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Abstract

Background: The external colour of fruit is a crucial quality feature, and the external coloration of most citrus fruits
is due to the accumulation of carotenoids. The molecular regulation of carotenoid biosynthesis and accumulation
in pericarp is limited due to the lack of mutant. In this work, an orange-pericarp mutant (MT) which showed altered

accumulation in the pericarp.

pigmentation in the pericarp was used to identify genes potentially related to the regulation of carotenoid

Results: High Performance Liquid Chromatography (HPLC) analysis revealed that the pericarp from MT fruits had
a 10.5-fold increase of [3-carotene content over that of the Wild Type (WT). Quantitative real-time PCR (gRT-PCR)
analysis showed that the expression of all downstream carotenogenic genes was lower in MT than in WT, suggesting
that down-regulation is critical for the 3-carotene increase in the MT pericarp. RNA-seq analysis of the transcriptome
revealed extensive changes in the MT gene expression level, with 168 genes down-regulated and 135 genes
up-regulated. Gene ontology (GO) and KEGG pathway analyses indicated seven reliable metabolic pathways are
altered in the mutant, including carbon metabolism, starch and sucrose metabolism and biosynthesis of amino
acids. The transcription factors and genes corresponding to effected metabolic pathways may involved in the
carotenoid regulation was confirmed by the gRT-PCR analysis in the MT pericarp.

Conclusions: This study has provided a global picture of the gene expression changes in a novel mutant with
distinct color in the fruit pericarp of pummelo. Interpretation of differentially expressed genes (DEGs) revealed new
insight into the molecular regulation of 3-carotene accumulation in the MT pericarp.
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Background
Citrus is one of the most important fruit crops with
great economic significance and value for humans in the
world [1]. As a crucial quality feature, the external colour
of citrus fruit first attracts the attention of consumers, and
uniform bright coloration will enhance the fruit attractive-
ness and consumers’ acceptance. The external and internal
coloration of most citrus fruits is due to the accumulation
of carotenoids [2].

Carotenoids play indispensable roles in plants as compo-
nents for all photosynthetic organisms and protectors
against oxidation by quenching triplet chlorophyll, singlet
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oxygen, and superoxide anion radicals [3]. In higher plants,
carotenoids provide flowers and fruits with distinct colors,
ranging from yellow to orange or red, to attract insects and
animals for pollination as well as seed dispersal [4,5].
Carotenoids also serve as precursors of the phytohormones
abscisic acid (ABA), strigolactones, and other signalling
molecules [6-8]. Some carotenoids are the precursors of
vitamin A that cannot be artificially synthesized and there-
fore are essential nutritional components for animals and
humans [9]. Moreover, they also have beneficial effects on
human health, including enhancement of the immune
system and reduction of the risk for degenerative dis-
eases such as cancer, cardiovascular diseases and cata-
ract [10-12]. Today, carotenoids are extensively used in
health and nutritional products as important micronu-
trients [10].
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Carotenoids are naturally synthesized in chloroplasts
and chromoplasts by enzymes that are nuclear encoded
[13]. In higher plants, structural genes of the carotenoid
biosynthesis pathway have been isolated and characterized
[14-18]. The first committed step of carotenoid biosyn-
thesis is a head-to-head condensation of two molecules of
a C20 precursor, geranylgeranyl pyrophosphate (GGPP),
to form colourless phytoene catalyzed by the phytoene
synthase (PSY). Next, the colourless phytoene is converted
into the red lycopene by four desaturation reactions
(catalyzed by phytoene desaturase, PDS, and {-carotene
desaturase, ZDS) and (or) by two isomerization reac-
tions mediated by carotene isomerase (CRTISO) and 15-
cis-(-carotene isomerase (ZISO). Then, the lycopene
flux branches into two pathways via cyclization reaction.
Lycopene B-cyclase (LCYB) adds two B-rings to the ends
of lycopene molecule to form [B-carotene, while the co-
action of LCYb and lycopene e-cyclase (LCYe) generates
a-carotene with one B-ring and one e-ring. Subsequently,
a-carotene is converted into lutein by hydroxylations cata-
lyzed by e-ring hydroxylase and p-ring hydroxylase (BCH).
Then, zeaxanthin and violaxanthin are generated from -
carotene with hydroxylation reactions catalyzed by HYb
and epoxydation catalyzed by zeaxanthin epoxidase (ZEP).
The plant hormone ABA is an end product of the carot-
enoid biosynthetic pathway generated by the enzymatic
cleavage of 9-cis-epoxycarotenoid dioxygenase (NCEDs).
Carotenoid cleavage dioxygenases (CCDs) cleave caroten-
oids into apocarotenoids at different double-bond positions.
In the last decade, due to the importance of carotenoids,
many efforts have been made to understand the molecu-
lar basis of the regulation of carotenoid biosynthesis
and accumulation.

Citrus is a complex source of carotenoids, with the
largest number of carotenoid species found in any one
fruit [19]. More than 115 different carotenoids have been
identified in the pericarp and pulp of citrus, including
lycopene, B-carotene, B-cryptoxanthin, zeaxanthin, and
violaxanthin [20]. Because of the large diversity of caroten-
oid patterns, citrus has become an important model spe-
cies for studies on plant carotenoid metabolism [19,21],
such as the analyses of carotenoid composition and con-
tent, and expression of the main carotenoid biosynthetic
genes [22-26]. Mutants with alteration in the carotenoid
biosynthetic pathway have proven to be useful experimen-
tal materials for identifying molecular mechanisms regu-
lating the process [27]. In the past few years, many pulp
mutants have been identified in grapefruit (Citrus para-
disi) and orange (Citrus sinensis), such as Red marsh,
Shara, Cara Cara, and Hong Anliu [28-32], and these
mutants have been used to study the complex regulatory
mechanism of carotenoid biosynthesis at the gene and/or
protein expression level [33-37], facilitating the under-
standing of the carotenoid regulation mechanism in the
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pulp of citrus [38-41]. Due to the lack of mutants af-
fected in the pericarp, the carotenoid regulation mech-
anism was less studied in pericarp compared with the
pulp of citrus. Recently, an orange-pericarp mutant (MT)
originating from Guanxi pummelo has been discovered in
China and provided us a potential material for studying
this regulation mechanism.

In this study, we investigated the composition and level
of carotenoids and the expression of carotenoid biosyn-
thetic genes in the pericarps of MT and wild type (WT) in
the ripe stage. From the whole genome perspective, the
differentially expressed genes (DEGs) in MT and WT were
identified using the RNA-seq technology. The identified
genes provide useful information for studying the molecular
mechanism of carotenoid biosynthesis in citrus pericarp.

Results

B-carotene is significantly accumulated in the MT

The pummelo MT was originally found in an orchard in
Zhangzhou (Fujian, China) in the 2010s as a spontaneous
bud mutation from the commercial variety of ‘guanxi’
pummelo. An obvious phenotypic change of the MT is
the orange colour of the pericarp, showing a sharp con-
trast with the slight yellow colour of the mature pericarp
in the WT fruit (Figure 1A, B). The orange-pericarp mu-
tant was propagated by grafting onto different rootstocks
and retained the stable phenotype of the orange-colour
pericarp under field conditions, and no reversion to the
parental phenotype has been observed so far. Moreover,
73 pairs of Simple Sequence Repeat (SSR) markers were
used to evaluate the genetic background of the mutant.
All the SSR patterns were the same between MT and
WT (Additional file 1), indicating that the two geno-
types shared an identical genetic background.

To characterize the phenotype differences between MT
and WT, the carotenoid composition and content of ma-
ture fruits were analysed by High Performance Liquid
Chromatography (HPLC). The most obvious difference in
carotenoid between MT and WT pericarps was -carotene
content (Figure 1C, D). The p-carotene content of MT
was about 10.5-fold that of the WT, accounting for 90.0%
of the total identified carotenoids in MT. Additionally, the
total carotenoid concentration of MT was 7.9-fold that of
WT. Moreover, the concentrations of lutein, violaxanthin,
a-carotene and [-cryptoxanthin were higher in MT
than in WT. However, in the MT and WT pulps, the ca-
rotenoid species and content were similar to each other
(Additional file 2).

Three carotenogenic genes involved in -carotene
degradation are significantly down-regulated in the MT
Firstly, we compared the sequence information of the ca-
rotenoid biosynthetic genes in MT and WT and isolated
full-length ¢DNAs, including ggps, psy, pds, crtiso, lcyb,
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Figure 1 The phenotype and carotenoid content in the WT and MT. (A, B) Appearances of MT and WT fruits at maturation. (C, D) Carotenoid
profiles and concentrations in the pericarps of WT and MT at fruit maturation. The bar represents 2 cm.
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leye, lcy2b, ccddce, bch, nced2 and nced3. The result
showed that the sequences were 100% identical between
MT and WT (Additional file 3). These 11 sequence data
were submitted to the GenBank with accession numbers
from KP462725 to KP462735. Then, the effect of the
mutation on carotenogenic gene expression was exam-
ined by quantitative real-time PCR (qRT-PCR) using the
probes of pummelo cDNAs encoding GGPS, PSY, PDS,
ZDS, CRTISO, LCYb, LCYe, LCY2b, CCD1, CCD4a,
CCD4c, BCH, NCED2, NCED3 and ZEP (Figure 2). The
expression levels of upstream carotenogenic genes (ggps,
zds and crtiso) in MT and WT were almost the same.
However, the gene expression level of psy, pds and lcy2b
was much higher in WT than in MT. The expression level
of all downstream carotenogenic genes was lower in MT
than in WT. Particularly, ccd1, bch and nced2 showed sig-
nificantly reduced transcript levels in the MT pericarp.

RNA-seq and global detection of DEGs
Solexa/Illumina RNA-Seq analysis was performed to iden-
tify the genes involved in the regulation of carotenoid

biosynthesis in pummelo pericarp. Six libraries were
constructed and sequenced, including three biological
replicates for WT (termed as WT1, WT2 and WT3)
and three biological replicates for MT (termed as MT1,
MT2 and MT3). The major characteristics of these
six libraries are summarized in Table 1. A sequencing
depth of over thirteen million raw tags was obtained for
each of the six libraries, with the number of raw tags
ranging from 13,520,581 to 16,301,802. After filtration,
we obtained a total of 13,347,784 (WT1), 14,532,229
(WT2) and 15,027,468 (WT3) clean tags for the WT
RNA-Seq libraries and 16084513 (MT1), 14223118
(MT2) and 14025066 (MT3) clean tags for the MT
RNA-Seq libraries, with the clean tags accounting for
more than 98% of the total, which were then mapped to
the sweet orange genome [42]. These reads were depos-
ited in NCBI GEO database with an accession no.
GSE64764. In the MT and WT samples, 76.0% (MT1),
76.5% (MT2), 76.4% (MT3), 75.9% (MT1), 76.4% (WT2)
and 75.4% (WT3) of the clean tags from RNA-Seq data
were mapped uniquely to the genome, while a small
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Figure 2 Expression of carotenogenic genes in the pericarps of WT and MT at fruit maturation.

proportion of them were mapped multiply to the gen-

ome (Table 2).

Differentially expressed tags in the samples were iden-

tified by calculating the number of unambiguous tags for
each gene and then normalizing this to the number of
reads per kilobase of exon model per million mapped
reads (RPKM). All the uniquely mapped reads were used

for calculating the RPKM values of the genes. Genes
within the RPKM range of 0-3 were considered to be
expressed at low level; genes within the RPKM range of
3-15 were considered to be expressed at medium level;
and genes beyond a RPKM value of 15 were considered
to be expressed at high level [43]. Low-level expressed
genes covered the highest percentage in MT and WT. The
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Table 1 Summary of sequence assembly after lllumina sequencing

Sample name Raw reads Clean reads Clean bases Error rate (%) Q20 (%) Q30 (%) GC content (%)
MT1 16301802 16084513 161G 0.03 97.25 91.76 435

MT2 14403818 14223118 142G 0.03 97.27 91.76 4344

MT3 14197855 14025066 14G 0.03 97.31 91.87 4353

WT1 13520581 13347784 1.33G 0.03 97.23 91.68 436

WT2 14715034 14532229 145G 0.03 97.29 91.82 4349

WT3 15229307 15027468 1.5G 0.03 97.28 91.82 4342

Q20: The percentage of bases with a Phred value > 20.
Q30: The percentage of bases with a Phred value > 30.

DEGs in the MT samples were identified at padj < 0.05,
obtaining a total of 303 significantly DEGs, with 135 up-
regulated and 168 down-regulated (Additional file 4). The
details of these genes are listed in Additional file 5.

Annotation of DEGs in MT and WT

These DEGs may be involved in different functions. Gene
ontology (GO) is an international standardized gene func-
tional classification system that describes the properties of
genes and their products in any organism. To understand
the functions of the 303 DEGs, we mapped them to the
three GO ontologies, including molecular function, cellu-
lar component, and biological process (Figure 3). Accord-
ing to cellular component, the most abundant DEGs were
involved in “membrane” (9.2%), “cell” (5.3%) and “cell
part” (5.3%). From the perspective of biological process,
the DEGs were involved in “metabolic process” (28.4%),
“cellular process” (20.8%), “organic substance metabolic
process” (18.5%), “primary metabolic process” (17.8%) and
“cellular metabolic process” (13.9%). In terms of molecular
function, the genes were dominant in “catalytic activity”
(31.4%), “binding” (24.4%), “ion binding” (15.5%), “hetero-
cyclic compound binding” (13.5%) and “organic cyclic
compound binding” (13.5%). In addition, the whole gen-
ome background was examined by GO category enrich-
ment analysis (P-value <0.05). Three cellular component
terms were significantly enriched in the up-regulated
genes, including microtubule cytoskeleton, cytoskeletal
part and cytoskeleton. To further understand the bio-
logical functions of these genes, KEGG (http://www.
genome.jp/kegg/) ontology assignments were used to
classify their functional annotations. All the 303 DEGs

were assigned to 52 KEGG pathways. Among the path-
ways, carbon metabolism, starch and sucrose metabol-
ism, biosynthesis of amino acids, and a few others were
highly represented (Table 3).

Verification of DEGs

A total of 22 DEGs were selected for qRT-PCR verifica-
tion. Among them, 10 were referred to as the differen-
tially expressed transcription factors. The other 12 genes
belonged to the affected pathways including sugar metab-
olism and amino acid metabolism. The results showed
that 19 out of the 22 differentially expressed genes in MT
and WT were in consistency with the RNA-seq data
(Figure 4). Linear regression [(RNA-seq value) =a(qRT-
PCR value) + b] analysis of these 19 DEGs showed an
overall correlation coefficient of 0.78, indicating a good
correlation between the transcription profile revealed by
RNA-seq data and the transcript abundance assayed by
qRT-PCR (Additional file 6). These results confirmed the
reliability of the RNA-seq data.

Changes in fruit soluble sugar, amino acid, and fatty acid

content

Considering the singificant expression change in a
number of MT genes implicated in starch and sucrose
metabolism as well as the biosynthesis of amino acids
and fatty acids, the content of these metabolites was de-
termined by the GC-MS analysis (Table 4). The results
showed that the content of most sugars in MT was
lower than that in WT, such as sucrose, glucose, fruc-
tose and mannose. Additionally, the MT pericarp, when
compared with the WT pericarp, showed a decrease in

Table 2 Summary of clean reads mapped to the reference genome

Sample name MT1 MT2 MT3

WT1 WT2 WT3

16084513
12712188 (79.03%)
492073 (3.06%)
12220115 (75.97%)
8768392 (54.51%)
3451723 (21.46%)

14223118
11321201 (79.6%)
437971 (3.08%)
10883230 (76.52%)
7846392 (55.17%)
3036838 (21.35%)

Total reads

Total mapped
Multiple mapped
Uniquely mapped
Non-splice reads

Splice reads

14025066
11196989 (79.84%)
477365 (3.4%)
10719624 (76.43%)
7591808 (54.13%)
3127816 (22.3%)

13347784
10593747 (79.37%)
466493 (3.49%)
10127254 (75.87%)
7219051 (54.08%)
2908203 (21.79%)

14532229
11554004 (79.51%)
455224 (3.13%)
11098780 (76.37%)
7991617 (54.99%)
3107163 (21.38%)

15027468
11856432 (78.9%)
532109 (3.54%)
11324323 (75.36%)
8176531 (54.41%)
3147792 (20.95%)
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Biological Process

the levels of four types of amino acids (proline, serine,
threonine and GABA), but an increase in the levels of
another four types of amino acids (lysine, valine, aspara-
gine and aspartic acid). Interestingly, we detected an
amount of asparagine in MT but trace in WT. We also
detected four fatty acids in WT and MT pericarps. The
content of octadecanoic acid and hexadecanoic acid
was significantly lower in the MT pericarp than in the
WT pericarp.

Discussion

The mutant used in this study is derived from a spon-
taneous mutation in Guanxi pummel, and the mutation
confers a novel phenotype that is regulated in a fruit-
specific pattern, with the pericarp exhibiting obvious or-
ange colour. The distinctive orange colour in the mutant
pericarp has clearly been shown to be due to the massive
accumulation of B-carotene. The [B-carotene accumula-
tion induced by the mutation also leads to an obvious

Table 3 Important KEGG pathways with more than 3 DEGs

increase of total carotenoids in the MT. In the past few
years, many citrus carotenoid mutants have been discov-
ered, but almost all of them show the red-fleshed pheno-
type and have proved to accumulate abnormal lycopene.
Therefore, the pummelo MT identified in this study is a
special material for the citrus carotenoid regulation study,
particularly for the investigation of pigmentation regula-
tion in pericarp. Previous studies on carotenoid biosyn-
thesis in red-fleshed mutant concluded that the induction
of lycopene accumulation coincided with increased ex-
pression of upstream carotenogenic genes and reduced ex-
pression of genes downstream of lycopene synthesis [30].
We hypothesized that the mechanism regulating the (-
carotene accumulation was coincident with that of lyco-
pene. As expected, the downstream genes of -carotene
degradation in the carotenoid biosynthetic pathway (ccdl,
ccd4a, ccddce, beh, nced2, nced3 and zep) exhibited a de-
creased expression level in MT. Previous studies in potato
tubers found that silencing the bch gene can significantly

KEGG pathway Sample number Gene ID

Carbon metabolism 5
Starch and sucrose metabolism 4
Biosynthesis of amino acids 4
Cyanoamino acid metabolism 3

Pentose and glucuronate interconversions 3
Phagosome 3

Cysteine and methionine metabolism 3

Serine hydroxymethyltransferase, Cysteine synthase, L-3-cyanoalanine synthase 2,
Glyceraldehyde-3-phosphate dehydrogenase A, D-3-phosphoglycerate dehydrogenase

Pectinesterase 3, sucrose-phosphate synthase 4, Pectinesterase 2, Alpha-1,4 glucan
phosphorylase L-1 isozyme

Serine hydroxymethyltransferase, Cysteine synthase, L-3-cyanoalanine synthase 2,
D-3-phosphoglycerate dehydrogenase

Serine hydroxymethyltransferase, L-3-cyanoalanine synthase 2, Gamma-
glutamyltranspeptidase 3

Pectate lyase 5, Pectinesterase 3, Pectinesterase 2
Tubulin beta-1 chain, Tubulin alpha chain, Tubulin alpha chain, Tubulin beta-4 chain

Cysteine synthase, L-3-cyanoalanine synthase 2, 1-aminocyclopropane-1-carboxylate
synthase
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Figure 4 RT-PCR analyses of differentially expressed genes corresponding to metabolic pathways and transcription factors in MT and
WT. The transcript abundance from RNA-seq data was added on the top of each gene. RPKM, reads per kilo bases per million reads.
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enhance [-carotene levels [44,45]. In maize, the bch alleles
associated with reduced transcript expression also correl-
ate with higher [B-carotene concentrations [46]. In our
research, the expression of bch in the WT was 1.58 fold
that of the MT, indicating that the significantly reduced
expression of bch may result in the amount accumulation
of B-carotene in the MT pericarp. However, our analyses
failed to find a dramatic increased expression of upstream
carotenogenic genes in MT when compared with WT.
Three key enzymes (psy, lcy2b and lcyb) for the B-
carotene accumulation exhibited an obvious decrease in
MT expression. These results implied that the MT exerted
a major effect on P-carotene accumulation via the down-
regulation of downstream genes, especially bch.

To understand the potential mechanisms involved in
the regulation of carotenoid biosynthesis in the citrus
pericarp, we used the RNA-seq approach to investigate
the transcriptome profiles in MT and WT. Our analysis
showed that a total of 303 genes altered expression pat-
tern. Similar results have been reported in several stud-
ies on mutant—progenitor pairs [33,36,37]. GO analysis
of annotated genes revealed that most of the DEGs were
involved in catalytic activity and metabolic process
(Figure 3). Because carotenoid biosynthesis which be-
longing to the secondary metabolisms is a dynamic and
complex process catalyzed by a series of enzymes. Func-
tional category analysis revealed that the DEGs are in-
volved in a number of important pathways (Table 3),
such as the metabolic pathways, which is consistent with
the GO results that large numbers of genes are implicated

Table 4 Accumulated sugars, amino acids and fatty acids
in MT and WT pericarps

MT (mg/g) WT(mg/g)

Sugars Sucrose 5.048 +0.293 5489 +0.255
Glucose 0306 +0.042 0662 +0.024
Fructose 1.046 £ 0.103 2.006 +0.021
Mannose 1.122 £ 0.087 3.186+0.234
Glucopyranose 0.009 + 0.002 0.009 +0.003
Fructofuranose 0.231+£0.012 0.721 £ 0.080
Talofuranose 0476 +£0.173 1.266 +0.149
Xylose 0.013+0.0004  0.024+0.001
4-Keto-glucose 0.009 £ 0.001 0.014 £ 0.0004

Amino acids  Valine 0.018 £ 0.004 0.016 +£0.004
Proline 0.111+£0.013 0.143 £ 0.061
Serine 0.035+0.011 0.046 £ 0.010
Threonine Trace 0.010 £ 0.006
Lysine 0.027 £0.012 0.024 + 0.006
Aspartic acid 0.006 + 0.001 Trace
GABA 0.014 +0.006 0.016 +£0.007
Asparagine 0.760 + 0.247 Trace

Fatty acids Octadecanoic acid 0.255+0.132 0441+0.073
Hexadecanoic acid 0.504 +0.130 0.767 £ 0.073
Octadecanoic acid, 0.035+0.004 0.043 +0.006
2,3-bisoxypropylester
Hexadecanoic acid, 0.089+0.019 0.098 £ 0.004

2,3-bisoxypropylester
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in catalytic activity and metabolic process. The most
noticeable pathways are carbon metabolism, starch and
sucrose metabolism and biosynthesis of amino acids. Ex-
pressions of key genes in sucrose and starch metabolism,
including alpha-1, 4 glucan phosphorylase (Cs6g22020),
pectinesterase 3 (Cs1gl6550), sucrose-phosphate synthase
4 (Cs5g19060) and pectinesterase 2 (orangel.l t00214),
were differentially expressed in WT and MT pericarpes, in-
dicating that the sucrose and starch metabolism was sig-
nificantly affected in MT. For example, Alpha-1, 4 glucan
phosphorylase involved in sucrose degradation was up-
regulated and sucrose-phosphate synthase 4 involved in
sucrose accumulation was down-regulated in MT, indi-
cating the acceleration of the sucrose degradation. Our
gas chromatography—mass spectrometry (GC-MS) ana-
lysis also proved that the sucrose degradation in peri-
carp is higher in MT than in WT (Table 4). Moreover,
the content of most sugars was significantly decreased
in MT, indicating that the precursors for the glycolysis
were increased by the accelerated degradation of sugars.
Previous reports have also proved that the -carotene syn-
thesis was tightly linked to carbon metabolism [47,48].
Five genes involved in carbon metabolism were differen-
tially expressed in MT and WT in our results. One
gene encoding glyceraldehyde-3-phosphate dehydrogen-
ase (Cs2g14940) was significantly increased (2.9-fold) in
MT. This gene, catalyzing the conversion of glycerate 3-
phosphate to glyceraldehyde 3-phosphate, was import-
ant for glycolysis, which was consistent with a previous
speculation that glycolysis was increased in MT. The
present research also found that five genes involved in
amino acid biosynthesis were significantly changed in
MT, which was in line with our GC-MS analysis that the
content of amino acid differed significantly between MT
and WT. A similar result was also observed in carotenoid-
enhanced transgenic tomato fruits [49]. Interestingly,
our research found that the asparagine was the most
affected amino acid. Compared to WT, the content of
asparagine increased 8.85-fold in the carotenoid-enhanced
transgenic tomato fruits. These data indicated that the
content of asparagine was strongly correlated with carot-
enoid accmulation.

In order to identify potential candidate genes involved
in the regulation of carotenoid biosynthesis, we also ana-
lysed the top 10 most DEGs in MT and WT (Additional
file 7). Among them, two genes were involved in fatty acid
metabolism. One gene encoding Fatty acyl-CoA reductase
3 (Cs8g15220) was significantly reduced in the MT, which
was important for the fatty acid biosynthesis. The other
gene encoding GDSL esterase/lipase (Cs2g04220) was
significantly increased in the MT, and the GDSL esterase/
lipase was involved in fatty acid degradation. The altered
expression of these two genes indicated a decrease of the
fatty acid content in MT, which was consistent with our
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GC-MS analysis result that the contents of octadecanoic
acid and hexadecanoic acid were lower in MT than in
WT (Table 4). The biosynthesis of carotenoids and fatty
acids required common precursors from pyruvate [50].
We concluded that these two genes may play important
role in the carotenoid metabolism regulation. We also
found that the expression of one gene belonging to cyto-
chrome P450 (Cs6g20050) was significantly increased in
MT. Cytochrome P450 catalyzes various reactions in plant
biosynthesis of second metabolites, including caroten-
oids [51,52]. Cytochrome P450 hemoproteins, which
catalyze NADPH- and O,-dependent hydroxylation re-
actions, were postulated to also be able to use hydrocar-
bon carotenes as substrates [53].

Transcription factors are the key switches for secondary
metabolite gene regulation [54]. In the present study,
twelve genes encoding transcription factors were identified
by RNA-Seq analysis (Additional file 8). Among the group
of transcription factors, we identified three genes belonging
to the MYB family of transcription factors (Cs3g02020,
Cs3g23070 and orangel.l t01787). Previous studies on the
carotenoid mutants also identified a number of MYB tran-
scription factors [34,35]. The superfamily of MYB tran-
scription factors was proved to control many biological
processes, primarily in anthocyanin biosynthesis [55,56].
Overexpression of a Vitis vinifera R2R3-MYB transcrip-
tion factor (MYB5b) in tomato resulted in an increased
content of B-carotene [57]. These results indicated that
the MYB genes may be involved in regulating carotenoid
biosynthesis. We also detected two significantly differen-
tially expressed NAC transcription factors. NAC proteins
constitute one of the largest families of plant-specific tran-
scription factors [58]. Genes from this family participate
in various biological processes including developmental
programs, defence, and biotic and abiotic stress responses
[59,60]. Recently, a NAC transcription factor (SINAC4)
has been proved to a positive regulator of carotenoid ac-
cumulation [61]. In this study, both of the two identified
NAC transcription factors showed a down-regulated ex-
pression in MT samples, indicating that both of them may
play a feedback regulating role in the carotenoid biosyn-
thesis. Ethylene plays a key regulatory role in fruit ripening
and carotenoid accumulation [62]. Our results showed
that the ethylene-responsive transcription factor (RAP2-7)
was highly expressed in MT. In this study, we also iden-
tified several other significantly differentially expressed
transcription factors, such as WRKY (Cs2g25560), BHLH
(Cs8g03200) and MUTE (Cs9g06130).

Conclusions

This is the first investigation of the biochemical and mo-
lecular alterations associated with an orange-pericarp
fruit mutation in pummelo. In this study, the content of
carotenoids and the expression patterns of carotenoid
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biosynthetic genes in the pericarps were comparatively
analysed for the pummelo MT and its WT. We used
RNA-seq to identify the differential expression genes in
the MT by comparing with the WT. GO analysis and
pathway mapping of the DEGs provide significant insight
into the underlying molecular mechanisms governing the
[-carotene accumulation. Critical genes and pathways in-
volved in carbon metabolism, starch and sucrose metabol-
ism and biosynthesis of amino acids were associated with
the B-carotene accumulation. The results suggest that the
considerable p-carotene accumulation appears to be due
to a down-regulation of downstream genes for 3-carotene
degradation. Moreover, several candidate genes and tran-
scription factors that possibly regulate carotenoid biosyn-
thesis in the pericarp of pummelo were also identified.
However, the functions of these genes remain to be eluci-
dated in the future. The overall findings from this study
facilitate the understanding of the molecular regulation of
[-carotene accumulation in the pummelo mutant strain
and provide useful information for further related studies.

Methods

Plant materials and RNA extraction

The materials used in this study were ‘Guanxi’ pummelo
and its MT cultivated in the city of Zhangzhou, Fujian
province, China. The samples were harvested at ripe
stage with three biological replicates. After separation
from fruits, the pericarps were immediately frozen in li-
quid nitrogen and kept at —80°C until further use. Total
RNA was extracted from the pericarps of WT and MT
as previously described [30]. The quality of the RNA
was assessed by 1% agarose gel electrophoresis coupled
with NanoPhotometer® spectrophotometer (IMPLEN,
CA, USA). RNA concentration was measured using
Qubit® RNA Assay Kit in Qubit® 2.0 Flurometer (Life
Technologies, USA). RNA integrity was confirmed using a
2100 Bioanalyzer (Agilent Technologies) with a minimum
RNA integrity number (RIN) value of 8.0.

Carotenoid content measurement

Carotenoid extraction and quantification was performed
as previously described with modification [30]. Carotenoids
were analyzed by reversed phase HPLC. Chromatography
was carried out with a Waters liquid chromatography sys-
tem equipped with a model 600E solvent delivery system, a
model 2996 photodiode array detection (PAD) system, a
model 717 plus autosampler, and an empower Chroma-
tography Manager. Carotenoids were eluted with MeOH-
Acetonitrile [75:25 v/v, eluent A] and MTBE [eluent B]
using a C30 carotenoid column (15 x 4.6 mm; YMC,
Japan). Carotenoids were identified by their characteris-
tic absorption spectra, typical retention time, and com-
parison with authentic standards (Bern, Switzerland).
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RNA-seq library preparation and sequencing

Sequencing libraries were constructed by using three
biological replicates for WT and MT pericarps, which
were named WT1, WT2, WT3, MT1, MT2 and MTS3,
respectively. A total amount of 3 pug RNA per sample was
used as input material for the RNA sample preparation.
Sequencing libraries were generated using NEBNext®
Ultra™ RNA Library Prep Kit for Illumina® (NEB, USA) by
following manufacturer’s recommendations, and index
codes were added to attribute sequences to each sample.
Briefly, mRNA was purified from total RNA using poly-T
oligo-attached magnetic beads. Fragmentation was carried
out using divalent cations under elevated temperature in
NEBNext First Strand Synthesis Reaction Buffer (5x). First
strand cDNA was synthesized using random hexamer pri-
mer and MmuLV Reverse Transcriptase (RNase H-). Sec-
ond strand cDNA synthesis was subsequently performed
using DNA polymerase I and RNase H. Remaining over-
hangs were converted into blunt ends via exonuclease/
polymerase activities. After adenylation of 3" ends of DNA
fragments, NEBNext Adaptor with hairpin loop structure
was ligated before hybridization. To preferentially select
¢DNA fragments of 150—200 bp in length, the library frag-
ments were purified with AMPure XP system (Beckman
Coulter, Beverly, USA). Then 3 pl USER Enzyme (NEB,
USA) was used with size-selected, adaptor-ligated cDNA
at 37°C for 15 min followed by 5 min at 95°C before PCR.
The PCR was performed with Phusion High-Fidelity DNA
polymerase, Universal PCR primers and Index (X) Pri-
mer. Finally, PCR products were purified (AMPure XP
system) and library quality was assessed on the Agilent
Bioanalyzer 2100 system. The clustering of the index-
coded samples was performed on a cBot Cluster Gener-
ation System using TruSeq SR Cluster Kit v3-cBot-HS
(Ilumia) according to the manufacturer’s instructions.
After cluster generation, the library preparations were
sequenced on an Illumina Hiseq 2000 platform and
100 bp single-end reads were generated.

Data analysis

Raw sequence reads were first processed using an in-
house Perl script. In this step, clean data were obtained
by removing reads containing adaptors only, reads with
more than 10% unknown bases and reads with a quality
score of less than 5.0 for more than half of the bases.
Meanwhile, the Q20, Q30 and GC content of the clean
data were calculated. All the downstream analyses were
based on these clean data with high quality. For annota-
tion, all clean tags were mapped to the reference se-
quence of the sweet orange genome [42]. Mismatches of
no more than two bases were allowed in the alignment.
The remaining clean tags were designated as unambigu-
ous clean tags. The RPKM method was used to estimate
the unique gene expression levels [63]. Reference
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genome and gene model annotation files were down-
loaded directly from the genome website (http://citrus.
hzau.edu.cn/orange/index.php). Index of the reference
genome was built using Bowtie v2.0.6 (Broad Institute,
Cambridge, MA, USA) and single-end clean reads were
aligned to the reference genome using TopHat v2.0.9
(Broad Institute). TopHat was selected as the mapping
tool because it can generate a database of splice junctions
based on the gene model annotation file and thus give a
better mapping result than other non-splice mapping
tools. Differential expression analysis of two samples (each
three biological replicates) was performed using the
DESeq R package (1.10.1) [64]. DESeq provides statis-
tical routines for determining differential expression in
digital gene expression data using a model based on the
negative binomial distribution. The resulting P-values
were adjusted using the Benjamini and Hochberg’s ap-
proach for controlling the false discovery rate. The sig-
nificance of the gene expression difference was
determined with an adjusted P-value <0.05 found by
DESeq. GO enrichment analysis of DEGs was imple-
mented by the GOseq R package. GO terms with a cor-
rected P-value<0.05 were considered significantly
enriched by differentially expressed genes. The statistical
enrichment of the differential expression genes in KEGG
pathways was tested using the KO-Based Annotation Sys-
tem (KOBAS) software.

gRT-PCR analysis

To validate the RNA-Seq results and provide more infor-
mation for the affected metabolic processes, 22 selected
DEGs corresponding to the metabolic pathways and tran-
scription factors were verified by qRT-PCR. Actin was
amplified along with the target gene as an endogenous
control to normalize expression between different sam-
ples. Primer sequences used for qRT-PCR are listed in
Additional file 9. The samples collected from another
year and different from the RNA-seq analysis were
used for qRT-PCR validation. One pg of total RNA
from each sample was used to synthesize the first
strand ¢cDNA using the PrimeScript Reverse Tran-
scriptase Kit (TaKaRa) according to the protocol of
the manufacturer. The qRT-PCR was carried out in
an ABI PRISM® 9600 Sequence Detection System
(Applied Biosystems) using SYBR Green Supermix ac-
cording to the manufacturer’s instructions, under the
thermal cycle conditions of an initial denaturation at
94°C for 10 min, followed by 40 cycles of 94°C for 15 s,
60°C for 31 s for annealing, and a final step of extension
at 72°C for 7 min. The expression level of genes was cal-
culated by the delta-delta-Ct method [65]. Each bio-
logical sample was examined in duplicate with two to
three technical replicates.
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Determination of the sugar, amino acid and fatty acid
content in the pericarp

The extraction and derivatization of sugars, amino acids
and fatty acids were performed as previously described
with modification [66]. A 200 mg sample was added to
the extracting solution containing 2,700 ul of methanol
and 300 pl of 0.2 mg ml™" ribitol in water as a quantifi-
cation internal standard. Each sample (1 pl) was injected
into the GC system through a fused-silica capillary col-
umn with a DB-5 MS stationary phase (30 m x 0.25 mm
id.,, 0.25 um). Total ion current (TIC) spectra were re-
corded in the mass range of 45-600 atomic mass units
(amu) in scanning mode.

Availability of supporting data

Raw sequencing data is available through the NCBI Gene
Expression Omnibus under Project ID GSE64764. All sam-
ples were sequenced as 100 bp single reads on an Illumina
HiSeq2500 sequencer.

Additional files

Additional file 1: SSR marker analysis of MT and WT. For each pair of
SSR markers, the left is WT, and the right is MT.

Additional file 2: Carotenoid content in the pulps of MT and WT at
fruit maturation.

Additional file 3: Sequence information of carotenoid biosynthetic
genes in MT and WT.

Additional file 4: DEGs in MT and WT. The red part represents the
genes up-regulated in MT as compared to WT. The green part shows
the genes downregulated in MT. The blue part shows the genes without
expression difference between the two samples.

Additional file 5: List of significantly DEGs between MT and WT.
Additional file 6: Comparison of gene expression ratios observed
by RNA-seq and qRT-PCR. The RNA-seq log, (expression ratio) values
(x-axis) are plotted against the log, (expression ratio) obtained by
gRT-PCR (y-axis).

Additional file 7: Top 10 most DEGs in MT and WT. The transcript
abundance from RNA-seq data was added on the top of each gene.
RPKM, reads per kilo bases per million reads. The gene number refers

to the sweet orange genome.

Additional file 8: Transcription factor with altered expression in MT.
Additional file 9: Primer sequences for amplification by qRT-PCR.
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