGEAKVPQF
PELDALNSQIDH

13 6 KKRRLP

14 19 LCGNIYNMMSNYNADCAEI

15 41 YQGHGIDRLDTLGRADFKRSETGNMPDIDTM
QGIEDGVTTV

16 6 HKYWWN

17 17 LESSLTFWEHYLYDIDQ

18 29 DEIGSLAVEDGLDKEEDFPGYQESDWDKL

19 13 KCKELIDIVSMFA

20 [ PTMWIPQPMEG

21 12 GGTSPHISGVTL

22 20 CGGRGKMMKANDYYGPWMKM

23 [ IANIFISQLCK

24 15 AQLVHQQONESNRHIT

25 6 PHQYYY

Motif numbers corresponded to the motifs in Fig. 1

from Arabidopsis, 25 from tomato (S. lycopersicum), 21
from maize (Z. mais) and 25 from rice (O. sativa) were
used to generate a phylogenetic tree (Fig. 2). Based on
the phylogenetic tree, class HsfA had the maximum
number of subclasses among the three classes, and in-
cluded five smaller clusters of which four (A2 and A6,
Al and A8, A9, A3 and A7) were closer to class HsfC
than the fifth cluster of class HsfA (A4 and A5). Two
HsfA7 members from Arabidopsis (AT3G51910.1 and
AT3G63350.1) were not clustered with the HsfA7 sub-
class from other plant species, but were closer to the
HsfA6 subclass. This was also observed for one member
from the maize HsfA7 subclass (ZM2G005815, closer to
subclass HsfB2), one member from the maize HsfA8
subclass (ZM2G118485, closer to subclass HsfA4), one
member from the rice HsfB4 subclass (Os07g44690.1,
closer to subclass HsfA2) and CaHsfA6c¢ (closer to
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subclass HsfA1). Compared with Arabidopsis, maize and
rice, tomato Hsfs were closer to pepper Hsf proteins,
which was coincident with the botanical classification.

A phylogenetic tree based on the sequences of conserved
domains (from DBD to HR-A/B) in pepper Hsfs was also
constructed (Additional file 2: Fig. S2A), which corre-
sponded to the above mentioned motifs distributions
(Fig. 1, Table 2) and phylogenetic groups (Fig. 2). The
exon/intron structure of all 25 pepper Hsf members was
analysed based on their coding sequences and the corre-
sponding genome sequences to obtain further insights into
duplication events and evolutionary patterns. CaHsfs
shared a highly conserved exon/intron structures, with one
intron and zero intron phases (Additional file 2: Fig. S2B).
There were 15 CaHsf members with the intron located in
the DBD domain, and four members with the intron lo-
cated between the NLS and AHA domains, while the in-
trons in CaHsfA4a and A4b were located between the
AHA1 and AHA2 domains. The length of introns varied
from 77 bp (CaHsfB2a) to 3,205 bp (CaHsfAS).

Chromosomal location and Hsf gene duplications in the
pepper genome

To determine the chromosomal distribution of the
CaHsf genes, the positions were identified based on their
physical positions in the pepper genome database PGP.
The 25 members mapped to 11 out of the 12 pepper
chromosomes, with no genes mapping to chromosome
11 (Additional file 3: Fig. S3). The number of CaHsf
genes on each chromosome varied greatly. The largest
number of CaHsf genes (5) was located on chromosome
2, four genes were identified on chromosome 3, three
genes on chromosome 9, and two genes each on chro-
mosomes 1, 4, 6, 7 and 12. There was only one CaHsf
gene each on chromosomes 5, 8 and 10.

The Plant Genome Duplication Database (PGDD,
http://chibba.agtec.uga.edu/duplication/) analysis con-
firmed that two pairs of the pepper Hsfs (CaHsfA4alA4c
and CaHsfB3a/B3b) were segmental duplicated sequences
(Additional file 3: Fig. S3, Additional file 4: Table S1),
and each of the two pairs were located on different
chromosomes (the former on chromosomes 2 and 4,
and the latter on chromosomes 5 and 10). The ratios of
nonsynonymous to synonymous substitutions (Ka/Ks)
for the two duplicated pairs were less than 1.0, which
suggested that the pairs had evolved mainly under the
influence of purifying selection and that the duplication
events occurred 45.9 (CaHsfA4a/A4c) and 71.31 million
years ago (CaHsfB3a/B3b) [44, 45].

Protein—protein interaction network among CaHsf
members

To provide further biological information on CaHsf
members, their protein—protein interaction network of
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Table 3 Functional domains of CaHsf members in pepper

Gene Domains
DBD(A) HR-A/B(#) NLS(e) AHA(X) RD(m) NES(¥)

CaHsfA1b A 18-111 134-198 e(216) RRITGLNKKRR *AHA2(441) DIFWDHILSA nd ¥¢(492) LTEQMGLL

CaHsfA1d A31-124 146-210 e(222) KHMIERSKKRR *AHA2(435) DPFWEKFLON nd ¥(482) LTEQMEQL

CaHsfAle A11-104 #127-191 (209) RFITGMNKKRR *AHA2(428) DIFWDQILLA nd nd

CaHsfA2  A29-122 #137-201 e(217)RKDKQRIEVGQKRR *AHAT (274) MLFSAALEN; AHA1(306) nd ¥¢(355)LVDQLGF
ENIWEELL; AHA2(346) PVYWGEELED

CaHsfA3 A 49-142 #167-213  (239) RTMRKFIKHQ *AHA1(368) EEEVWSM; AHA2(387) nd nd
TELWGG; AHA3(406) LSDLWDLDPL;
AHA4(423) VDKWPDD

CaHsfAd4a A11-104 #129-186 e(204) RKRR *AHAT(256) LTNWEHILYD; AHA2(340) nd 7¢(389) LTEQLEHL
DVFWEQFLTE

CaHsfAdb A 17-110 #133-190 e(208) KKRR *AHAT(246) INFWEHFLYG; AHA2(367) nd ¥¢(417) LAERMGHL
DVFWEQFLTE

CaHsfA4c A 11-104 #131-188 (206) RKRR *AHA1(258) LTFWEDVLHN; AHA2(344) nd 72(391) LAEQLGHL
DVFWEQFLTE

CaHsfA5 A 13-84 #104-161 e(172) QKLESMDISAFSKKRR *AHA(401) DVFWEQFLTE nd Fc(441) VASNTRKV

CaHsfA6a A34-127 145-209 e(224) RRKELEEEIRNKKRR % AHA(318) EGFWERLLSE nd ¥¢(347) VDILAHHLGFL

CaHsfA6b A 30-123 #149-214 e(229) KRKELEEAIKTKRRR % AHA(300) EGLWEDMLNE nd nd

CaHsfA6c A 44-137 #154-218 e(233) KRKEIEEAITKKRQR *AHA(322) AGFWEELFNE nd nd

CaHsfA8 A 12-119 #147-204 e(326) ITENKEDEV *AHA1(312) DDDDMLEQLL nd nd

CaHsfA9a A66-158 #181-231 o(57-248) *AHA(324) YILWEKLMED nd 7¢(350) VHELEDLI

CaHsfA9b A30-122 #141-191 (207) M nd nd nd

CaHsfA9¢c A34-126 151-201 e(217)T *AHA(261) REFWVKLFED nd ¥¢(301) IAMEGEALI

CaHsfA9d A77-169 #193-243 e(259)V nd nd nd

CaHsfB1  A7-100 #155-192 nd nd m(251) KLFGVLL nd

CaHsfB2a A23-116 #173-209 e(270) KRIRE nd m(261) RLFGFSI  nd

CaHsfB2b A 27-120 202-238 #(290) KRVRR nd m(281) RLFGVSL  nd

CaHsfB3a A19-112 #145-180 e(10-218) nd m(200) MLFGVRL nd

CaHsfB3b A 22-115 ¢153-188 (227) Kl nd m(210) KLFGVRL nd

CaHsfB4  A22-115 #198-234 e(336) KRVH nd m(326) KLFGVPL  ¥(360) LMVLEKDDLGLNLM

CaHsfB5 A 28-125 #158-198 nd nd nd nd

CaHsfC1  A7-101 #121-164 nd nd nd nd

DBD (A): DNA-binding domain; HR-A/B (¢): OD (oligomerisation domain), Heptad pattern of hydrophobic amino acid residues; NLS (e): Nuclear localisation signal;
AHA (%): Activator motifs, aromatic (W, F, Y), large hydrophobic (L, I, V) and acidic (E, D) amino acid residues; RD (m): Tetrapeptid motif LFGV as core of repressor
domain; NES (7): Nuclear export signal. Numbers in brackets indicates the position of the first amino acid present in the putative NLS, AHA, RD and NES in the

C-terminal. nd: no domains detectable by sequence similarity searches by Heatster

CaHsfs was predicated based on the interolog from the
Arabidopsis interactome. Every CaHsf member, except
CaHsfA5, generated a complex interaction network
(Additional file 5: Fig. S4). The Arabidopsis homolog of
CaHsfA5 (AtHsfA5, At4g13980) was not found among
the Arabidopsis Hsf interaction partners. Among the
CaHsfA members, A2, A3 and A6 (A6a, A6b and A6c¢)
interacted with most other CaHsfs, and the three
CaHsfAl members (CaHsfA1b, Ald and Ale) also inter-
acted with each other. However, CaHsfB1 (9 interaction
partners), B3a (6 interaction partners) and B3b (6 inter-
action partners) owned the simple interaction network
compared with class CaHsfA and other class CaHsfB

members, and they did not interact with CaHsfA2, Al
and A6 members. In general, the class CaHsfA members
had more interaction partners than class CaHsfB and
CaHsfC members.

Expression analysis of CaHsf genes at different
developmental stages in various organs

To investigate the potential functions of CaHsf genes
during pepper development, a heat map of the global
transcription patterns of the CaHsf family in CM334
was generated for the pepper genes against RNA-seq
data of five tissues (root, stem, leaf, pericarp and pla-
centa) and seven developmental stages of pericarp and
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Fig. 2 Neighbour-Joining phylogenetic tree of Hsf proteins from pepper, tomato, Arabidopsis, rice and maize. The N-proximal regions (from the start of
the DNA-binding domain to the end of the HR-A/B region) of Hsf proteins were used to construct of the phylogenetic tree with MEGA 5.10. For
Arabidopsis (prefixed by AT), tomato (prefixed by Solyc), rice (prefixed by Os) and maize (prefixed by ZM) Hsf proteins, both locus ID and subclass numbers
are listed. CaHsf proteins are marked in red. An unrooted Neighbour-Joining analysis was performed with pairwise deletion and Poisson correction

\

placenta (Fig. 3). The expression pattern of each CaHsf
gene was significantly different in different tissues and
stages. Among class CaHsfA, CaHsfA2, A6a and A9a
were constitutively expressed at relatively high levels,
while CaHsfA4c, A6b, A9 and A9c were expressed at
low levels or undetectable in all tested tissues, and the
remained class CaHsfA genes were expressed highly in
some specific tissues. For example, the expression levels
of CaHsfA4b in root, PL-6DPA (placenta at 6 days
post-anthesis) and -16DPA were higher than those in

other tissues, but undetectable in PL-B10 (placenta at
10 days post-breaker). Although constitutively expressed,
CaHsfA2, A6a and A9a were transcribed with higher
levels in reproductive organs [PL-B (placenta at breaker)
for CaHsfA2, PC- and PL-MG (pericarp and placenta at
mature green) for A6a, and PC-B10 (pericarp 10 days
post-breaker) for A9a].

CaHsfB1 was also constitutively expressed in all tested
tissues at relatively high abundances, especially in PL (in-
cluding PL-16DPA, -25DPA, -MG and -B). In comparison,
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Fig. 3 Tissue-specific expression analysis of pepper Hsf genes. Raw data were from RNA-seq data of each tissue from CM334. The analysed tissues
including root, stem, leaf, pericarp (PC) and placenta (PL) at 6, 16, 25 days post-anthesis (DPA), PC and PL at mature green (MG) and at breaker (B) stages,
PCand PL at 5 and 10 days post-breaker (B5 and B10, respectively). The data from 22 pepper Hsf genes (excluding CaHsfATe, B3b and B4 whose date are
absent) were used to create a heat map using Heml. The RNA-seq data for zero is indicated as white, and the other data were normalized using log2

the expression level of CaHsfB2b was at its lowest levels in
PC-B (pericarp at breaker) and -B5, and undetectable in
other tissues. CaHsfB3a was expressed at a higher level
in PL-16DPA than in other organs and other PL devel-
opmental stages. In vegetative and reproductive organs,
the highest levels of CaHsfC1 were observed in leaf and
PL-B5, respectively, and the lowest level was found in
PL-B.

Expression analysis of CaHsf genes under HS treatment

To examine the heat response profile for CaHsfs in pep-
per, we analysed the transcription levels of CaHsf mem-
bers in the leaves of thermosensitive line B6 and
thermotolerant line R9 under HS condition (40 °C for
2 h) [37, 38]. As shown in Fig. 4, in the heat-stressed R9
leaves, 22 CaHsf genes (88 %) were up-regulated (>2-
fold) by HS, and two members, CaHsfB3a and B3b, were

down-regulated (<0.5-fold), while only CaHsfC1 did not
show a marked change. Among the up-regulated mem-
bers, the expression levels of CaHsfA2, A3, A6c, BI and
B5 were higher than other members under HS, and the
greatest increase in expression (>140-fold) was found in
CaHsfA3, followed by CaHsfA2 (~20-fold). Compared
with other groups, Al members (CaHsfAlb, Ald and
Ale) were not the predominantly expressed CaHsf
genes. The transcription levels of the two pairs of dupli-
cated CaHsf genes (CaHsfA4a/A4c and CaHsfB3a/B3b)
did not exhibit significant divergences in regulated ex-
pression under HS. For the thermosensitive line B6, only
13 genes (52 %) were up-regulated and 10 genes (40 %)
maintained a stable expression level under HS condi-
tions, which was more than in R9. CaHsfAld, A2 and
A3 were strongly induced in treated B6 leaves, and
CaHsfA2 and A3 showed particularly strong responses
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(See figure on previous page.)

Fig. 4 Relative gene expression levels of CaHsfs, analysed by qRT-PCR, in response to HS treatment in B6 and R9 leaves. HS treatment: 40 °C for
2 h; B6: pepper thermosensitive line; R9: pepper thermotolerant line. gRT-PCR data were normalized using the pepper ubiquitin-conjugating
protein gene (UBI-3) and are shown relative to 0 h. The relative expression levels were calculated using the -AACT method and then a heat map

with Heml was created

to HS in both thermosensitive line B6 and thermotoler-
ant line R9 (Fig. 4).

Expression profiles of CaHsf genes in response to salt and
osmotic stress

Although it was well known that Hsfs are involved in
plant heat acclimatisation, other adverse factors, like salt
and osmotic stresses, also affected plant growth and de-
velopment, so we wondered whether responses to these
stresses involved CaHsfs. Transcription profiles were ob-
tained for CaHsf genes in R9 roots and stems subjected
to 300 mM NaCl (salt stress) for 6 h, and 5 % mannitol
(osmotic stress) for 6 h, respectively.

Under the salt stress treatment, six members (CaHs-
fA1b, A3, A9a, A9, A9d and CI) were up-regulated in
roots and stems, while CaHsfA2, A6c and B4 were
down-regulated in both tissues (Fig. 5). The expression
levels of five genes, CaHsfAld, A4b, A8, B2b and B3a,
were unregulated in roots and stems, while the expres-
sion levels of the remaining 11 members only showed
obvious changes in either roots or stems. For instance,
CaHsfAle, A4c and BI were induced by salt stress in
roots, but not in stems; however, CaHsfA4a, A5, A6b
and BS5 exhibited high expression levels only in stems.
Interestingly, in the subclass of CaHsfA9, CaHsfA9d was
strongly induced (>30-fold) by salt stress in roots, while
CaHsfA9a from stems seemed to be more sensitive to
salt stress (~40-fold).

Under osmotic stress, nine members (CaHsfAlb, Ald,
Ada, A6a, A9a, A9d, B3a, B3b and BS5) were up-
regulated, while four members (CaHsfA4c, A8, A9 and
B4) were unregulated in stems and roots, and the high-
est expressing CaHsf genes were CaHsfA9d (>160-fold)
in root and CaHsfB3b (~46-fold) in stem. However, no
gene was down-regulated in both roots and stems. It is
noteworthy that the expression of CaHsfAlb, A9a and
especially A9d could be induced by both salt and os-
motic stresses in both stems and roots.

Expression profiles of CaHsf genes responses to
exogenous ABA, MeJA, putrescine (Put) and CaCl,
Phytohormones and plant signalling molecules, such as
ABA, MeJA, Put and Ca*", are involved in various stress
signalling pathways [6, 37, 46]. To explore the responses
of CaHsf family genes to these signals, we analysed the
expression profiles of CaHsf genes in R9 leaves treated
with these exogenous substances. As shown in Fig. 5,
after a CaCl, treatment, 13 CaHsf genes were significantly

up-regulated, while 12 genes were unregulated. Similarly,
11 CaHsf genes were unregulated by a Put treatment, and
no gene was down-regulated. Only five and four of the 25
CaHsf genes were up-regulated by ABA and MeJA treat-
ment, respectively, whereas seven and nine members were
down-regulated, respectively.

CaHsfB1 expression could be induced by all four signal
substances, while CaHsfA9a and A9 were up-regulated
by CaCl,, Put and ABA, but down-regulated by the MeJA
treatment. In addition, CaHsfA6a was induced by CaCl,
and Put, but down-regulated by ABA and MeJA. The
genes with the highest induced levels by CaCl,, Put
and MeJA treatment were CaHsfA9d, CaHsfA9a and
CaHsfAld, respectively; however, the transcriptional
levels of CaHsfs after the ABA treatment were not as
high as in other three treatments. The highest expression
level of CaHsfBI induced by ABA increased less than
5-fold compared to the control.

CaHsfA2 locates to the cellular nucleus

Because of its dominant role in thermotolerant cells [1]
and significantly up-regulated expression (Fig. 4), we
characterized CaHsfA2 in pepper. First, to clarify
whether the CaHsfA2 protein localizes to the nucleus,
we investigated the cellular localization of CaHsfA2
protein in a transient expression assay by introducing
the 35S::CaHsfA2-GFP (pBI221-CaHsfA2-GFP) transla-
tional fusion into onion epidermal cells using particle
bombardment. The fluorescence of cells transformed
with the control 35S::GFP (pBI221-GFP) was distributed
throughout the cell, including the nucleus, cytoplasm
and cytomembrane. In contrast, the fluorescence of the
35S::CaHsfA2-GFP chimera was associated with the
cellular nucleus in onion epidermal cells, suggesting a
nuclear localization of CaHsfA2 (Fig. 6).

CaHsfA2 shows transcriptional activity

The transcriptional activity of the CaHsfA2 protein was
examined using a yeast expression system. The fusion
plasmids pGBKT7-CaHsfA2 and pGBKT7 (control) were
transformed into yeast strain AH109, and grown on SD
medium lacking tryptophan (SD/Trp-) or lacking tryp-
tophan, histidine and adenine (SD/Trp-Ade-His-). The
growth status of transformants was evaluated (Fig. 7).
Yeast cells containing either pGBKT7 or pGBKT7-
CaHsfA2 could grow well on SD/Trp- plates; however,
only cells containing pGBKT7-CaHsfA2 could grow on
SD/Trp-Ade-His- plates and turn blue in the presence
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Fig. 5 gRT-PCR analysis of relative CaHsfs transcript levels in R9 plants exposed to various abiotic stresses. gRT-PCR data of HS as seen in Fig. 4. R9:

pepper thermotolerant line; L-HS: heat stress (40 °C for 2 h); R-NaCl and S-NaCl: salt stress (300 mM NaCl for 6 h) responsiveness of CaHsf genes in roots
and stems, respectively; R-Mannitol and S-Mannitol: osmotic stress (5 % mannitol for 6 h) responsiveness of CaHsf genes in roots and stems, respectively.
The expression levels under salt and osmotic stress treatments were relative to that of the samples treated with water. L-CaCl,, —Put, —ABA and -MeJA:
CaCl, (15 mM for 6 h), putrescine (Put, 1.5 mM for 6 h), abscisic acid (ABA, 100 uM for 3 h) and methyl jasmonate (MeJA, 100 uM for 6 h) responsiveness

were sprayed with 10
the control samples

of CaHsf genes in leaves, respectively. MeJA was dissolved in 10 % ethanol and other substances were dissolved in water; therefore, control seedlings
% ethanol (for the MeJA treatment) or water (for the CaCl,, Put and ABA treatments). The expression levels are relative to that of

of 5-bromo-4-chloro-3-indoxyl-a-D-galacto-pyranoside
(X-a-gal), which showed that LacZ, the second reporter
gene, was activated by CaHsfA2. The above results
demonstrated the presence of transcriptional activity in
the CaHsfA2 protein.

CaHsfA2 discriminatively responds to HS in two pepper
lines differing in thermotolerance

To further determine the response of CaHsfA2 to HS, we
analysed the expression of this gene under HS and during
recovery at room temperature in thermosensitive line B6
and thermotolerant line R9 (Fig. 8a). During HS, although
the CaHsfA2 level was induced after 0.5 h at 40 °C (Fig. 8b,
sample b) in B6 and RY, the expression level in R9 leaves

was maintained at a higher level (~40-fold) compared with
control to the end of the HS treatment (40 °C for 6 h)
(Fig. 8b, sample a). After the heat-treated seedlings
were moved back to normal temperature conditions for
the 48 h recovery treatment, the CaHsfA2 expression
level remained at high after a short recovery time (from
2 to 4 h) in RY, while it was down-regulated after a long
recovery time (from 24 to 48 h) in both B6 and R9
leaves (Fig. 8b, samples /1 and i). It is worth noting that
the CaHsfA2 expression level in R9 leaves under HS
conditions for 4 h (sample d) was lower than after a 1 h
HS treatment(sample ¢), and the level was slightly
down-regulated at the end of the HS treatment (sample e)
in B6.
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A pBI221

pBI221-CaHsfA2 CaHsfA2

Fig. 6 Transient expression of the CaHsfA2-GFP fusion protein in onion epidermal cells. (@) Schematic diagram of the construction of the

recombinant CaHsfA2-GFP vector. 35S: a constitutive promoter from the cauliflower mosaic virus; GFP: green fluorescent protein; NOS: nopaline
synthase terminator. (b) Transient expression of GFP and CaHsfA2-GFP in onion epidermal cells. (b1, b3, b5) Onion epidermal cells transformed
with 355:GFP as control. (b2, b4, b6) Onion epidermal cells transiently expressing 355:CaHsfA2-GFP. (b1, b2) Merged images. (b3, b4) Dark field

images. (b5, b6) Bright field images. Bars=0.1 mm

Discussion

More and more evidence suggests that Hsfs play central
roles in plant developmental and defence processes [5,
12, 14, 31, 32, 36, 47]. Benefiting from genome availabi-
lity, the functions of the Hsf family genes have been
characterized in many plants, including the model

plants Arabidopsis [20, 48], maize [8] and rice [39],
as well as other plants, including grass [49], Chinese
cabbage [40] and apple [50]. However, with the lim-
ited investigations into the molecular basis of heat
tolerance, little is known about the Hsf family in

pepper.

A pGBKT7

pGBKT7-CaHsfA2 | GAL4BD

PGBKTT-CaHsiA2

Trp- Trp-/Ade-/His-(+x- a -gal)

Fig. 7 Transactivational activity of the CaHsfA2 protein in yeast. (@) Schematic diagram illustrating the CaHsfA2 cDNA fragments encoding
CaHsfA2 that was fused to the DNA sequences encoding the GAL4 DNA binding domain in the yeast vector pGBKT7. (b) Transactivational
analysis of CaHsfA2 in yeast. Fusion proteins of pGBKT7-CaHsfA2 and pGBKT7 were expressed in yeast strain AH109. The transformants were
streaked on the SD/Trp- and SD/Trp-Ade-His- (with X-a-gal) medium. The plates were incubated at 30 °C for 3 d
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Fig. 8 Expression level of CaHsfA2 in pepper in responses to HS treatment. B6: pepper thermosensitive line; R9: pepper thermotolerant line.
(@) The time course of HS treatments. Triangles indicate the time points when the leaves were collected (sample a-i). (b) Expression profiles of
CaHsfA2 in pepper leaves under the HS treatment at different time points. Expression data were normalized with UBI-3 as the reference gene. The
expression levels are relative to that of the sample a from B6 and R9, respectively

In the present study, 25 Hsf genes in the nutritionally
and economically important pepper were identified based
on the pepper genome (Table 1) [42, 43]. Although the
total number of Hsf genes was similar to that of Arabidop-
sis and tomato [1], the members of some specific Hsf sub-
classes in pepper were different from other two species.
For example, the number of subclass HsfA1 members in
pepper was less, but the number in subclass HsfA6 was
more, than in tomato, while no pepper Hsf members were
classified into subclass HsfA7, which suggested the possi-
bility of a gene loss event during the evolutionary process
[39]. Another interesting observation was the surprising
enlargement of the subclass CaHsfA9 with four members
in pepper, compared with only one member in tomato.
Usually a single HsfA9 gene is found in eudicots, including
Arabidopsis and tomato, whereas soybean contained two
members and Eucalyptos grandis (Myrtaceae) contained at
least 17 closely related HsfA 9-encoding genes [1]. The rea-
sons for the expansion of the CaHsfA9 genes remain to be
elucidated by further investigations.

The DBD domain of about 100 amino acid residues is
highly conserved in yeast, mammals and plants [18];
however, it is noteworthy that the DBD of CaHsfA5 in
pepper, having only 72 amino acid residues, was shorter
than the other CaHsfs, lacked the full al-helix and had a
truncated f51-sheet. However, the central helix-turn-helix

motif (a2-turn-a3) required for specific interactions with
HSEs, and the W amino acid residue in the incomplete
Bl-sheet required for aromatic-aromatic interactions
[51], were still intact in the DBD domain of CaHsfA5,
which might allow the protein to exert basic functions,
but the effects of the truncated DBD in CaHsfA5 need
to be determined. It was interesting that AHA, the es-
sential domain for activator function in the HsfA class
[1], did not occur in CaHsfA9b and A9d (Table 3). These
Hsfs that lacked AHA domains could play their roles
using a characteristic pattern of tryptophan residues by
providing additive contributions to the activator func-
tion or by binding to other HsfAs to form hetero-
oligomers [39, 52].

The phylogenetic analysis revealed that pepper Hsf
members were more closely related to those from to-
mato than to those from Arabidopsis, maize and rice
(Fig. 2), which was consistent with the fact that both
pepper and tomato were members of the Solanaceae
family [42]. In the HsfA9 subclass, four CaHsfA9 mem-
bers (CaHsfA9a, A9b, A9c and A9d) and three tomato
members (S107g040680, S102g072060 and S111g008410)
clustered in the branch of the HsfA9 group. Only one
HsfA9 member from tomato was confirmed, while the
other two members, S102g072060 and S111g008410, were
identified to be Hsf-like (Hsfl) genes, Hsfll and Hsfl2,
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respectively [1]. No Hsf members from eudicot species
(Arabidopsis, pepper and tomato) clustered in the HsfC2
branch, because gene duplications in the monocots
lineage led to subclass HsfC2 being unique in monocot
species [1, 41], which was the most marked difference
between monocots and eudicots. Conversely, HsfA9, B3
and B5, which emerged presumably after the split of
monocots and eudicots [1], were not found in monocot
plants (Fig. 2). The structural analyses showed that all of
the CaHsf genes contained only one intron (Additional
file 2: Fig. S2B), which was presumed to be a conserva-
tive evolutionary pattern, while the diverse length of the
inserted introns might influence the functionally diver-
gences of the CaHsf genes.

The CaHsf genes were distributed on 11 out of 12
chromosomes, except chromosome 11. Similarly, chro-
mosomes 1 and 5 in tomato lacked Hsf genes, suggesting
that the Hsf genes might distribute widely in the genome
of the common ancestor of these members of the Sola-
naceae family. Gene duplication is a major evolutionary
mechanism in genomes that helped plants adapt to vari-
ous environmental stresses [44]. Two pairs of paralogs
(CaHsfA4alA4c and CaHsfB3a/B3b) were detected in
the pepper Hsf family, which was less than the number
in rice (9 pairs) [39], maize (9 pairs) [8], and apple (12
pairs) [50]. Neither pair was involved in the regional du-
plications within the same chromosome. The two mem-
bers of each pair originated from segmental duplications
between chromosomes, which occurred at 45.9 (CaHs-
fA4a and A4c) and 71.31 million years ago (CaHsfB3a
and B3b). Because most plants with diploidized poly-
ploids retained numerous duplicated chromosomal
blocks within their genomes, segmental duplication oc-
curred more frequently than the other two principal
evolutionary patterns (tandem duplication and transpos-
ition events) in plants [44, 53]. Based on the vital role of
segmental duplications in the family evolution, which
occurred frequently in slowly evolving gene families [53],
we proposed that the pepper Hsf gene family might have
a slow evolutionary rate, as in maize [8].

The life activities in plants are attributable to protein—
protein interactions. The construction of protein—protein
interaction networks would provide necessary information
on the mechanisms of life activities and on exploring the
biological functions of unknown proteins. Based on the
interolog from Arabidopsis, the protein—protein inter-
action network among the CaHsfs was constructed
(Additional file 5: Fig. S4). The number of CaHsfA inter-
action partners was the greatest among the three CaHsf
classes, which might indicate that CaHsfAs have a unique
role as the master regulators of thermotolerance, and were
essential for plants survival under serious HS conditions
[1, 26]. In the complex network, CaHsfAls (Alb, Ald and
Ale) interacted with CaHsfA2 and these proteins might
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act synergistically to form a super-activator complex,
which strongly regulates downstream HS-related genes in
Arabidopsis [31]. Despite not participating in the compli-
cated interaction network, the Arabidopsis homolog of
CaHsfA5 (AtHsfA5) specifically interacted and suppressed
the anti-apoptotic factor AtHsfA4 [54], which acted as a
pro-apoptotic factor. CaHsfA5 might have a similar
function in pepper, although such a role needs to be
confirmed.

Gene expression patterns are usually closely related to
their functions [39]. In this study, the expression profiles
of each CaHsf gene in five different tissues were investi-
gated. CaHsfA2, A6a, A9a and BI were found to be con-
stitutively expressed at relatively high levels in the
various tissues and at multiple developmental stages
under normal conditions (Fig. 3). A similar situation was
found in other plants, like Arabidopsis (Al-type Hsfs)
[55], apple (MdHsfAla, Ald, Bla and B1b) [50], wheat
(A1 and A8 groups, and some A2 and A6 group mem-
bers) [41]. The tissue- and stage-specific expression pat-
terns of pepper CaHsf family genes, such as CaHsfAlb
in root, CaHsfB3a in PL-16DPA, CaHsfB5 in PC-B10,
and CaHsfCI in leaf and PL-B5, indicated that CaHsfs
might be widely involved in the development of various
organs and tissues, which is helpful to further under-
standing the functions of CaHsf genes in pepper devel-
opmental biology [56].

Most of the CaHsf genes were up-regulated under HS
conditions. CaHsfAld, A2, A3, A6c, BI and BS5 were
the main members with significantly higher expression
levels during HS in B6 and R9 leaves (Fig. 4), which
suggested that these CaHsfs were major transcription
factors of heat-induced Hsp genes under HS conditions
[41]. In tomato, the close relative of pepper, HsfAla
acted as master regulator for triggering the heat re-
sponse and acquired thermotolerance, and could not be
replaced by other Hsfs [26]. Among CaHsfA members
in thermotolerant line R9, the expression levels of three
members of subclass CaHsfAl (Alb, Ald and Ale)
were not striking, compared with A2, A3 or Aé6¢, and,
similarly, no master regulator was found among the
four members of HsfAl from Arabidopsis yet [1]. These
results indicated that there were species-specific fea-
tures in the functions of Hsf members in regulating
genes involved in plant HS responses. The number of
up-regulated CaHsfA in R9 (17) under HS conditions
was greater than in the thermosensitive line B6 (10),
and the expression levels of major transcription factors
(A2, A3, A6¢, BI and B5) in R9 were higher than their
corresponding levels in B6, although the CaHsfAld ex-
pression level in B6 was much higher than in R9. These
highly expressed CaHsfAs might co-regulate the down-
stream HS-related genes, thus enhancing the pepper’s
thermotolerance.
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Notably, five out of seven members of class CaHsfB,
especially BI and BS5, were significantly up-regulated by
HS in R9 leaves, which was in accord with the HsfBI
and B2 groups in wheat [41]. Most HsfBs, except HsfB5,
contain the tetrapeptide LFGV in the C-terminal do-
main, which is assumed to function as a repressor motif
in the transcriptional machinery [8]. The expression pat-
terns of most CaHsfB members under HS could be ex-
plained by a report in tomato. This work indicated that
HS-induced HsfB1 could act as a coativator, cooperating
with HsfAla by forming a ternary complex with histone
acetyl transferase HAC1 to synergistically activate a re-
porter gene [57] or interacted with HsfAla or A2 to
regulate the different stages of HS response [1]. How-
ever, the roles of these up-regulated CaHsfB members
during HS still needs further investigations. Both
CaHsfB3a and B3b were down-regulated in B6 and R9
leaves under HS conditions, which suggested that the
paralogs might act as repressors among CaHsf members.
The expression level of CaHsfC1 did not present marked
changes under HS in the thermotolerant line R9, which
was similar to ZmHsf-13 from the maize HsfC class [8],
while the down-regulated expression pattern of CaHsfC1
in the thermosensitive line B6 under HS was similar to
those of Cl1 group members from wheat [41]. The
contradictory observation might be attributed to the
species- and lines-specific responses to HS in HsfC, but
testing this hypothesis requires further research.

In addition to HS, CaHsf genes were also regulated by
salt and osmotic stresses (Fig. 5). CaHsfAlb, A9a and
A9d could be induced by HS, salt or osmotic stresses,
while CaHsfA6c and B4 were inhibited by salt stress but
enhanced by HS. The expression of CaHsfB3a and B3b
increased under osmotic stress but decreased under HS,
which indicated that this pair of paralogs might have a
specific regulatory role in strengthening a plants adapt-
ability to stresses other than HS [41]. Interestingly, the
expression pattern of CaHsfA2 was different under salt
stress, HS and even in roots and stems from R9 under
osmotic stress; however, the overexpression of AtHsfA2
conferred not only thermotolerance, but also salt and os-
motic stress tolerance [33], which implied that CaHsfs
might play different roles in various tissues under differ-
ent abiotic stresses and that some CaHsfs might partici-
pate in shared roles among various stresses [56].

The signaling substances Ca®*, Put, ABA and MeJA
are involved in many signal transduction pathways under
various stress conditions, and regulated CaHsfs expres-
sion. Different signals regulated different CaHsfs. For in-
stance, both Ca** and Put could up-regulate CaHsfA6a,
A9a and A9d, while ABA and MeJA down-regulated
CaHsfA6a, which indicated that although most CaHsfs
were highly conserved, they might play their roles via
different signal transduction pathways. Ca’*, as the
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second messenger, couples extracellular signals with
intracellular physiological and biochemical reactions to
regulate the process of signal transduction in plant cells
under abiotic stress. In Arabidopsis, calmodulin AtCaM3
was required in HS signalling to activate calcium/
calmodulin-binding protein kinase (CBK), and the latter
could phosphorylate HsfAla [6]. Thus, it was inferred
that the induction of CaHsfA6a, A9a and A9d by Ca**
might be attributed to CaM3 in pepper through the
calcium-signalling pathway. Put can enhance a plant’s
tolerance to abiotic stresses by regulating cell pH, balan-
cing reactive oxygen metabolism and stabilizing mem-
brane structures [58], but there were few reports about
the function of Put on the regulation of Hsfs. In this study,
Put induced the expression of CaHsfA2, A3, A6a, AYa,
A9d and B4, which could explain our previous observation
that Put was involved in the HS process [37]. ABA
[59-61] and MeJA [62, 63] have been reported to par-
ticipate in the protection against heat damage. CaHs-
fA6a was down-regulated by ABA but up-regulated by
Ca®" and Put, which suggested that CaHsfA6a played
different roles in the physiological processes mediated
by ABA and the Ca®* or Put pathways. Although the
promoters of CaHsfAlb, A4a and A4b contained the
CGTCA- or TGACG-motifs (cis-acting elements in-
volved in the MeJA-responsiveness) (data not shown),
MeJA could barely influence the expression of these genes,
which might result from the joint effects of other cis-ele-
ments and complex regulatory mechanisms.

HsfA2, as the HS-induced enhancer of thermotoler-
ance [1], has been researched in many species [5, 23, 31];
however, only limited characteristics of HsfA2 in pepper
have previously been described [38]. In this study, we
found that CaHsfA2 possessed the typical features of the
Hsf family, including being located in the nucleus by its
NLS domain (Fig. 6, Table 3), having transcriptional ac-
tivity (Fig. 7), and responding to continuous HS (Fig. 8),
which confirmed our genome-wide identification of the
CaHsf genes. Among the 25 pepper Hsfs, the induced ex-
pression of CaHsfA2 in response to HS was only less than
CaHsfA3 in R9 or CaHsfAld in B6 (Fig. 4), which sug-
gested that CaHsfA2 might become a dominant Hsf, as
seen with HsfA2 from Arabidopsis and tomato [64]. The
lower CaHsfA2 expression level in the thermosensitive
line B6 than in the thermotolerant line R9 (Fig. 8) in-
duced under HS might be the reason for the differing
thermotolerance levels in the two pepper lines. However,
the CaHsfA2 level in R9 after 4 h of HS was lower than
after 1 h, and the level was slightly down-regulated at the
end of HS treatment in B6. The different expression pat-
tern might be attributed to regulatory genes or the circa-
dian clock. Under long-term HS conditions, when
Hspl7-1I were maintained at a high level, they directly
interacted with HsfA2, forming inactive complexes [1].
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Once the molecular chaperones were lacking, HsfA2
would be released from the complexes to act as a tran-
scription factors. In addition, HsfB2b was induced after
HS and repressed HsfA2. However, CaHsfA2 might be
a rhythmic gene, like Arabidopsis HsfB2b, which is reg-
ulated by both HS and the circadian clock [65], while
the regulatory mechanism of CaHsfA2 responding to
HS needs to be explored further.

Conclusions

In this study, we identified a total of 25 CaHsfs in the pep-
per genome. Based on the bioinformatics analysis of highly
conserved domains, the CaHsf genes were divided into
three classes, class CaHsfA, B and C, and distributed in 11
out of the 12 chromosomes, with none found on Chromo-
some 11. According to the RNA-seq data from pepper
CM334, the CaHsf members were expressed in at least
one tissue among root, stem, leaf, pericarp and placenta.
Results of quantitative real-time PCR demonstrated that
the CaHsfs responded to HS (40 °C for 2 h), except
CaHsfC1 in thermotolerant line R9 leaves, while thermo-
sensitive line B6 showed different response patterns. Many
CaHsfs were also regulated by salt and osmotic stress, as
well as the signal substances Ca**, Put, ABA and MeJA.
Further more, CaHsfA2 had the typical characteristics of
Hsfs, including being located to the nucleus, having tran-
scriptional activity and responding to continuous HS. Our
research not only added a new member to the plant Hsf
family, but also provided information that could be used
in further functional analyses of CaHsfs under various
abiotic stresses and in elucidating signal transduction
pathways in pepper.

Methods

Identification and annotation of Hsf family members from
Capsicum annuum

The conserved amino acid sequence of DBD (Pfam:
PF00047) was used as a BLAST query against the pepper
genome database PGP (http://peppergenome.snu.ac.kr/,
CM334 and Zunla-1 proteins), and the full-length amino
acid sequences of the Hsf proteins in Arabidopsis, Vitis
vinifera and Populus trichocarpa in the Plant Transcrip-
tion Factor Database (PTFD) [66] were also used as
BLAST query against the PGP and National Center for
Biotechnology Information (NCBI). All output genes
with default (Limit Expect Value le-5) were collected
and confirmed by the Pfam (http://pfam.xfam.org/search)
and SMART (http://smart.embl-heidelberg.de/). The can-
didate Hsf genes from CM334 and Zunla-1 cultivar were
aligned by DNAMAN (Lynnon Biosoft, QC, Canada) for
picking out those genes whose sequences were different
between the two cultivars. The primers were designed by
Primer Premier 5.0 (Premier Biosoft International, CA,
USA) (Additional file 6: Table S2) to amplify the different
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sequences, which were then aligned with the sequences
of the same gene from CM334 and Zunla-1 cultivar to
confirm the correct sequences. The deduced amino acid
sequences were analyzed using Compute pI/MW tool
(http://www.expasy.org/tools/pi_toolhtml) for computa-
tion of the theoretical iso-electric point and protein mo-
lecular weight. The classification of candidate Hsf proteins
from pepper was performed by Heatster (http://www.
cibiv.at/services/hsf/).

Phylogenetic analysis

Multiple alignments of the N-proximal regions (from
the start of the conserved DBD domain to the end of
the HR-A/B region) of Hsf proteins from pepper, to-
mato and Arabidopsis were performed by CLUSTALW
and the result of alignment was used for the construc-
tion of phylogenetic tree [1, 41] using MEGA 5.10 [67].
The parameters for alignment by CLUSTALW were:
gap open penalty: 10; gap extension penalty: 0.2; protein
weight matrix: Gonnet; residue-specific gap penalties: on;
hydrophilic penalties: on; gap separation distance: 0; end
gap separation penalty: on; use negative matrix: on; delay
divergent cutoff (%): 30. The neighbor joining phylogen-
etic trees were constructed with pairwise deletion, 1000
bootstraps and a Poisson model.

Sequence structure analysis and identification of
conserved domains in pepper Hsf proteins

Exton/intron organization of the Hsf genes in pepper
was illustrated with Gene Structure Display Server pro-
gram (GSDS, http://gsds.cbi.pku.edu.cn/index.php) [68]
by alignment of the cDNAs with their corresponding
genomic DNA sequences. The MEME program (http://
meme-suite.org/tools/meme) was used for identification
of conserved motifs, with the following parameters:
number of repetitions: any; maximum number of mo-
tifs: 25; and the optimum motif widths: 6-200 amino
acid residues. The conserved domains annotation was
performed using Pfam (http://pfam.xfam.org/search),
SMART (http://smart.embl-heidelberg.de/) and Heatster
online tools.

Chromosomal location and gene duplication

Information about the chromosome locations was
based on the PGP and the genes were mapped to the
chromosomes using MapDraw [69] by identifying their
physical chromosome position. Identification of pepper
Hsf genes duplication was conducted using Plant Genome
Duplication Database (PGDD, http://chibba.agtec.uga.edu/
duplication/index/locus). Nonsynonymous (Ka) and syn-
onymous (Ks) rates (Ka/Ks) were calculated based on the
results of identification of pepper Hsf genes duplication,
by which the Ks value was converted into divergence
time in millions of years based on a rate of 6.1 x 10™°


http://peppergenome.snu.ac.kr/
http://pfam.xfam.org/search
http://smart.embl-heidelberg.de/
http://www.expasy.org/tools/pi_tool.html
http://www.cibiv.at/services/hsf/
http://www.cibiv.at/services/hsf/
http://gsds.cbi.pku.edu.cn/index.php
http://meme-suite.org/tools/meme
http://meme-suite.org/tools/meme
http://pfam.xfam.org/search
http://smart.embl-heidelberg.de/
http://chibba.agtec.uga.edu/duplication/index/locus
http://chibba.agtec.uga.edu/duplication/index/locus

Guo et al. BMC Plant Biology (2015) 15:151

substitutions per site per year, and the divergence time
(T) was calculated according to the formula: T =Ks/
(2 x 6.1 x 107%) x 10° million years ago [44, 45].

Prediction of protein—protein interaction network

As there were no references for pepper interactome ana-
lysis, the interolog from Arabidopsis was used for pre-
dicting protein—protein interaction network of CaHsf
members. First, Arabidopsis homologous sequences were
searched in INPARANOID (http://inparanoid.sbc.su.se/
cgi-bin/index.cgi) [70] based on the sequences of
CaHsfs. Then, the edge information file (querynw.sif) of
Arabidopsis homologs (AtHsfs) were generated via
AraNet (http://www.functionalnet.org/aranet/) [71], and
mapped to CaHsfs to create an edge information file of
CaHsf members. Finally, the protein—protein interaction
network of CaHsfs was drawn with Cytoscape_v3.2.1
(National Institute of General Medical Sciences, MD, USA).

Plant materials, growth conditions and stress treatments
In this study, two pepper lines, thermotolerant line R9
(introduced from the Asia Vegetable Research and De-
velopment Center) and thermosensitive line B6 (selected
by the pepper research group in the College of Horticul-
ture, Northwest A&F University, Yangling, China) were
used. Pepper seedlings were cultivated under a condition
of 26/20 °C day/night and a 16/8 h day/night photo-
period in a growth chamber till the 6-8 true leaves
period for various treatments. For the HS treatment, the
seedlings of B6 and R9 with 6-8 leaves were directly
placed in the 40 °C light incubator (GXZ-380C, Jiangnan
Instrument Factory, Ningbo, China). The leaves of
treated seedlings were collected after 0 and 2 h of HS
treatment [37, 38]. For analysis of CaHsfA2 time-course
expression with HS treatment, after being subjected to
40 °C for 0, 0.5, 1, 4, 6 h, and recovered at room
temperature (26/20 °C day/night) for 2, 4, 24, 48 h after
HS treatment for 6 h, the leaves of B6 and R9 were col-
lected, respectively (Fig. 8a). For other treatments, R9
seedlings were treated with salt stress (300 mM NaCl for
6 h), osmotic stress (5 % mannitol for 6 h), abscisic acid
(ABA, 100 uM for 3 h), methyl jasmonate (MeJA , 100 uM
for 6 h), CaCl, (15 mM for 6 h ) and putrescine (Put,
1.5 mM for 6 h). MeJA was dissolved in 10 % ethanol, other
substances were dissolved in water, and control seedlings
were treated with 10 % ethanol (for MeJA treatment) or
water (for NaCl, mannitol, CaCl,, Put and ABA treatment).
The roots and stems were collected from seedlings
treated with NaCl and mannitol, and the leaves were
sampled for other treatments. The samples were frozen
in liquid nitrogen and stored at —80 °C for RNA extrac-
tion. Each treatment was conducted with three bio-
logical replicates, and samples from five seedlings were
gathered for each replicate.
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RNA extraction and quantitative real-time PCR analysis
Total RNA were isolated according to the instruction of
Total RNA kit (BioTeke, Beijing, China), and the cDNA
was synthesized according to the manufacturer’s instruc-
tions (Takara, Dalian, China) and was diluted to 50 ng/uL
with ddH,O. For quantitative real-time PCR (qRT-PCR)
assay, primer pairs (Additional file 7: Table S3) for pepper
Hsf genes were designed at the C-terminal domain by Pri-
mer Premier 5.0, and their specificity was checked by
NCBI Primer BLAST (http://www.ncbi.nlm.nih.gov/tools/
primer-blast/index.cgi?LINK_LOC=BlastHome). Ubiquitin
binding protein gene UBI-3 from pepper was used as the
reference gene [72]. The qRT-PCR reactions were carried
out on the iQ5.0 Bio-Rad iCycler thermocycler (Bio-Rad,
Hercules, CA, USA) using SYBR Green Supermix (Takara,
Dalian, China). The 20 pL reaction system contained
10 pL SYBR Green Supermix (2x), 2 uL. ¢cDNA template
(50 ng/pL), 0.8 uL of each primer (10 pM) and 6.4 uL
ddH,O. The qRT-PCR reaction systems were as follows:
pre-denaturation at 95 °C for 1 min, followed by 40 cycles
of denaturation at 95 °C for 10 s, annealing at 56 °C for
30 s, extension at 72 °C for 30 s. The fluorescent signal
was measured at the end of each cycle, and the melting
curve analysis was performed with heating the PCR prod-
uct from 56 °C to 95 °C for verifying the specificity of the
primers. Three independent biological replicates were car-
ried out and qPCR of each replicate was performed in
triplicate. The relative expression levels of pepper Hsf
genes were calculated as -AACT method [73].

Pepper Hsf genes tissue-specific expression analysis
Based on the pepper genes against RNA-seq data of each
tissue [42], we chose the data of 17 tissues and develop-
mental stages including root, stem, leaf, pericarp and pla-
centa at 6, 16, 25 days post-anthesis (PC-6DPA, —16DPA
and -25DPA, PL-6DPA, —-16DPA and -25DPA ), pericarp
and placenta at mature green (PC-MG, PL-MG) and at
breaker (PC-B, PL-B), pericarp and placenta at 5 and
10 days post-breaker (PC-B5 and -B10, PL-B5 and -B10)
from CM334 for the CaHsf genes tissue- and stage-specific
expression analysis. The data of the 22 pepper Hsf genes
(excluding CaHsfAle, B3b and B4 whose date are absent)
were used for creating a heat map using Heml (The
Cuckoo Workgroup, Wuhan, China).

Subcellular localization of CaHsfA2

Based on our previous study [38], the ORF of CaHsfA2
without the termination codon was prepared by PCR
using cDNA from R9 leaves treated with 40 °C for 2 h as
the template and a primer pair (forward primer 5'-GC
TCTAGATCCATCTTAATTGTATTTAGCGAC-3' and
reverse primer 5-CGGGGTACCAAGGAAACCAAGTT
GATCTACAAG-3'). The underlined nucleotides con-
tained the Xbal and Kpnl restriction site, respectively.
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The PCR-amplified CaHsfA2 fragment was fused to the
pBI221 expression vector and the CaMV35S:GFP (pBI221)
vector without CaHsfA2 was used as a control. For transi-
ent expression analysis, 5 pg of CaMV35S:CaHsfA2-GFP
plasmid or CaMV35S::GFP plasmid was introduced into
the onion (Allium cepa) epidermal cells using a Bio-Rad
He/1000 particle delivery system (Bio-Rad, Hercules, CA,
USA). Bombarded cells were incubated at 28 °C for 24 h
on 1x MS (Murashige and Skoog) agar medium, and then
green fluorescent protein (GFP) fluorescence was ob-
served using an AIR confocal-laser scanning microscope
(Nikon, Tokyo, Japan).

Analysis of transcriptional activation of CaHsfA2 in yeast
cells

Transcriptional activation of CaHsfA2 assay was performed
in the yeast strain AH109 with LacZ and His reporter
genes. The complete coding sequence of CaHsfA2 was
amplified by PCR using primers (forward primer 5'-
TCCATCTTAATTGTATTTAGCGAC-3' and reverse
primer 5-AGGGAATGATAGAGTCGTGGG-3'). The
PCR products were cloned into pMD19-T vector (Takara,
Dalian, China), and the confirmed fragment (Smal site of
pMD19-T vector linked with the 5" untranslated region of
CaHsfA2 and Pstl site linked with the 3" untranslated re-
gion) was cut with restriction enzymes Smal and Pst] from
pMD19-T vector, and then linked into Smal/Pstl sites in
the pGBKT7 vector to create pGBKT7-CaHsfA2. The
constructs of pGBKT7-CaHsfA2 and the negative control
pGBKT7 were cloned into AH109 yeast strain, respect-
ively, according to the manufacturer’s protocol (Clontech,
Palo Alto, CA, USA). Transformed strains were confirmed
by PCR and sequencing and then plated on SD/Trp- or
SD/Trp-Ade-His- plates. Transcription activation was
evaluated according to the growth status of yeast cells
after incubating plates at 30 °C for 3 d with 5-bromo-4-
chloro-3-indoxyl-a-D-galacto-pyranoside (X-a-gal).

Availability of supporting data

The phylogenetic data in this publication are available
for download at TreeBase with accession number
17530 (http://purl.org/phylo/treebase/phylows/study/TB2:
$17530). The RNA-seq data were available from genome of
pepper cultivar CM334 (http://www.nature.com/ng/journal/
v46/n3/full/ng.2877 html#supplementary-information) [42].

Additional files

Additional file 1: Fig. S1. Multiple sequence alignment of the DBD
domains of 25 members of the Hsf protein family in pepper. The
definition of the Hsf names corresponded to the order of alignment. The
multiple alignment result clearly shows the highly conserved DBD
domains among pepper Hsf genes. The 3D structure and the secondary
elements (a1-B1-B2-02-T-a3-33-B4) are shown above the alignment. T:
turn of helix-turn-helix motif.
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Additional file 2: Fig. S2. Phylogenetic analysis (A) and exon/intron
organizations (B) of pepper Hsf genes. Numbers above or below
branches in (A) indicates bootstrap values. Differently colored lines shows
genes in each subclass. Numbers 0, 1 and 2 in (B) represent introns in
phases 0, 1 and 2, respectively.

Additional file 3: Fig. S3. Chromosomal mapping of pepper Hsf gene
family. Chromosomal mapping was based on the physical position (Mb)
in 11 out of 12 pepper chromosomes. The chromosome numbers are
indicated at the top of each chromosome. Chromosomal positions of the
pepper Hsf genes are indicated by gene names. Blue and gray dotted
lines connect the CaHsf genes present duplicate chromosomal segments.
Additional file 4: Table S1. Divergence between CaHsf genes pairs in
pepper.

Additional file 5: Fig. S4. The predicted protein—protein interaction
network of CaHsfs.

Additional file 6: Table S2. Primers for amplifying the different
sequences between CM334 and Zunla-1 genome among CaHsf
members.

Additional file 7: Table S3. Primer sequences used for quantitative
real-time PCR analysis.
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