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Abstract

Background: Rapeseed (B. napus, AACC, 2n = 38) is one of the most important oil seed crops in the world, it is also
one of the most common oil for production of biodiesel. Its oil is a mixture of various fatty acids and dissection
of the genetic network for fatty acids biosynthesis is of great importance for improving seed quality.

Results: The genetic basis of fatty acid biosynthesis in B. napus was investigated via quantitative trail locus (QTL)
analysis using a doubled haploid (DH) population with 202 lines. A total of 72 individual QTLs and a large number
pairs of epistatic interactions associated with the content of 10 different fatty acids were detected. A total of

234 homologous genes of Arabidopsis thaliana that are involved in fatty acid metabolism were found within the
confidence intervals (Cls) of 47 QTLs. Among them, 47 and 15 genes homologous to those of B. rapa and B.
oleracea were detected, respectively. After the QTL mapping, the epistatic and the candidate gene interaction
analysis, a potential regulatory pathway controlling fatty acid biosynthesis in B. napus was constructed, including
50 enzymes encoded genes and five regulatory factors (LECT, LEC2, FUS3, WRIT and ABI3). Subsequently, the
interaction between these five regulatory factors and the genes involved in fatty acid metabolism were analyzed.

Conclusions: In this study, a potential regulatory pathway controlling the fatty acid was constructed by QTL
analysis and in silico mapping analysis. These results enriched our knowledge of QTLs for fatty acids metabolism
and provided a new clue for genetic engineering fatty acids composition in B. napus.
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Background

Oilseed rape (Brassica napus L., AACC, 2n = 38) is one
of the most important oil crops producing multi-purpose
oil for food and biofuel in many parts of the world. In
2007, biodiesel production accounted for 7% of the global
vegetable oil supplies, in which 68% were used for biofuels
in the EU [1]. As the global requirements for rapeseed oil
are growing rapidly, increasing the oil content and im-
proving the oil composition are important ways to meet
the demands of agricultural feed stocks.

The fatty acid composition of rapeseed oil is considered
to be genetically more variable than any other major vege-
table oils [2]. Rapeseed oil is a mixture of seven main fatty
acids [3]. Fatty acid biosynthetic pathways are generally
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controlled by multiple genes and considered as quantita-
tive traits regulated by QTLs. So far, a number of QTLs
controlling oil composition were identified in B. napus.
Ecke et al. identified two QTLs for erucic acid distributed
on chromosomes A6 and C2 [4]. Four QTLs for erucic
acid distributed across chromosomes A1, A2, A8 and C3
were reported and three of these coincided with QTLs for
the accumulation of oil content [5]. Burns et al. observed
13 QTLs affecting composition of 10 fatty acids, and seven
also affected oil content [6]. Hu et al. identified two QTLs
for oleic (on Al and A5) and linolenic acids (on A4 and
C4), respectively [7]. One to eight QTLs were detected
for seven individual fatty acids by Zhao et al., and eight
of these also affected oil content [8]. Recently, Smooker
et al. identified 34 QTLs for five major fatty acids [9],
and Yan et al. detected a total of 40 QTLs for six fatty
acids, which were most clustered on chromosomes A8,
A9 and C3 [10].
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The allotetraploid B. napus has two progenitor species,
B. rapa and B. oleracea, which shared their last common
ancestor with A. thaliana about 20 million years ago
[11,12]. Both a high degree of sequence similarities and
chromosomal colinearities between Brassica species and
Arabidopsis were reported [13-15]. Parkin et al. reported
21 conserved blocks within the Arabidopsis genome
shared with B. napus [16], and Schranz et al. proposed a
set of 24 conserved chromosomal blocks in B. napus
[17]. Furthermore, all the genome sequence of B. rapa,
B. oleracea and B. napus have been released [18-20]. It
is feasible to predict the Arabidopsis orthologous genes
for specific agronomic traits within the Brassica genome.
For example, a number of candidate genes were mapped
to CIs of QTLs for flowering time by in silico mapping
[21], and a total of 14 lipid-related candidate gene loci
were located in the CIs of six QTLs for seed oil content
[22]. In fact, many important genes involved in fatty acid
metabolism were identified in Arabidopsis, such as FAB2,
FAD2, FAD3 and FAE1 [23-26], and the orthologs of these
genes in B. napus were also reported and mapped. Bna-
FAD2 was mapped on Al, A5, C1 and C5 chromosomes
[27-29], and one major QTL BnaA.FAD2.a located on A5
was responsible for high C18:1 [27]. BnaFAD3 was
mapped on A3, A4, A5, C3 and C4 [9,27], and two major
QTLs BnaA.FAD3.b and BnaC.FAD3.b were both respon-
sible for low C18:3 [27]. BnaFAEI was mapped on both
A8 and C3 [9], and two FAEI homologous genes on A8
and C3 linkage groups were also found by Qiu et al. [5]
and Fourmann et al. [30]. Collectively, although genes or
QTLs for fatty acid biosynthesis have been identified, the
genetic network for all these metabolic pathways in B.
napus needs to be elucidated.

In Arabidopsis, more than 120 enzymatic reactions
and at least 600 genes are involved in acyl-lipid metabol-
ism [31]. Li-Beisson et al. gave metabolic pathways associ-
ated with the biosynthesis and degradation of acyl-lipids
in Arabidopsis [31]. The genome of polyploid B. napus
may typically contain six distinct alleles for each gene
present in Arabidopsis [32], the fatty acid biosynthesis
and the gene regulation in B. napus might have a more
complex pathway than that in Arabidopsis. Though
much attention was given to genes and regulatory fac-
tors involved in acyl-lipid metabolism in Arabidopsis
[31,33-37], similar questions concerning the genetic
basis of fatty acid biosynthesis in B. napus remain open,
mainly due to the lack of integrative studies at a popula-
tion scale. Moreover, the interaction of genes involved
in acyl-lipid metabolism has not yet been studied based
on co-location of mapped candidate genes with QTLs in
B. napus. To determine these key steps in relevant com-
plex metabolic pathways of acyl-lipids in B. napus, it is
first necessary to identify QTLs or genes associated with
fatty acids composition.
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In this paper, we describe the genetic bases of seed fatty
acid composition through QTL mapping in B. napus. The
aims of this study were as follows: (1) to add knowledge
concerning QTL mapping of the fatty acid composition in
B. napus; (2) to predict candidate genes of major QTLs
for different fatty acids’ biosynthesis by comparative gen-
ome analysis; and (3) to construct a regulatory pathway
for fatty acids metabolism in B. napus.

Results

Variation and single QTL analysis of fatty acid composition
in the ‘Tapidor’ x ‘Ningyou?7’ cross (TN) DH population
Means of all traits measured from the TN DH popula-
tion over six environments were close to the mid-parent
values (Table 1). There was a wide range of variations and
transgressive segregations for the concentration of each
fatty acid (Figure 1). The population appeared to have a
normal or near-normal distribution for C16:0, C18:0,
C18:2, C18:3, C20:0, C22:0 and FAS (Saturated Fatty
Acid), suggesting complexity of their genetic networks.
However, C18:1, C20:1 and C22:1 showed bi-modal distri-
butions, indicating that they might be controlled by few
major genes with a relatively large effect. The distribution
patterns of 10 fatty acids’ compositions showed that they
were genetically stable but also affected by environment.
The correlation between different fatty acid composi-
tions showed great differences (Table 2). Erucic acid
(C22:1) content was highly and positively correlated
with the level of C20:0, C20:1 and C22:0 (Coefficients
0.30-0.63), but was negatively correlated with other fatty
acids (-0.92 to —0.03), especially C18:1 (-0.92) (Table 2).
C18:1 showed a high positive correlation with C16:0
and C18:0 (0.70-0.75) and moderate positive correlation
with C18:2 and C18:3 (Table 2), but showed a high nega-
tive correlation with other fatty acids (-0.92 to -0.33).

For QTL mapping analysis, Wincart 2.5 detected a
total of 139 QTLs distributed across 15 chromosomes
(except for C1, C2, C4 and C7) and individual QTL for
any given trait explained 1.27-47.56% of phenotypic vari-
ance (PV) (Additional file 1). QTLNetwork_2.0 detected a
total of 44 QTLs across 15 chromosomes (Additional
file 2). After combining QTLs for different traits clustered
in the same regions indicated by the same close-linked mo-
lecular markers, a total of 72 QTLs controlling fatty acid
composition were identified (Figure 2, Table 3), and 10, 44
and 18 QTLs were detected by using QTLNetwork 2.0
only, Wincart 2.5 only and both QTLNetwork 2.0 and
Wincart_2.5, respectively (Table 3).

Individual saturated fatty acids were only analyzed in
three environments (07D, 07 W1 and 08 W2). For
C16:0, 18 QTLs were detected across seven chromo-
somes (Table 3). Among these QTLs, seven (39%) were
detected by two types of software. The additive effect
ranged from -0.29 to 1.72, and explained 2.74-37.99%
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Table 1 Means and ranges for seed fatty acids of TN DH population evaluated in six environments

Traits 16:0 C18:0 C18:1 C18:2 c18:3 C20:0 C20:1 C22:0 C22:1
Tapidor Mean®  4.82+003 1.89+0.1 5743 +246 175+ 084 776+052 067001 241+124 035+001 283+091
Ningyou7  Mean 315001 1.11+£004 1745+285 1292145 854+048 085+004 882+008 0.73+001  4555+0.27
DH Mean 394053 163+£041 3412+£1563 154433 822+097 077+03 1088+£562 04=0.16 243+1556
Max 587 4.92 7354 27.24 12.02 6.88 19.66 1.86 52.22
Min 2.84 0.89 94 861 1.31 0.14 1.08 0 0

“Mean value + SE.

of PV (Additional files 1 and 2). For C18:0, 12 QTLs
distributed across seven chromosomes had -0.24 to
0.10 additive effect and explained 3.05-37.73% of PV
(Table 3, Additional files 1 and 2). Three of them (on
A1, A4 and C3) were environment-specific QTLs detected
only in one environment. A total of 13 QTLs controlling
C20:0 explained 4.02-47.55% of PV (Table 3, Additional
files 1 and 2). Nine QTLs on five chromosomes for C22:0
were detected, and three were environment-specific, their
additive effect ranged from —0.06 to 0.11, and explained
4.02-47.56% of PV (Table 3, Additional files 1 and 2). In
09D, 09 W2 and 09 W3, all saturated fatty acid compo-
sitions were considered as one trait named FAS, and a
total of 10 QTLs were detected with additive effect
ranged from -0.28 to 0.24 and explaining 3.96-31.33%
of PV (Table 3, Additional files 1 and 2).

For the other four unsaturated fatty acid components,
phenotypic data were obtained from six different envi-
ronments, except for C20:1 from three environments
(07D, 07 W1 and 08 W2). Twelve QTLs for C18:1 were
distributed across seven chromosomes and their additive
effect ranged from -10.96 to 3.18 and explained 1.88-
42.43% of PV (Table 3, Additional files 1 and 2). Nine
QTLs on six chromosomes were associated with C18:2,
with the additive effect ranging from -1.69 to 0.56 and
explaining 3.10-36.26% of PV (Table 3, Additional files 1
and 2). Twenty-one QTLs on 10 chromosomes were sig-
nificantly associated with C18:3, which had -1.64 to 0.42
additive effect and explained 5.70-22.29% of PV (Table 3,
Additional files 1 and 2). For C20:1, 10 QTLs were de-
tected across Al, A8, A9, C1, C3 and C8 in three environ-
ments (Table 3). Six of them were found in two or more
environments, and the remaining four were only in one en-
vironment. Nine QTLs were observed for C22:1 distributed
across A4, A7, A8, C3, C6 and C9, and singly explained
1.27-45.79% of PV (Table 3, Additional files 1 and 2).

Co-localization of mapped candidate genes of B. rapa and
B. oleracea with single-locus QTL

A total of 932 molecular markers were mapped to the
new version of the TN map. This map covered a total
length of 2116.73 ¢M with an average marker interval of
2.27 cM. The length of the 19 linkage groups varied
from 65.83 (C1) to 154.53 (C3) ¢cM (Additional file 3).

Thirty-four synteny blocks (28 for A genome, 6 for C gen-
ome) and 149 insertion fragment islands (95 for A genome,
54 for C genome) were identified between Arabidopsis
pseudochromosomes and TN DH genetic linkage groups
by the in silico mapping approach (Additional file 3). More
than twenty-nine thousand homologous genes were found
to underline the CIs of 61 QTLs associated with the con-
centrations of 10 different fatty acids, by comparative ana-
lysis between the linkage map of TN DH and the genome
of Arabidopsis (Additional file 4). Among them, a total of
111 key genes involving fatty acid metabolism were used as
candidate genes in the present study (Additional file 4). A
number of important genes were found, such as FAB2,
FAD?2, FAD3 and FAEI, but also five regulatory factors,
LECI, LEC2, FUS3, WRII and ABI3. As the polyploid B.
napus genome may typically contain six loci for each gene
present in Arabidopsis, these 111 genes were found to have
824 homologous genes mapped on the TN DH linkage
map in total, including 97 key genes of 234 homologs
underlying the CIs of 47 QTLs (Additional file 4). All of
the QTLs with CIs containing homologous genes were
separately compared to the physical genomic regions of B.
rapa (A genome) and B. oleracea (C genome). To compare
with the B. rapa genome, 32 QTLs containing candidate
gene(s) distributed on the A genome of the TN DH linkage
map were used for analysis, accounting for 65.3% of the
total QTLs on the A genome. In total, 47 genes in B. rapa
matched those in Arabidopsis underlying 24 QTL Cls
(Additional file 4). For the C genome of the TN DH linkage
map, 23 QTLs were detected and 15 (65.2%) of them
contained candidate gene(s) in Arabidopsis. Comparison
of the candidate genes showed 15 genes in B. oleracea
matched those in Arabidopsis underlying 7 QTL Cls
(Additional file 4). For example, on the C3 linkage group,
33 candidate genes (40 homologous genes) of Arabidopsis
were located in the CIs of eight QTLs, and 10 candidate
genes of B. oleracea were found based on the candidate
genes of Arabidopsis, including the regulatory factor ABI3
of previous studies (Figure 3).

Epistatic QTLs and interaction analysis of candidate genes
for fatty acid compositions

QTLNetwork_2.0 and Genotype Matrix Mapping ver2.1
(GMM) software were used to identify the epistatic
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Figure 1 Distribution of fatty acid concentrations of TN DH population in multiple environments. The unit of x-axis means percentage of
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Table 2 Pearson correlation coefficients for trait pairs affecting fatty acid compositions in the DH population

C16:0 C18:0 c18:1 C18:2 c18:3 C20:0 C20:1 C22:0 C22:1
160 1
180 062" 1
1811 070" 075" 1
182 006 005 003 1
183 026" 006 003 -001 1
€200 023" 012" -033" -003 -0.13" 1
201 -058" 052" 077" -0.03 012" 031" 1
€220 037" -041" 051" —0.04 -0.16" 027" 011" 1
C22:1 077" 078" -092" -004 -003 030" 063" 060" 1

**Significant at P=0.001.
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Figure 2 QTL distribution of fatty acid concentrations on linkage groups in B. napus. Whole linkage groups are shown with black lines
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groups containing QTLs. The names of traits are listed on the left side of the linkage groups. The black lines on the linkage groups show the
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group of B. napus.




Table 3 The combined QTLs for fatty acid contents detected by WinQTLCart_2.5 and QTLNetwork_2.0

QTL Chr.2 Marker interval LOD Additive PV(%) range st Env. traits
qAT1-1 A1l znS13M26-100-CB10081 3.1 -1.28 4.87 0.3-7.2 w 07D C20:1
gA1-2 Al CB10097-JICB0313 36 0.19 715 26.1-2838 W 07 W1 c183
qA1-3 A1 HBr006-ZAAS156a 7.6 0.29 14.64 35.9-37 w 07 W1 c18:3
gAT1-4 Al JICB0455-znS08M15-320 4.8 0.24 1142 39.8-43.1 W 07 W1 c183
qA1-5 A1l em09me21-70-ZAAS165 4.0 0.07 3.43 80.4-84.6 we&Q 07 W1 C18:0
qA2-1 A2 CB10355-0110F04 3.1 0.23 6.64 0-18.2 W&Q 09 W3 c18:3
qA2-2 A2 HR-Sp1-210-pX154 3.3 0.31 7.85 56.2-61.5 w 09 W2 C18:3
qA2-3 A2 BRMS-082-HG-FT-A2 35 0.32 8.43 61.5-67.3 w 09 W2 c18:3
gA3-1 A3 ZNS13M26-360-HBR160 0.05 202 15.7-214 Q C1e:0
qA3-2 A3 RA2E11-BRMS-303 3.8 -0.03 4.02 35.9-37.7 w 07 W1 C20:0
gA3-3 A3 CB10271-CNU250 33-40 —0.52-0.02 3.01-5.66 37.8-430 W&Q 07D/07 W1 C16:0/C18:2/C20:0/C22:0
gA3-4 A3 HBr124-KBrB043L02-12 3.1 -0.10 322 61.5-63.7 W 07D C16:0
gA3-5 A3 HBr137-CNU270 3.0-35 -0.1-32 3.52-3.56 67.4-76.1 W&Q 07D/08 W2 C16:0/C18:1
gA3-6 A3 HR-52-130-HR-Tp4-165 38 —-0.03 478 79.0-86.5 W 07D €220
qA4-1 A4 OL11H02C-SR12307I -1.02 0.39 100.1-104.1 Q C22:1
gA4-2 A4 ZnS13M26-220-sN3514f 44 0.18 8.86 14.0-23.2 W 08 W2 C16:0
gA4-3 A4 IGF3365B-SN 13034 -0.09 543 25.7-285 Q C160
qA4-4 A4 BRMS-276-HR-C001-A4 4.6 0.06-0.17 1.04-8.02 29.5-35.2 w&Q 08 W2 C16:0/C18:0
gA4-5 A4 niab048-JICB0O134 34-54 -0.03-0.18 545-6.26 45.6-60.5 W 07D/07 W1 C16:0/C18:3/C20:0
gA4-6 A4 JICBO134-HBr091 522 —0.05_-0.04 037-544 60.5-67.2 W&Q 07 W1 C18:3/C20:0
qA4-7 A4 HBr202-HS-k02-2 3.2 0.24 6.98 70.4-82.3 W 07D C183
qA5-1 A5 BRMS-034-niab017 3.3 0.03 4.18 22.9-29.3 w 07D C22:0
gA5-2 A5 niab013-pX129a 38 0.09 440 57.9-599 W 09D FAS

gA5-3 A5 CNU206-PIET-6 32-37 0.09-0.26 4.38-8.17 65.3-79.0 W&Q 09 W3/09D C18:3/FAS
gA5-4 A5 CNU268-HR-Tp4-200 3.1-33 -23-0.22 1.88-5.96 82.3-89.7 W 07D C18:1/C183
gA5-5 A5 IGF3134a-CNU362 38 023 6.76 95.5-109.3 W 07D c183

gA6-1 A6 Ol 1F12a-ZAAS92a 48 029 10.56 0-4.6 W&Q 07D c183
qA6-2 A6 HBr201-BRMS-030 3.2 -0.07 3.05 40.7-51.1 W&Q 07D/07 W1 C18:0
qA6-3 A6 HR-Tp3-320-pW217 4.1 0.25 7.51 9.1-14.2 w 07D C18:3
qA7-1 A7 IGF1226l-CNU053b 3 -1.70 1.27 100.2-105.5 w 07D C22:1
gA7-2 A7 HBr030-znS06M34-50 54 -0.10 4.36 64.0-70.7 W 07 W1 C16:0
qA7-3 A7 CNU167-CNU044 4.4 -0.09 3.62 71.2-74.8 w 07 W1 C16:0
qA7-4 A7 BRMS-036-HBr021 4.5 -0.10 4.10 74.8-79.8 w 07 W1 C16:0

16:SL (S10T) AbBojoig 1ubjd DG *|p 12 Buem

81 Jo 9 abed



Table 3 The combined QTLs for fatty acid contents detected by WinQTLCart_2.5 and QTLNetwork_2.0 (Continued)

gA8-1
gA8-2
gA8-3
gA8-4
qA8-5

GA8-6

gA9-1
gA9-2
gA9-3
qA9-4
gA9-5
gA9-6
GA9-7
gA10-1
gA10-2
gA10-3
qCi1-1
qC3-1
qC3-2

qC3-3

qC3-4
qC3-5
qC3-6
qC3-7
qC3-8
qC5-3
qCs-1
qC5-2
qC6-1
qC6-2
qC6-3

A8
A8
A8
A8
A8

A8

A9
A9
A9
A9
A9
A9

a

a
a
a
a
a
(&)
a5
cs5
(€5)
(€9
(€9

em10me26-120-JICB0335
HBr107-HBro17
HBr104-HBr010
Na12B05a-HBr031
IGF1108c-sR7178

HBr015-HBr026

pW123aH-HBr178
CNU296-KBrB073D09-12
HBr197-HBr205
HBr205-niab003
IGF1087g-niab127
em18me23-380-HBr196
pW203b-HBr053
RA2E03-HS-b14-1
HS-§90-HG4-HG-CO-A10
JICBO551-JICB0573
EM18ME23-300-CB10258
IGF5376b-HBr014
HBr014-0113C12

IGF0235b-BRMS-093

pX141bE-HBr032
pW221-pX141aE
HBr211-HBr152
OI11G11b-pW143
HBr139-CNU099
0110B02-JICB0509
IGF3112a-em12me21-150
em12me21-150-IGF0193C
HBr025-Na12E01a
HBr057-HBr047
SR12387-EM14ME28-200

4.7
34
3.1-59.9

39-332

36
32
4.5
43
33
39
34
35
3.3-46

34-15.
4.7-386

3.8-64.9

49
44
42

4.7

3.2
35-7.2
4.2-4.6
55

4.0

—-0.04-0.64
007

0.05

-0.22
-10.4-9.14

-9.1-89

0.08

-3.20
0.04
-1.50

0.52

0.03

-0.08

0.24
—2.59-042
-0.05
0.58
—8.20-8.63
—9.83-8.86

—10.96-9.78

0.10

0.07

1.52
-0.05
-3.10
0.10
-0.06-0.55
0.28-0.56
0.24
-0.21
-0.57

4.39-642
15.24
9.30

6.16
5.7-47.55

7.7-387

2.74
464
5.59
647
332
497
3.96
6.29
20-129
0.28
3.85
5.0-300
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Table 3 The combined QTLs for fatty acid contents detected by WinQTLCart_2.5 and QTLNetwork_2.0 (Continued)

qC7-1 Cc7 SNRH63-CNU400 -0.13 1.68 18.8-37.2 Q C183

qCs-1 (@] CB10504-sN11670a 34 0.36-0.54 3.0-365 324-46.8 W8&Q 07D/09 W3 C18:2/C20:1
qC9-1 c9 CB10064-em20me27-230 6.1 -0.12 6.28 26.3-42.9 w 07 W1 C16:0
qC9-2 c9 EM20ME27-230-HR-TP3-360 0.13 3.83 46.2-50.3 Q C18:3

qC9-3 9 BRMS-154-HBr144 5 -0.12 531 52.7-61.2 WeQ 07D/07 W1 C16:0

qC9-4 a9 HBr186-SA30 3.1-4.1 —0.14-0.08 397-54 62.5-74.2 W 07D/08 W2 C16:0/C18:0
qC9-5 c9 $16071-3F3R-sNRG42 34 0.07-0.90 0.03-3.3 76.2-82.8 w&Q 07D C18:0/C22:1
qC9-6 c9 HR-Sp1-170-sR12384l 36 271 336 92.7-984 W 09 W3 181
“Chromosome.

®The software used to detect QTL. W, WinQTLCart_2.5; Q, QTLNetwork_2.0.

“The environment in which the QTLs are detected.
The QTL with bold indicates that no candidate genes are located in the confidence interval of this QTL in the present study.
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interactions for fatty acid compositions. Twenty-four
pairs of epistatic QTLs involving 28 loci were identified
by QTLNetwork_2.0 for 10 measured traits (Additional
files 5 and 6), with 1-5 epistatic QTL pairs for each trait.
The proportion of total PV explained by all epistatic
QTLs was 1.03-38.26% for each trait. Among 24 epi-
static QTLs, two, three and 19 were NN, AN and AA in-
teractions, respectively. A total of 395 loci interactions
were identified by GMM, including 34 pairs of digenic
and 361 pairs of trigenic interactions (Additional file 7).
By comparing the epistatic interactions by GMM and
single QTL based on common markers, 312 pairs of epi-
static interactions were associated with QTLs. Some of
the epistatic QTLs affected the level of more than one

fatty acid composition. For example, the interactions of
two loci associated with QTLs gA8-5 and gC3-3 were
detected by both types of software, which controlled
different fatty acid compositions (C16:0, C18:0, C18:1,
C20:1, C22:0 and FAS by QTLNerwork_2.0 and nine traits
except FAS by GMM; Additional files 6 and 7). This indi-
cated that epistatic interactions were very important for
fatty acid metabolism in B. napus.

For C16:0, four pairs of epistatic QTLs were detected
by QTLNetwork_2.0, explaining 0.66-4.99% of PV. The
interaction between QTL gA8-5 and gC9-3 explained
3.39% of PV (Additional file 6). The genes OLEOI, ACC2,
FAEI, LPATI and ATSI were underlying the QTL CI of
qA8-5, while LEC1, LEC2, ACC2, TAG1, KASIII and ATSI
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were underlying the CI of gC9-3 (Additional file 4). A total
of 34 significant loci interactions were identified for C16:0
by GMM, containing one pair with digenic and 33 pairs
with trigenic interactions, most of these trigenic interac-
tions have loci underlying three QTLs of ClIs, including
QTLs gA8-5, gA8-6 and qC3-3 (Additional file 7). A num-
ber of homologous genes were mapped to the CI of gAS8-
6, including LECI, LEC2, ACC2, KASIII, FAD3, GPAT7,
BCCP2, ACBP, PDAT, and ATSI, but only one homolo-
gous gene CYCAI for gC3-3 was found (Additional file 7).
All the results above suggested that the potential of these
gene interactions increased the level of C16:0. Similar to
C16:0, a series of pairs of epistatic QTLs and loci interac-
tions for another nine traits were identified by QTLNet-
work_2.0 (Additional file 6) and GMM (Additional file 7),
and numerous important genes underlying QTL CIs were
identified (Additional file 4). For example, for C18:0,
C18:1 and C18:2, besides the trigenic interaction of QTLs
qA8-5, gA8-6 and gC3-3, the interactions between QTLs
qC3-2 and gA8-5 were also identified, and FAEI was
underlying the CI of gC3-2.

Cytoscape_V2.6.3 software was used to investigate the
interaction of candidate genes that were observed from
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the single and epistatic QTL results and the gene inter-
action network was constructed. The results revealed
that the whole network incorporated 167 nodes and 416
edges, that could be divided into three sub-clusters: the
five regulatory factors (FUS3, ABI3, WRII, LECI and
LEC?2) and the genes that were directly affected by only
one regulatory factor (A cluster, Figure 4a), the genes
affected by two or more regulatory factors (B cluster,
Figure 4b) and the genes indirectly affected by regulatory
factors (C cluster, Figure 4c). The A cluster consisted of
32 nodes and 105 edges in total. The five regulatory
factors formed a tightly intra-linked group, with each
regulatory factor under the influence of at least two other
regulatory factors, and LECI and LEC2 were especially af-
fected by all other four regulatory factors. In addition to
the five regulatory factors, BCCP2 and CAC2 were under-
lying the QTL CIs. BCCP2 was associated with QTLs
qA3-1 and gA8-6, which affected C16:0, C18:2 and C20:0;
CAC2 was associated with QTL gC9-4 and affected C18:0.
These two genes were both regulated by WRII. The B
cluster was composed of seven nodes and 40 edges, in
which the genes were affected by at least two regulatory
factors. SEP2 and LFY in this group were directly affected

-
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Figure 4 Gene interaction pathway. Network visualization for interaction of the 93 candidate genes and regulatory factors observed from the
QTL results using Cytoscape_V2.6.3 software. Genes are presented as nodes and gene interactions are presented as edges. (a) The five regulatory
factors and genes that are directly affected by only one regulatory factor: the five regulatory factors indicated by round rectangle with different
color (yellow, LEC2; pink, LECT; green, FUS3; light blue, ABI3; red, WRIT), while the genes are depicted as hexagon with the same color of the
regulatory factors which linked to them. (b) The genes affected by two or more regulatory factors, denoting as diamond-shaped nodes, and

the two diamond-shaped nodes with light blue color are LFY and SEP2, separately. (c) The genes indirectly affected by regulatory factors. In the
middle of the cluster are three very important genes in fatty acid synthesis denoted as rectangle nodes with different color (pink, FAD2; green,
FAET; light yellow, FATB), and other genes are depicted as ellipse pink-filled nodes.
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by all five regulatory factors. LFY was linked to other eight
genes (Figure 4), and two of them (FAD2 and FAEI in
cluster C) were well-known important genes involved in
fatty acid synthesis. The C cluster included 128 nodes and
319 edges, and 27 genes were detected to underline the
QTL ClIs. FATB associated with QTL gA8-2 was notably
affected by both FAE1 and FAD2, and FATB also affected
another eight genes (ACP1, FAD3, FATA, ACTI, TES,
TAGI1, CYP86A2 and GPATS) that were underlying the
QTL CIs. The network mentioned above indicated that
the genes involved in fatty acid synthesis were directly or
indirectly affected by regulatory factors.

Construct of a potential controlling pathway of fatty acids
in B. napus

Among the 97 genes of Arabidopsis located in the Cls of
47 QTLs in B. napus, 57 were shown to have roles in 32
different pathways (Additional file 8). Among them, 31
genes were involved in at least one of the five pathways,
including biosynthesis of unsaturated fatty acids, fatty
acid metabolism, glycerophospholipid metabolism, fatty
acid biosynthesis and alpha-linolenic acid metabolism,
with 13, nine, nine, eight and six candidate genes, re-
spectively (Additional file 9). The potential pathway for
fatty acid synthesis in B. napus, which included 50 genes
and the five regulatory factors mentioned above, was con-
structed by combining the main pathways that involved
interaction of candidate genes as well as knowledge of
fatty acid regulatory pathways in Arabidopsis (Figure 5).
The candidate genes in the deduced pathways could be di-
vided into three types: genes associated with the fatty acid
biosynthetic pathway (Figure 5a), the phospholipid synthe-
sis and other pathways (Figure 5b) and the triacylglycerol
and fatty acid degradation (Figure 5c¢).

The diagrams of the fatty acid biosynthetic pathway in
the plastid and the cytosol/endoplasmic reticulum could
be divided into four categories: genes participating in
early stages of fatty acid synthesis, fatty acid elongation
and desaturation, triacylglycerol biosynthesis and regula-
tors of fatty acid biosynthesis. At least 24 enzymes were
involved in the plastidial fatty acid synthetic pathway [38].
ACCase was a major control point of the pathway among
these enzymes [39,40], and four subunits of ACCase were
detected (Figure 5a) and assigned to 13 QTLs: ACC2 was
assigned to seven QTLs: gA3-3, qA5-2, qA8-5, qA8-6,
qA9-4, qC3-1 and ¢gC9-3; BCCP2 to QTLs gA3-1 and
qA8-6; CAC2 to QTL qC9-4; and CAC3 to QTLs gA4-7,
qA8-1 and qC6-1 (Additional file 4). Downstream from
ACCase, fatty acids were constructed and elongated by
each cycle with four reactions (steps 3-5). In step 3, two
genes EMB3147 and AT1G62610 were found underlying
the CIs of one (gAS5-3) and four QTLs (qA8-6, gA9-7,
qC9-3 and gC9-4), respectively. Candidate genes of KASIII
(qA8-6, gA9-7, qC9-3 and qC9-4) and FABI (gA7-2) in
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step 4 and FABI in step 5 were also observed. This sug-
gested that all these candidate genes in QTL Cls could
affect the traits through their action in early stages of
fatty acid synthesis.

Most C18:0-ACP produced by elongation was desatu-
rated by the stearoyl-ACP desaturase in step 6, and FAB2
(qA8-1 and qC6-1) and AT5G16240 (qA3-1, qA8-6 and
qA10-2) were found. Some important candidate genes
were found to be associated with fatty acid elongation and
desaturation; for example, FAEI and CERIO appeared in
step 9. FAEI was associated with QTLs gA1-4 detected by
C18:3 and gA8-5 with all 10 traits, and gC3-2 with nine
traits but not C18:3. CER10 was assigned to gA4-3, gA5-2,
qA10-1 and qC9-6, which were detected with C16:0, FAS,
C18:3 and C18:1, respectively.

Triacylglycerol synthesis could be divided into four main
steps [38,41]. DHAP could be reduced to G3P catalyzed
by GPDH, and GPDHcl (qA8-1, qC6-1 and gC9-4) and
SDP6 (gA3-5, qA5-4, qC3-7 and qC5-1) were revealed in
this step. From G3P to PA of steps 13 and 14, fatty acids
were sequentially transferred from CoA to positions 1 and
2 of G3P catalyzed by GPAT and LPAT, respectively. GPAT
was composed of 10 subunits [38], seven of which except
for GPAT3, GPAT8 and GPAT9 were observed in this step.
Among them, GPAT1, GPAT2 and GPAT4 were associated
with QTL gA8-2; GPATS with QTLs gA3-5, gC3-7 and
qC5-1; GPAT6 with QTLs qA4-7, qA8-1 and ¢Cé6-1;
GPAT7 with QTLs gA8-6 and gqAI0-3; and ATSI with
QTLs gA3-3, qAS-2, qA8-5, qA8-6, qA9-4 and qC9-3
(Additional file 4). LPAT was a main enzyme in step 14
with five subunits [38], and LPAT2, LPAT3, LPAT4 and
LPATS were associated with four (gA4-2, gA9-2, qA10-1
and gC9-6), two (gA5-2 and gC3-5), one (qA9-6) and four
(qA3-6, qA5-3, qC3-8 and qC5-1) QTLs, respectively.
LPP3 was associated with QTLs gA3-4 and gC5-1 that
catalyze dephosphorylation of PA to release DAG in step
15. Step 16 was the final step of TAG synthesis and TAGI
(qC8-1 and gC9-3), AT3G44830 (qC3-4) and PDA (qA3-1
and gA8-6) were observed in this step. Many genes or
QTLs involved in one step indicated that the fatty acid
synthesis in B. napus was very complicated.

Besides those genes that had direct activities in cata-
lyzing fatty acid synthesis, some regulators (LECI, LEC2,
FUS3, WRI1 and ABI3) underlying QTL CIs were also
found (Figure 5). The interaction analysis indicated that
WRII directly affected BCCP2 and CAC2, and indirectly
affected FABI and FATB in early stages of fatty acid syn-
thesis regulation, while WRI1, LEC1/2, FUS3 and ABI3
all indirectly affected FAEI, FAD2 and FAD3, which
played important roles in later modifying and transport-
ing processes. LEC1 and LEC2 were underlying the Cls
of five QTLs (¢A3-3, qA8-4, qA8-6, gA9-6 and ¢qC9-3)
and six QTLs (gA3-3, qAS5-2, qA8-4, qA8-6, qA9-4 and
qC9-3), respectively. Both LECI and LEC2 affected nine
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following reference papers [30,37,38].

Figure 5 Potential regulatory pathways and candidate genes associated with fatty acid synthesis in B. napus. a, the fatty acid biosynthetic
pathway; b, the phospholipid synthesis and other pathways; ¢, the triacylglycerol and fatty acid degradation. The black characters indicate
genes detected in previous studies and also in this study, the red characters indicate genes not found in this study but in previous studies. The
colored arrows indicate genes underlying a QTL which affects traits with additive effect, up-arrows indicate QTLs with positive additive and
down-arrows a negative additive effect. The double-headed arrows indicate genes underlying different QTLs which affect the same trait with
opposite additive effect at the same time based on the WinQTLcart2.5 and QTLNetwork_2.0 results (not combined results of the two). Different
colors denote different traits as the bar shown at the lower right corner of the picture. The abbreviations of gene name are same with the

fatty acid compositions, except for C18:0, in different en-
vironments. FUS3 located in the CI of the QTL gC7-1
that was only associated with C18:3. WRII located in the
CIs of QTLs gA4-3, qA5-2 and gA10-1 was associated
with C16:0, FAS and C18:3, respectively. ABI3 was asso-
ciated with three QTLs (gA5-3, gC3-8 and ¢qC5-1) and
affected the levels of C18:3, FAS, C18:1, C18:2 and C20:0
(Figure 5). Moreover, the epistatic effects of major gene—
gene interactions were also identified in fatty acid synthe-
sis (Figure 5). For example, the major genes FATB, FAEI,
FAD2 and FAD3 were all under the influence of each
other and all could affect the gene TAGI in the final step
of TAG synthesis, and then affected the level of different
fatty acids (Figure 5). All these findings indicated that the
regulatory pathway of fatty acid synthesis was a complex
network, controlled by a large number of genes and also
affected by gene—gene interactions.

Potential phospholipid synthesis (Figure 5b), and triac-
ylglycerol and fatty acid degradation (Figure 5c), were
also predicted in B. napus based on knowledge of acyl-
lipid metabolism in Arabidopsis [31]. G3P was converted
to DAG3P by sequential acylation reactions in steps 17
and 18, which was regulated by GPAT and LPAT, and the
homologous genes involved in the two steps were very
similar to the genes in steps 13 and 14, respectively. Then
DAG3P was converted to PC or PE by a series of enzyme
reactions. In the pathway of triacylglycerol and fatty acid
degradation, a number of homologous genes were also
found, and the six genes in step 26 were the same as the
genes in step 20. Moreover, gene LPI1, which functioned
in degradation of TAG to MAG, affected the level of nine
traits but not C20:0.

In addition to the 47 QTLs with candidate genes
mapped in the CIs, the remaining 25 QTLs also affected
the concentrations of one or two fatty acids. QTL gA4-4
on chromosome A4 with additive effect on traits C16:0
and C18:0 might be assigned to step 5 (Figure 5) with
potential ketoacyl ACP synthetase activity. QTL gC5-2
might be assigned to step 11 with a similar function to
FAD3, as the QTL had a consistent additive effect on
traits C18:2 and C18:3. QTL ¢gC9-5 might be a pleio-
tropic locus with a similar function to FAEI as it had an
additive effect on traits C18:0 and C22:1. The remaining
22 QTLs only had additive effects on one trait. Based on

the premise that plastidic synthesis and modification
should result in consistent QTL effects on products in
any of the individual sets of saturated fatty acids [42],
qA7-3, gA7-4 and qC9-1 affected CI16:0, and gA1-5 and
qA6-2 affected C18:0, which allows us to assign these
QTLs tentatively to early stages of synthesis. The other
17 QTLs may be assigned to desaturation and elongase
steps, as they affected C18:3, C20:0, C20:1, C22:0, C22:1
and FAS. Generally, it is important to take into account
all the preceding synthetic and modification steps where
a QTL could be identified for a particular fatty acid [42];
however, assigning a specific enzyme activity to these
QTLs is relatively complex.

Discussion

A total of 72 QTLs and a large number of pairs of epistatic
loci for 10 fatty acid compositions were identified using
QTL analysis. Then 234 homologous genes were mapped
in the CIs of 47 QTLs. QTL mapping and interaction
analysis of candidate genes enabled the construction of
a regulatory pathway that controlled the different con-
centrations of fatty acids in B. napus.

Single QTL mapping of each fatty acid concentration
showed that QTLs on A8 and C3 were highly correlated.
QTL gA8-5 on A8 affected concentrations of all 10 types
of fatty acids, and explained PV of individual fatty acids
ranging from 15.89% for C20:1 to 47.55% for C20:0, and
QTL gA8-6 affected seven fatty acids; meanwhile, both
QTLs qC3-2 and gC3-3 on C3 affected nine fatty acids
but not C18:3. All these results revealed that these
QTLs were major QTLs, consistent with previous stud-
ies [6,9,10]. For the two QTLs on C3, the alleles from
‘Ningyou 7’ conferred higher levels of C20:0, C20:1,
C22:0 and C22:1, but had negative effects on levels of
C16:0, C18:0, C18:1 and C18:2. The group C16:0, C18:0,
C18:1 and C18:2 were positively correlated with each
other, and likewise for the group C20:0, C20:1, C22:0
and C22:1; however, the two groups showed a negative
correlation (Table 2). The fact that QTLs clustered in
certain linkage groups and controlled different traits
with opposite effects, corroborated strongly with the
significant positive and negative correlations among the
fatty acids analyzed. Besides the two major QTLs on A8
and C3, another 15 QTLs also affected more than one
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fatty acid. Moreover, the number of QTLs associated
with a single fatty acid in the present study ranged from
nine (C18:2, C20:0 and C22:1) to 21 (C18:3), and a total
of 72 QTLs for all 10 traits detected were more than
that from previous studies [6-10], with a number of new
QTLs for different fatty acids. No QTLs for C16:0 were
found on A4, A7 and C9 previously [6,8,10], suggesting
that the 10 QTLs on these chromosomes in the TN
population were all new QTLs. The unsaturated fatty
acids were synthesized as a result of the fatty acid desat-
uration pathway, starting from C18:0; however, only a
few QTLs for C18:0 were detected in previous studies.
Zhao et al. identified two QTLs for C18:0 on A6 and A7
[8], Smooker et al. identified one QTL on A9 [9], and
Burns et al. detected four QTLs respectively on Al, A6,
A7 and A8 [6]. Herein, 12 QTLs across seven chromo-
somes were detected, and the QTLs on A4 (one QTL),
A10 (two QTLs), C3 (four QTLs) and C9 (two QTLs)
were new. QTLs for C18:1 were identified on 14 chromo-
somes except A4, A6, C2, C5 and C7 [6-10]. In the present
study, there were 12 QTLs associated with C18:1 across
seven chromosomes, nine of which also affected other
fatty acids. QTLs for C18:2 were identified on 15 chromo-
somes except A4, A10, C5 and C9 [6,8-10], indicating that
the two QTLs (gC5-1 and gC5-2) for C18:2 on C5 were
new. There were 21 QTLs for C18:3 identified here, and
three QTLs (qA2-1, gA2-2 and gA2-3) mapped on A2 and
one QTL (gC7-1) on C7 were new QTLs, but the former
18 QTLs were distributed across 14 chromosomes exclud-
ing A2, A3, A9, C6 and C7 [6-10]. Many QTLs for C22:1
were identified on 14 chromosomes excluding A4, A5, A7,
C1 and C5 [4-6,8-10,43]. Two major QTLs associated with
C22:1 on A8 and C3 chromosomes were observed in the
present study, which was consistent with previous studies
[5,9], and two new QTLs (gA4-1 and gA7-1) were mapped
on A4 and A7 chromosomes (Table 3).

Generally, additive effects are considered as the main
factors contributing to variations in quantitative traits
[44,45]. However, epistatic effects can also play an import-
ant role in complex traits in B. napus [46,47]. Epistatic
QTLs was found to explain PV ranging from 0.01% for
C18:2 to 25.47% for C20:1 (Additional file 6), showing
similar trends to previous studies [48]. Moreover, interac-
tions among 395 loci were identified by GMM, including
34 pairs of digenic and 361 pairs of trigenic interactions
(Additional file 7). A number of candidate genes were
mapped to the CIs of these QTLs. These results showed
that epistasis may substantially contribute to variation in
oil concentration in different crops.

The regulatory pathway constructed in this study was
based on QTL information and the interaction of candi-
date genes associated with the single and epistatic QTLs
of 10 fatty acids, as well as previous knowledge concerning
Brassica species and Arabidopsis [31,42]. A large number
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of important genes were found to be candidate genes for
the processes of fatty acid metabolism. Among the 50
genes and five regulatory factors detected, 31 genes
(62.0%) affected more than one trait, and FAEI and ATSI
affected nine (but not C20:0) and 10 traits, respectively.
Previous studies found that FAEI affected oil composition
in several steps of seed fatty acid synthesis and modifica-
tion pathways in B. oleracea [42] and B. napus [30,49]. In
B. napus, the orthologs of FAD2 and FAD3 were mapped
in different linkage groups of the genome. BnaFAD?2 loci
were mapped in linkage groups Al, A5, C1 and C5 [28],
and BnaFAD?2 located in different linkage groups was
found to be responsible for the high C18:1 level [29] and
erucic acid content [9]. It seemed clear that a major func-
tional variant of FAD2 orthologs in the A genome was lo-
cated on linkage group A5, but unclear whether FAD2 loci
were present in the Brassica C genome [8,29]. The ortho-
log of FAD3 was identified in the control of C18:3 level in
B. napus, and a specific marker of fad3 was located in the
CI of the QTL for C18:3 in linkage group Al [50]. In the
present study, FAD2 was located in three QTLs Cls: gA3-
5 by C16:0 and C18:1, ¢C3-7 by C20:0, and gC5-1 by
C18:2 and C20:0 using in silico mapping. The homologous
genes of FAD3 were mapped in the Cls of seven QTLs:
qA3-5 by C16:0 and C18:1; gA5-3 by C18:3 and FAS; gAS-
4 by C18:1 and C18:3; gA8-6 by C18:1, C18:2, C20:0,
C20:1, C22:0, C22:1 and FAS; gA10-3 by C18:0; gC3-7 by
C20:0; and gC5-1 by C18:2 and C20:0. Taken together,
these findings increased the understanding of the import-
ant genes affecting the processes of fatty acid metabolism
in B. napus.

Despite the multiple studies on the function of several
important genes in fatty acid biosynthesis [23-26], the
regulatory mechanism of the pathway is still not well
understood in B. napus. Five regulatory factors (LECI,
LEC2, WRII, FUS3 and ABI3) were involved in the
process concerning the fatty acid biosynthetic pathways,
which might correspond to new important findings in
this study. Both LECI and LEC2 could act as positive
regulators upstream of ABI3 and FUS3 in the control of
seed maturation [51-53], and several studies revealed that
these four regulatory factors might have a function in
regulation of fatty acid metabolism [37,51-54]. WRII,
which acted downstream of LEC2, controlled expression
of a subset of genes involved in fatty acid biosynthesis
[33], and overexpression of WRII caused an increased
TAG level in both seeds and leaves of Arabidopsis [34]. In
this study, each of the five regulatory factors was under
the influence of at least two other regulatory factors, and
LECI and LEC2 were especially affected by all four other
regulatory factors (Figures 4 and 5). Moreover, all five
regulatory factors were associated with C18:3, but none
affected C18:0. Conversion of acetyl-CoA to malonyl-
CoA by acetyl carboxylase (ACCase) is one of the most
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committed steps in fatty acid biosynthesis [39,40], and
reduction of ACCase activity caused a decrease of fatty
acid content in the range of 1.5-16.0% in transgenic
seeds of oilseed crops [55]. Most of the enzymes involved
in de novo fatty acid synthesis seemed to be affected by
WRII [33], and only WRII of the five regulatory factors
had a direct impact on transcription levels of genes in the
plastidial fatty acid synthetic pathway [38]. As a result of
the interaction analysis of candidate genes, two genes
CAC2 and BCCP2, which encoded subunits of ACCase,
were found to be under the influence of WRII. In the
process of fatty acid elongation and desaturation, no can-
didate genes were shown to be under the influence of the
five regulatory factors in this study (Figure 5). Among the
targets of the five regulatory factors, LFY might represent
a key factor mediating the regulatory action of elongation
and desaturation processes, as it was directly affected by
all five regulatory factors and also regulated important
downstream genes, including FAD2, FAEI and FATB, and
these three genes regulated a series of downstream genes
(Figure 4). LFY was arguably the most important floral
meristem identity gene, which encoded a plant-specific
transcription factor and controlled multiple aspects of
floral morphogenesis [56,57]. It was striking that LFY
played an important role in the regulatory pathway of
fatty acid metabolism, and is worthy of future study.

Overall, these results provided important new insights
into the regulatory model for the control of oil synthesis
in B. napus and enhanced our understanding of the fatty
acid synthesis pathways.

Conclusions

In this study, 72 individual QTLs and a large number
pairs of epistatic interactions contributing to fatty acid
biosynthesis were identified. By using in silico mapping
analysis, 234 homologous genes of A. thaliana that could
be involved in fatty acid metabolism within the ClIs of 47
QTLs were found. After QTL mapping and candidate
gene analysis, a potential regulatory network controlling
fatty acid metabolism was revealed in B. napus. Our re-
sults provided new insights into the regulatory model for
the control of oil synthesis in B. napus.

Methods

Plant materials and field experiments

The segregating DH population (the TN DH popula-
tion), with 202 DH lines derived from the cross
‘Tapidor’ x ‘Ningyou7’ was constructed by Qiu et al. [5].
The DH lines as well as their parents were grown in six
independent environments in China. The population was
grown at Wuhan (W1) for one year (September 2007 to
May 2008, 07 W1), Huanggang (W2) for two years
(September 2008 to May 2009, 08 W2; September 2009
to May 2010, 09 W2) and Qichun (W3) for one year
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(September 2009 to May 2010, 09 W3) in Hubei Province;
and Dali for two years (September 2007 to May 2008,
07D; September 2009 to May 2010, 09D) in Shaanxi
Province. Wuhan, Qichun and Huanggang were the
experiment bases of Huazhong University of Science
and Technology, and Dali was the experiment base of
Hybrid Rapeseed Research Center of Shaanxi Province.
No specific permissions were required for the field trials.
For each field trial, all lines were planted in a randomized
complete-block designed with three replicates, and each
plot contained 30 plants per genotype [58].

Measurements of fatty acid composition

Bulked seed samples (200 mg) from each of replicates in
the three environments (07D, 07 W1 and 08 W2) were an-
alyzed for their fatty acid compositions by gas liquid chro-
matography according to Riicker and Robbelen [59]. In
three other environments (09D, 09 W2 and 09 W3), fatty
acid compositions were determined by near-infrared re-
flectance spectroscopy (NIRS) using standard methods
[60] and all saturated fatty acid compositions in these three
environments were considered as one trait named FAS.

Linkage map construction and map alignment with
Arabidopsis, B. rapa and B. oleracea

The TN genetic linkage map of B. napus, which was in-
troduced by Jiang et al. was updated in the present study
[61]. A total of 932 markers were mapped to the new link-
age map generated with the TN DH population using Join-
Map_4.0 [62]. Detailed information of TN genetic linkage
map was summarized in Additional file 3. Of the 932
linked markers, 429 with known sequence information or
corresponding to Arabidopsis genes were used as anchored
markers to carry out map alignment between B. napus and
Arabidopsis according to the method of Long et al. [21].
If more than three homologous sequence-informative
markers in the TN DH population were closely linked
within one conserved block of Arabidopsis as described
by Schranz et al. [17], a synteny block was considered to
exist. If there were only one or two sequence-informative
marker(s), it was recognized as an insertion segment. The
homologous genes underlying the block or island were
considered to be candidate genes if they were just under-
lying the QTL CI. There were 111 key genes (824 homolo-
gous genes) (Additional file 4) involved in fatty acid
metabolism of Arabidopsis collected from the TAIR web-
site [63] and in silico mapping in the genetic map as de-
scribed by Long et al. [21]. The comparative mapping
analysis between B. napus and B. rapa/B. oleracea was
done using BLAST analysis on the Brassica Database [64]
or B. oleracea Database [65]. The sequence of markers
in the TN DH linkage map was used as a query se-
quence. All available sequence-informative markers on
B. napus were subjected to BLASTn analysis to identify
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their physical positions on Arabidopsis, B. rapa and B.
oleracea chromosomes. Then the Brassicaceae building
blocks that corresponded to each informative marker
were identified. The candidate gene(s) in B. napus, B.
rapa and B. oleracea for each informative marker were
also identified.

QTL and epistasis analysis

QTL analysis was done using the QTLNetwork_2.0 soft-
ware described by Yang et al. [66,67] and WinQTLCart_2.5
[68], and epistasis QTL mapping analyses were performed
using the QTLNetwork_2.0 and GMM [69]. For QTLNet-
work_2.0, a mixed linear model was used to identify QTLs
at 2-cM intervals with a window size of 10 cM. Two-
dimensional (2D) genome scans were used to search for
multiple interacting QTLs. For each trait, a genome-
wide threshold value of the F-statistic (P=0.05) for
declaring the presence of a QTL was estimated by 1000
random permutations [70]. A Bayesian method with
Gibbs sampling was used to estimate QTL effects [71].
The sum of individual PV explained by each QTL was
calculated as the total PV explained by all QTLs for
each trait. Based on genetic effects, mapped epistatic
QTLs comprised three types: interactions between two
QTLs with additive effects (AA), interactions between a
QTL with additive effect and a locus without significant
additive effect (AN or NA), and interactions between
two loci within non-QTL (NN) [45]. For WinQTL-
Cart_2.5, composite interval mapping (CIM) was used
with a significance threshold of P =0.05 using the permu-
tation test method [68], based on 1000 runs of randomly
shuffling the trait values [72]. QTL CIs were determined
by 2-LOD intervals surrounding the QTL peak. QTLs for
different traits that mapped to the same region with over-
lapping CIs were assumed to be the same [58,73]. For
GMM, two and three loci interactions were detected with
default parameters. For the QTL comparison between dif-
ferent populations, QTLs detected in this study were
preliminarily compared with those in other publications,
because few common markers were available between TN
and other populations. If one or more QTLs were identi-
fied on a chromosome in this study but not in previous
studies, these were considered as new QTLs.

The genetic interaction analysis candidate genes

The network was constructed and analyzed using Cytos-
cape_V2.6.3 with the Agilent Literature Search Plug-in
[74]. The degree of connectivity, the clustering coefficient,
the network density and the diameter were designed ac-
cording to Toubiana et al. [75]. Search controls option by
using the default parameter settings and extraction con-
trols option with appropriate choice and choosing Arabi-
dopsis in concept lexicon, the network was laid out by
using group attributes layout.

Page 16 of 18

Construction of potential controlling pathways of fatty
acids in B. napus

To identify candidate genes underlying the QTL Cls in-
volved in the fatty acid regulatory pathways, the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database
was applied to identify pathways in which these genes
were involved [76,77]. Potential controlling pathways of
fatty acids in B. napus were inferred based on the path-
ways of fatty acid synthesis within Arabidopsis [31,38]
and other plants [42,78] and also using gene interaction
analysis and QTL epistasis analysis.

Additional files

Additional file 1: Single QTL detection by WinQTLCart_2.5 in TN DH
population.

Additional file 2: Single QTL detection by QTLNetwork_2.0 in TN
DH population.

Additional file 3: The TN DH genetic linkage map and its syntenic
segmental alignment with the Arabidopsis genome.

Additional file 4: Positions of homologous genes of Arabidopsis
mapped on TN DH linkage map by in silico mapping and
orthologous genes between B. napus and B. rapa/B. oleracea.
Additional file 5: Demonstration of a complex epistatic network for
fatty acids in B. napus.

Additional file 6: Epistatic QTLs for fatty acid compositions
detected by QTLNetwork_2.0 in TN DH population.

Additional file 7: Digenic and trigenic interactions for fatty acid
compositions detected by genotype matrix mapping software
ver2.1 in TN DH population.

Additional file 8: The distribution of 57 candidate genes in 32
different pathways by the KEGG analysis.

Additional file 9: Five KEGG pathway maps of candidate genes in
Arabidopsis.
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