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Genetic mapping of a new race specific
resistance allele effective to Puccinia hordei at the
Rph9/Rph12 locus on chromosome 5HL in barley
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Abstract

Background: Barley is an important cereal crop cultivated for malt and ruminant feed and in certain regions it is
used for human consumption. It is vulnerable to numerous foliar diseases including barley leaf rust caused by the
pathogen Puccinia hordei.

Results: A temporarily designated resistance locus RphCantala (RphC) identified in the Australian Hordeum vulgare
L. cultivar ‘Cantala’ displayed an intermediate to low infection type (“;12 = N”) against the P. hordei pathotype
253P- (virulent on Rph1, Rph2, Rph4, Rph6, Rph8 and RphQ). Phenotypic assessment of a ‘CI 9214’ (susceptible) x
‘Stirling’ (RphC) (CI 9214/Stirling) doubled haploid (DH) population at the seedling stage using P. hordei pathotype
253P-, confirmed that RphC was monogenically inherited. Marker-trait association analysis of RphC in the CI 9214/
Stirling DH population using 4,500 DArT-seq markers identified a highly significant (−log10Pvalue > 17) single peak on
the long arm of chromosome 5H (5HL). Further tests of allelism determined that RphC was genetically independent of
Rph3, Rph7, Rph11, Rph13 and Rph14, and was an allele of Rph12 (Rph9.z), which also maps to 5HL.

Conclusion: Multipathotype tests and subsequent pedigree analysis determined that 14 related Australian barley
varieties (including ‘Stirling’ and ‘Cantala’) carry RphC and that the likely source of this resistance is via a Czechoslovakian
landrace LV-Kvasice-NA-Morave transferred through common ancestral cultivars ‘Hanna’ and ‘Abed Binder’. RphC is
an allele of Rph12 (Rph9.z) and is therefore designated Rph9.am. Bioinformatic analysis using sequence arrays from
DArT-seq markers in linkage disequilibrium with Rph9.am identified possible candidates for further gene cloning
efforts and marker development at the Rph9/Rph12/Rph9.am locus.
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Background
Leaf rust, caused by Puccinia hordei, is one of the most
destructive foliar diseases of barley, and has caused sig-
nificant yield losses in many regions where barley is
grown [1-3]. Yield reductions of up to 32% have been re-
ported in certain susceptible barley cultivars in both
Australia and North America [4]. Due to potentially ad-
verse environmental effects of fungicides, the most pref-
erable and cost-effective means of controlling barley leaf
rust is through the development and deployment of dur-
able host resistance [5].
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In cereals, two major types of resistance have been de-
scribed for rust pathogens, seedling resistance and adult
plant resistance (APR). Seedling resistance genes are ef-
fective at all stages of crop development and are often
characterized by a hypersensitive response. Numerous
genes conferring seedling resistance to P. hordei (Rph)
have been identified (Rph1-Rph19 [6], Rph21-Rph22
[7,8]), however, virulence matching most of these genes
has been detected [9]. In some regions, including South
Australia, the presence of the alternate host Ornithoga-
lum umbellatum (‘Star of Bethlehem’) can permit sexual
recombination and increase the likelihood of new viru-
lent pathotypes developing [9-12]. New sources of seed-
ling resistance are required for use in breeding programs
in combination with APR for durable protection against
P. hordei. Furthermore, for effective deployment within
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breeding programs, it is equally important to understand
the mechanisms of inheritance and pathotype specificity
of newly identified resistance genes.
Previous studies on the inheritance of seedling resist-

ance to P. hordei have determined that many of the known
Rph loci are complex. From a total of 23 catalogued Rph
genes, three have been previously reported to be alleles of
other genes. Rph5 is allelic to Rph6 [13], Rph12 is allelic to
Rph9 [14] and Rph15 is allelic to Rph16 [15]. In the case
of Rph9 and Rph12, a large F2 population of 3,858 progeny
derived from ‘HOR 2596’ (Rph9) x ‘Triumph’ (Rph12) was
evaluated and no recombinants were detected, suggesting
that both are alleles of the same gene [14]. Rph9 and
Rph12 also mapped to the same locus on chromosome 5H
and were linked to a common molecular marker, ABC155.
Previous studies have determined that the Australian culti-
var ‘Cantala’ carries an uncharacterised seedling gene for
resistance to P. hordei that was temporarily designated
RphCantala (RphC) [1]. Recent evidence suggests the
RphC is present in several Australian and European barley
cultivars and was originally derived from European des-
cent. Although virulence for RphC is common among
Australian populations of P. hordei, such resistance may
be useful in combination with other resistance sources.
This study reports on the characterization and genetic
mapping of the RphC resistance. Data on both the physical
location and possible candidate genes for the RphC resist-
ance locus are presented and discussed.

Methods
Plant and pathogen material
A doubled haploid (DH) population, CI 9214/Stirling,
derived from ‘CI 9214’ (PI 186125) (postulated to carry
Rph1; R. F. Park, unpublished) and ‘Stirling’ (PI 466919)
(RphCantala; [1], R. F. Park, unpublished) with 258 pro-
geny was used for genetic analysis in this study. F3 popu-
lations derived by intercrossing ‘Cantala’ (PI 483047)
with ‘Estate’ (Rph3) (CI 3410), ‘Cebada Capa’ (CI 6193)
(Rph7), ‘Clipper BC8’ (Rph10), ‘Triumph’ (Rph12) (PI
186125), and ‘PI 531849’ (Rph13) were used for tests of
allelism. A total of five pathotypes of P. hordei used in
the study along with their virulence/avirulence profiles
and reactions to barley differential lines and Australian
cultivars postulated to carry RphC are listed in Table 1.
All pathotypes used originated from annual pathogenicity
surveys of P. hordei conducted in Australia and are main-
tained in liquid nitrogen at the Plant Breeding Institute,
University of Sydney.

Sowing, inoculation and disease assessment procedures
Sowing and inoculations were performed as described by
Sandhu et al. [6]. Disease response was assessed 12 days
after inoculation using a modified “0” – “4” scale as de-
scribed by McIntosh et al. [16]. Variations of the infection
types were indicated by the use of “-” (less than average
for the class), ‘+’ (more than average for the class), ‘C’
(chlorosis), ‘N’ (necrosis) and “X” which denotes a meso-
thetic infection type with a mixture of infection types on
the same leaf. A comma separating different infection
types was used to indicate heterogeneity within a given
test host genotype. When two different infection types
were observed on a single leaf, they were written together
without a comma.

Genetic mapping of RphC in the CI 9214/Stirling DH
population
Genomic DNA was extracted from the leaf tissues of a
single plant from a subset of 61 from the 258 original CI
9214/Stirling DH lines using CTAB essentially as de-
scribed by Fulton et al. [17]. The DNA of each DH line
was diluted to 100 ngμL−1 and subjected to genotypic ana-
lysis using the DArT-seq platform essentially as described
by Curtois et al. [18], except that the marker curation in-
volved removing the markers with low minor allelic fre-
quency (MAF) (i.e. < 0.1) and > 50% missing data.
Genetic linkage maps were constructed using MSTMap

software [19]. The following specific parameters of
MSTMap were used viz. name for the mapping popula-
tion: DH; the distance function: Kosambi; the threshold to
be used for clustering the markers into LGs: 0.000001; the
objective function: COUNT. In addition, any group of
markers less than two and with a distance of 15 centi-
morgans (cM) away from the rest of the markers was
placed in a separate linkage group. This linkage map of
the CI 9214/Stirling DH population was specifically
constructed for genetic mapping of RphC, for this
the phenotypic data of P. hordei pathotype 253P- was
converted to binary data [(susceptible 3+ =0 or resist-
ant i.e. ;12 = CN” =1) and was then included as an add-
itional marker. The map positions (cM) of all closely
linked DArT-seq markers to RphC on the CI 9214/Stirling
genetic map were compared with the Bowman consensus
map and the Hordeum vulgare L. cv. ‘Bowman’ genome
assembly [20].

Marker-trait and bioinformatic analysis of closely linked
DArT markers at the RphC locus
Marker-trait analysis of each DArT marker with the
RphC phenotype was conducted by computing Fisher’s
exact test on 2 X 2 count tables using R statistical soft-
ware (www.r-project.org). The null hypothesis was that
the DArT marker genotypes were not associated with
resistance to P. hordei; hence a random distribution of
genotypes in the resistant and susceptible phenotypic
groups. The –log10 of P values were plotted against the
positions on the physical Bowman genome assembly
[20] by means of chromosome-wise and genome-wide
‘Manhattan’ plots.

http://www.r-project.org


Table 1 Seedling response of selected barley genotypes to five Australian pathotypes of Puccinia hordei

Pathotype [accession number1]

Cultivar Resistance gene 200P-2 [S30883] 200P+ [900233] 243P- [920636] 253P- [760462] 4610P+ [900380]

Sudan Rph1 ;1 N ;1 N 3+ 3+ ;1 N

Peruvian Rph2 ;12 = C ;12 = CN 3+ 33+ ;12 = CN

Estate Rph3 ; ; ; ; ;

Gold Rph4 ;12- ;1 + N ;12- 3+ 3+

Magnif 104 Rph5 ;N ;1 N ;N ;N ;N

Bolivia Rph2 + Rph6 ;12 = C ;12 = CN 33 + C 33+ ;12 = CN

Cebada Capa Rph7 0;N 0;N 0;N 0;N 0;N

Egypt 4 Rph8 33+ 33+ 3+ 3+ 3+

Abyssinian Rph9 ;12 = C ;2 = C ;12 = C ;1-CN 3+

Clipper - 3+ 3+ 3+ 3+ 3+

Clipper BC8 Rph10 3+ ;1CN ;1 + N 2++3 2++3

Clipper BC67 Rph11 12-N 12+ 22+ 22-C 2-C

Triumph Rph12 12 = N 12 = N 22+ 12 = N 3+

PI 531849 Rph13 ;N ;-N ;N ;N ;N

PI 584760 Rph14 ;12-C ;12-C 2+ 2+ 22 + C

Bowman*4/PI355447 Rph15 ;N ;N ;N ;N ;N

Q21861 RphQ ;1 N ;1 N 3+ 3+ ;12 = N

38P184 Rph18 ;-N ;-N ;-N ;-N ;-N

Reka 1 Rph2 + Rph19 ;N ;1 + CN ;12-N ;1 N ;12 = N

Prior Rph19 ;1 N 3+ ;1-N ;N 3+

Ricardo Rph2 + Rph21 ;12-N ;12-N 2 + 2++ 2++ 12 = N

Cantala RphCantala 3+ 3+ 3+ ;12 = CN 3+

Bandulla RphCantala 3+ 3+ 3+ ;12 = CN 3+

Bussell RphCantala 3+ 3+ 3+ ;12 = N 3+

Chebec RphCantala + Rph19 12-C 3+ 12-CN ;12 = CN 3+

Hannan RphCantala 3+ 3+ 3+ ;12 = CN 3+

Lara RphCantala 3+ 3+ 3+ ;12 = N 3+

Milby RphCantala 3+ 3+ 3+ ;12 = N 3+

Moondyne RphCantala 3+ 3+ 3+ ;12 = N 3+

Noyep RphCantala 3+ 3+ 3+ ;12 = N 3+

Parwan RphCantala 3+ 3+ 3+ ;12 = N 3+

Research RphCantala 3+ 3+ 3+ ;12 = N 3+

Resibee RphCantala 3+ 3+ 3+ ;12 = N 3+

Tilga RphCantala 3+ 3+ 3+ ;12 = N, 3+ 3+

Stirling RphCantala 3+ 3+ 3+ ;12 = N 3+
1Plant Breeding Institute Cobbitty rust collection accession numbers.
2P- and P+ indicate avirulence and virulence, respectively, for Rph19.
3Culture kindly provided by Dr R.G. Rees, Queensland Department of Primary Industries.
4Original seed kindly supplied by Dr R.A. Pickering, New Zealand Institute for Crop and Food Research Limited.
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Linkage disequilibrium (LD) r2 was measured between
the binary scores of the RphC phenotype (0, 1) with each
DArT-seq marker genotype using GOLD [21]. The correl-
ation coefficient of each marker with RphC binary
phenotypic score was plotted against the Bowman genome
assembly by means of a genome-wide ‘Manhattan’ plot.
The sequences of DArT-seq markers with r2 > 0.8 were in-
dividually blasted (blastn) against the ‘Morex’ barley
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genome sequence browser (www.gramene.org) to identify
the physical scaffold of genes in the region between
markers flanking RphC based on relationships between the
CI 9214/Stirling DH population genetic map and the
'Bowman' consensus genetic maps. The physical positions
and annotations of all genes located between DArT-seq
marker DART461 (504808312–504808380) and DART4872
(509749584–509749620) were tabulated to identify possible
candidates for RphC. Further Pfam protein annotations
were also assigned to the DArT-seq markers that were lo-
cated within predicted genes in the ‘Morex’ genome. The
haplotype blocks in the significant region were constructed
using Haploview [22] to examine the LD in the region and
among significant DArT-seq markers.

Results
Multipathotype tests
The barley cultivar ‘Cantala’ contained an uncharac-
terised seedling resistance gene (RphC) to P. hordei that
was identified through phenotypic assessment of the
Australian barley differential lines (including ‘Cantala’)
with a range of P. hordei pathotypes (Table 1). Multi-
pathotyping tests on other barley cultivars suggested that
that in addition to ‘Cantala’, ‘Bandulla’, ‘Bussell’, ‘Chebec’
(with Rph19), ‘Hamelin’, ‘Lara’, ‘Milby’, ‘Moondyne’, ‘Noyep’,
‘Parwan’, ‘Research’, ‘Resibee’, ‘Tilga’ (heterogeneous) and
‘Stirling’ also carry RphC. None of these cultivars carried
Rph12 (Table 1).

Genetic analyses of DH population CI 9214/Stirling
The parental genotypes of the CI 9214/Stirling DH popu-
lation were postulated to carry Rph1 and RphC based on
the observed infection types (IT) in response to P. hordei
pathotypes 200P- (avirulent for Rph1 and virulent for
RphC) and 253P- (virulent for Rph1 and avirulent for
RphC), respectively (Figure 1; Table 1). Pathotype 200P-
was avirulent on ‘CI 9214’ (Rph1) and ‘Triumph’ (Rph12)
and virulent on ‘Cantala’ (RphC). Conversely, pathotype
Figure 1 Seedling leaves of the infection types of (L to R):
(1) CI9214 (P. hordei pathotype [pt] 253P-/Virulent Rph1)
(2) CI9214 (pt 210P+/avr Rph1) (3) Stirling (pt 253P-/avr
RphCantala) (4) Cantala (pt 253P-/avr RphCantala) (5) Cantala
(pt 210P+/vir RphCantala) (6) Triumph (pt 253P-/avr Rph12)
(7) Gus (pt 253P-/vir) and (8) Gus (pt 210P+/vir).
253P- was virulent on ‘CI 9214’ (Rph1) and avirulent on
‘Stirling’ (RphC), ‘Cantala’ (RphC) and ‘Triumph’ (Rph12).
Both pathotypes were virulent on the universal susceptible
line ‘Gus’ (Figure 1; Table 1). The CI 9214/Stirling popula-
tion of 258 DH lines was phenotyped using pathotype
253P- and in response the resistant parent ‘Stirling’ gave
the same IT “;12 = CN” as observed in the barley variety
‘Cantala’ with the same pathotype, whilst the susceptible
parent ‘CI 9214’ gave IT “3+” to this pathotype. The ob-
served segregation within the CI 9214/Stirling population
fitted with a predicted single gene inheritance model 1:1
ratio using Chi squared analysis (121 resistant: 137 suscep-
tible (P > 0.3)).

Genetic mapping of RphC
A total of 61 representative genotypes of the CI 9214/
Stirling DH population from both resistant and suscep-
tible phenotypic classes were selected for genetic map-
ping of RphC and subsequently genotyped using 10,258
DArT-seq marker loci. A genetic map was constructed
and contained nine linkage groups spanning 4,246 cM
using over 4,500 DArT-seq markers, which include the
RphC binary phenotype as a marker. Based on the
known positions of flanking markers on the consensus
‘Bowman’, ‘Morex’ and ‘Barke’ genetic maps, RphC was
mapped to chromosome 5HL between 129–134 cM
(Figure 2). RphC co-segregated with two DArT markers
(DART4872 and DART7508) and was 1.8 cM distal to
the flanking markers DART2682, DART5867 and
DART7413 and 3.9 cM proximal to DART6236 and
DART214 (Figure 2). Further genome-wide marker-trait
association demonstrated that DArT sequences only on
5HL were associated with RphC phenotypic scores indi-
cated by two significant peaks [−log10(P-value) of 17.5],
across the entire genome, at approximately 506 Mb on
5HL (Figures 3A and 3B) and correlated with LD map-
ping results of RphC (Additional file 1). Further linkage
disequilibrium analysis identified that the 2nd peak at
430 Mb was due to incorrect map position of a single
DArT marker (data not shown).

Tests of allelism
Tests of allelism between RphC and two previously identi-
fied Rph seedling genes on chromosome 5HL (Rph12 and
Rph13) indicated that RphC is independent of Rph13 but
completely linked with Rph12. A two-gene segregation
(fitting 7Res: 8Seg: 1Sus model) was observed in F3 fam-
ilies involving crosses of RphC with Rph13 when tested
with pathotype 253P- (Table 2). On other hand, there was
no segregation among F3 families of cross involving RphC
and Rph12 when tested with pathotype 253P- (avirulent
for both RphC and Rph12). This suggests that RphC is an
allele of Rph12 (Rph9.z) with distinct specificity and can
therefore be given the allele designation Rph9.am. Two

http://www.gramene.org


Figure 2 Partial linkage maps of linkage group seven of nine of the CI9214/Stirling doubled haploid population encompassing leaf
rust resistance gene RphCantala. Comparative map analysis was performed using common DArT markers between the CI9214/Stirling and the
'Bowman' consensus DArT-seq genetic map. DArT markers in common are in bold.
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additional populations derived from ‘Estate’ (Rph3)/‘Can-
tala’ and ‘Cebada Capa’ (Rph7)/‘Cantala’ were also tested
with pathotype 253P- and both populations conformed to
expected two gene segregation model (Table 2).
Pedigree analysis for RphC resistance
Pedigree analysis was performed on all 14 Australian
barley cultivars postulated to carry RphC including:
‘Bandulla’, ‘Bussell’, ‘Cantala’, ‘Chebec’, ‘Hamelin’, ‘Lara’,
‘Milby’, ‘Moondyne’, ‘Noyep’, ‘Parwan’, ‘Research’,
‘Resibee’, ‘Tilga’ (heterogeneous) and ‘Stirling’ using the
online barley pedigree resource http://genbank.vurv.cz/
barley/pedigree/. On this basis, cultivars ‘Gull’ and
‘Binder’ were predicted to be the sources of the RphC re-
sistance in ‘Stirling’, ‘Bandulla’, ‘Noyep’, ‘Lara’, ‘Stirling’,
‘Research’, ‘Chebec’, ‘Moondyne’, ‘Bussell’ and ‘Cantala’.
Pedigree analysis suggests that ‘Maja’ (pedigree of ‘Ymer’
and ‘Erectoides 16’) share common ancestry of ‘Binder’ and
‘Gull’ (Figure 4). Both ‘Gull’ and ‘Binder’ were derived from
landraces from Sweden (‘LV-Gotland’) and ‘Czechoslovakia’
(LV-Kvasice-NA-Morave through ‘Hanna’), respectively
(Figure 4). The donor sources of seedling resistance in
‘Hannan’, ‘Milby’ and ‘Tilga’ could not be explained based
on available pedigree information.
LD and bioinformatic analysis of closely linked DArT
markers at the RphC locus
A total of 15 DArT-seq markers had an r2 > 0.8 and five of
these were in complete LD (r2= 1) with RphC (Table 3;
Figure 3; Additional file 1). Table 4 provides a list of DArT
locus name, clone ID and associated sequences for each
marker. DArT-seq markers DART4872 and DART7508
that co-located with RphC in the CI 9214/Stirling genetic
map were both in complete LD with RphC, however, they
along with DART7846 were not present in the ‘Bowman’
consensus maps (Table 3; Figure 2). Furthermore, the se-
quence of the most closely associated DArT-seq marker
based on the lowest Fisher's exact test P value to RphC
(DArT4851) was located within a predicted disease resist-
ance protein (NB-ARC) based on Pfam analysis (Table 3).
Two other sequences (DART7846 and DART3079) were
located within the same transcript of another predicted
disease resistance gene (serine/threonine receptor kinase
gene) on chromosome 5HL. In the ‘Morex’ genome both
DART7846 and DART3079 had a closest match to a phys-
ical position 9520434–9520483 distant to all other closely
associated DArT sequences, but the contig in the ‘Bowman’
assembly mapped to physical position 506583400 (Table 3).
Bioinformatic analysis of the interval containing

DArT-seq markers with an r2 value > 0.81 spanned 5 Mb

http://genbank.vurv.cz/barley/pedigree/
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Figure 3 Marker trait association analysis scans using Fisher’s exact test Vertical axis represents -log10 (P) values of the P-value of the
marker trait association. The peaks above minimum threshold of 2 (P-value = 0.03) can be considered as significantly associated. The colours
blue and red were used to differentiate between chromosomes (1H-7H). (A) Chromosome-wise plot and (B) genome-wide manhattan plot of
chromosome 5HL derived from marker-trait association (MTA) analysis using Fisher’s exact test on 2 X 2 count table for seedling resistance to
Puccinia hordei pathotype 253P- (binary scoring data) in the CI9214/Stirling doubled haploid population using 4, 500 DArT-seq markers.
The –log10 of P-values were plotted against the positions on the physical Bowman genome assembly [20]. The peaks above minimum threshold
of 2 (P-value = 0.03) can be considered as significantly associated.
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in total and was gene-rich with 75 genes (>60% uncharac-
terized) (Table 5). The haplotype block analysis using sig-
nificant DArT-seq markers showed very high linkage
disequilibrium among these markers (data not shown).
From the 75 predicted transcripts within this region, there
was also a relatively large representation of various tran-
scription factors, while only three predicted disease
Table 2 Chi squared analysis of barley populations for tests f

Population Genes involved Pop No. of F3 fam

NSR S

Cantala/Triumph RphC/Rph12 F3 208

Cantala/PI531849 RphC/Rph13 F3 69 7

Cantala/Estate RphC/Rph3 F3 112 8

Cantala/Cebada Capa RphC/Rph7 F3 72 1

Stirling/CI9214 RphC/Rph1 DH 121

Maximum recombination r = 1.1 cM (P = 0.01) and r = 0.7 cM (P = 0.05) calculated fro
#Chi squared values are denoted a and b for 2 and 1 degrees of freedom, respectiv
resistance proteins were identified including NB-ARC,
NBS-LRR and a serine/threonine receptor kinase (Table 5).

Discussion
Here we report on the discovery and mapping (genetic
and physical) of a new seedling resistance allele to P. hor-
dei, previously temporarily designated as RphC. A
or allelism with RphCantala

ilies Genetic ratio P value Chi square

eg NSS

No segregation# <0.0001 267.429a

1 10 7:8:1 0.807 0.429a

7 18 7:8:1 0.012 8.779a

07 8 7:8:1 0.117 4.290a

137 1:1 0.319 0.992b

m Hanson [32] based on the hypothesis that the two loci are different.
ely.



Figure 4 Pedigree relationship of barley varieties ‘Stirling’ (PI 466919) and ‘Cantala’ (PI 483047/AUS 99074) (postulated to carry
RphCantala based on multipathotype tests and genetic mapping analysis) tracing the RphC resistance back to Swedish and Czechoslovakian
landraces LV-Gotland and LV-Kvasice-NA-Morave. ‘Cantala’ is derived from pedigrees ‘Kenia’ and ‘Erectoides 16’, a mutant derived from the Danish
cultivar ‘Maja’.
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previous genetic study using a large F2 population deter-
mined that the Rph12 resistance locus in ‘Triumph’ was
an allele of Rph9 [14] and was therefore re-designated as
Rph9.z based on nomenclature described in Franckowiak
et al. [23]. Our studies demonstrated that RphC is an allele
of Rph12 (Rph9.z) found in ‘Triumph’ based on tests of al-
lelism, chromosomal location and pathotype specificity.
Tests of allelism were performed in this study by inter-
crossing ‘Cantala’ with barley differential lines carrying
Rph3, Rph7, Rph10, Rph12 and Rph13. RphC was inde-
pendent from Rph3, Rph7, Rph10 and Rph13 based on
observed segregation ratios conforming to two-gene pre-
diction models. Further genetic analysis of F3 popula-
tions demonstrated that there was no segregation for
resistance to P. hordei pathotype 253P- between ‘Cantala’
and ‘Triumph’, suggesting that RphC and Rph12 are likely
allelic and therefore RphC should be designated Rph9.am.
Table 3 Details of bioinformatic analyses of DArT-seq marker

DArT
locus_name

r2 with
RphCantala

Bowman cM C/S cM Fisher's
P-value

Barley
physical

B
p

DART4851 1 131.67 97.30 1.69E-17 5HL 5

DART4872 1 NA 90.74 1.69E-17 5HL N

DART7507 1 NA 97.30 5.33E-16 5HL N

DART7846 1 NA NA 3.93E-12 5HL N

DART3079 0.937 130.9 102.04 1.38E-16 5HL 5

DART3263 0.937 134.72 NA 1.38E-16 5HL 5

DART5481 0.918 134.72 89.13 1.05E-12 5HL 5

DART2133 0.875 129.72 103.65 4.13E-15 5HL 5

DART2681 0.873 130.9 102.04 4.13E-15 5HL 5

DART6198 0.873 129.44 110.31 4.13E-15 5HL 5

DART4228 0.867 129.72 103.64 1.52E-14 5HL 5

DART4182 0.867 129.83 110.307 5.60E-14 5HL 5

DART5422 0.857 129.83 111.92 7.50E-13 5HL 5

DART461 0.817 129.44 115.15 6.41E-14 5HL 5

NA, not available.
Both multipathotype analysis and observed ITs between
‘Cantala’, ‘Stirling’ and 13 other Australian barley cultivars
postulated to carry Rph9.am suggest that the resistance
mapped in this study is the same gene. Rph9.am had dif-
ferent specificity than Rph12 (Rph9.z). P. hordei pathotype
253P- was avirulent on Rph9.am and Rph12, however
pathotypes 210P+ and 200P- were avirulent on Rph12 yet
virulent on Rph9.am. Genetic analysis of the CI 9214/Stir-
ling DH population using the 253P- pathotype conformed
to a single gene inheritance contributed by the ‘Stirling’
parent. Further assessment of this population with P. hor-
dei pts 243P+ (avirulent on Rph9.am and virulent on
Rph19) and 4610P+ (virulent on Rph12 and Rph19) ruled
out the involvement of these genes for the resistance ob-
served in the CI 9214/Stirling population.
Rph9, Rph12 and Rph9.am all map to the long arm of

chromosome 5H (5HL). Marker-trait analysis performed
s closely linked to RphCantala

owman
hysical

Blastn
P-value

Morex
physical

Pfam Morex 5HL

06583400 3.40E-27 506781405-506781469 NB-ARC

A 1.80E-11 509749584-509749620 No match

A 2.00E-16 506713993-506714061 Tubulin -GTPase

A 1.30E-19 9520434-9520483 Serine/threonine
Protein Kinase

06583400 5.80E-32 9519766-9519834 Serine/threonine
Protein Kinase

09518480 1.40E-29 509705303-509705371 No match

09518480 5.80E-32 506948877-506948945 Inosine-5′-monophosphate
dehydrogenase

05380600 1.40E-29 505484624-505484692 No match

06583400 1.40E-29 506600697-506604765 No match

04740440 1.40E-29 504879962-504880030 Cytochrome P450

05380600 5.80E-32 505484082-505484150 No match

05380600 5.80E-32 505506713-505506781 AP2 transcription factor

05380600 1.40E-29 505507578-505507646 AP2 transcription factor

04780440 5.80E-32 504808312-504808380 Uncharacterised protein



Table 4 Summary information for significant DArT-seq markers in linkage disquilibrium (r2 > 0.8) with RphCantala on
chromosome 5HL

Locus name DArT clone ID Sequence

DART4872 100025017|F|0-28:G > C-28:G > C TGCAGCAAAAATAGCACCGCCACACAACGTGCGCGGCAGCGCTCCCTCCAGCGACGCGACGCCTAGGAT

DART7508 100020485|F|0-40:G > A-40:G > A TGCAGGGGGCAAGAGCAAACAAGGCATGATGAGCAAACCAGGCATGGTTGAGAGATCAGGCTAATTGTT

DART7846 100023795|F|0-13:G > A-13:G > A TGCAGTACCTCGCGCTCTCCGGCAACGAGCTGTCTGGCAAGATACCGCCGAGATCGGAAGAGCGGTTCA

DART3080 100017949|F|0-37:A > G-37:A > G TGCAGCTCGAAGAGACCCTTGGGAATGGAGCCGTTCAAGTAGTTCTCTCCGAGACGGATACGGCTCAAG

DART3263 100023711|F|0–33:C > A TGCAGGCTCCCGCAGCCGCTGCTCCGTTCATCCCCCAGCAGCACCAGTACGTCACTCAGACGGGCACGG

DART5481 100009066|F|0–42:A > G TGCAGCCAACCTTGGATGGAACACACAGAAAACCAGTATGCCAGTCCTCGATTTAAAGATGGGGCTAGA

DART2133 100025595|F|0–17:C > A TGCAGTCCTGCTCATCTCTTCTTATGGTGACTACATGTTCTTCTTCATCTGGCTGGTCTGAGTTGGATG

DART2681 100009568|F|0–11:A > G TGCAGTGGAATATAGCAAGGGCGGAGCAGCACAGTCAGTCAAGTCTGCATGCATGCGAGCAACCGTTGC

DART6198 100012213|F|0-56:T > C-56:T > C TGCAGGTTTTTGAACTTTGAAGAACTCGCGCCGCTGCCTTGGGAAAATGTTTGAATTGTCCAAGGACAT

DART4228 100017110|F|0-68:A > G-68:A > G TGCAGTTAGTCCAAGAAAGAGGAAAGCTGATGATGGTCTCAGTCTCAGTCCAAGAAAGAGGAAAGCTGA

DART4182 100011760|F|0-59:G > A-59:G > A TGCAGATTTGTAGTCCACTAGGTACTAGTACTATCTTGTAGCGAGATTGCGAGGTTGCAGTCTCAGGGA

DART5422 100021856|F|0-28:C > A-28:C > A TGCAGATGGAGACGAGGAGAAGCACGATCGATCCCAGGCCAAAAGGTCCAGCAAATGACATGCAAAGAG

DART462 100004133|F|0-16:C > T-16:C > T TGCAGAGCTCCTCAACCGTGCCTATTTATCTGCACATGGAGCCTTCAGGGCTTCAGGAAAAATCGCATC

DART4851 100021552|F|0–65:T > C TGCAGGCATGATCGGAAGTTTTCCCATGCCGCCTCATTCACATCCCAACCGAAATCAACAACAAATAAG

DArT locus names used throughout manuscript derived from clone ID/SNP variant and associated sequence read.
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in this study using 4,500 DArT markers assigned Rph9.am
to chromosome 5HL in a similar region to both Rph9 and
Rph12 although there were no comparable markers be-
tween genetic maps to accurately assess comparative posi-
tions. Comparative genetic analysis between the ‘Bowman’
and CI 9214/Stirling genetic maps identified six markers
in common within a 15 cM region of Rph9.am and this re-
gion co-located to QTL for barley leaf rust resistance in
barley on 5HL located in between 126 and 140 cM from
cultivar ‘Scarlett’ [24]. Discrepancies were observed be-
tween the order and distance of DArT markers between
the parental genetic map (CI 9214/Stirling) and the con-
sensus 'Bowman' genetic maps. This is likely to be attrib-
uted to the limited number of lines used for genetic map
construction and mapping the Rph9.am phenotype.
Additional file 2 gives the marker haplotype data for each
closely linked DArT to Rph9.am. A small proportion of
markers had missing data and this may further explain the
inaccuracy of the marker order and distance observed in
the CI 9214/Stirling genetic map. Bioinformatic analysis
on sequence reads derived from DArT markers closely
linked to Rph9.am (r2 > 0.8) suggests that there are four
likely gene candidates for the Rph9.am/Rph12/Rph9 locus
within a 5 Mb gene rich region including an NB-ARC,
NBS-LRR and two Serine/Threonine receptor kinases. Vari-
ation was observed between the ‘Bowman’ and ‘Morex’ gen-
ome assemblies for the physical location of two DArT
markers (DART7846 and DART3079), both of which
showed highest similarity to the same serine/threonine re-
ceptor kinase transcript. Such discrepancies are likely to be
either due to errors in assembly between the ‘Bowman’ and
‘Morex’ genomes given their recent release or the absence
of MLOC_38941 within ‘Bowman’, which is seedling sus-
ceptible to P. hordei and lacks any of the characterised Rph
genes and Rph9.am (R. F. Park, unpublished).
High LD among the significant DArT-seq markers in

this region, as indicated by haplotype block analysis,
suggests that Rph9.am could be located to a broad re-
gion on chromosome 5HL spanning at least 5 Mb.
Given the population size of the F3 families used for
tests of allelism, it is possible that Rph12 and Rph9.am
could be independent closely linked resistance genes
separated by a very small physical distance. Bioinfor-
matic analysis of the genes within the physical region
believed to carry Rph9.am based on LD and the ‘Bow-
man’ consensus map suggest the presence of two NBS
genes. The role of NBS-LRR genes and their involve-
ment in race specific resistance to rusts and other
plant pathogens is well documented [25,26] as is their
tendency to cluster within grass genomes due to selec-
tion for duplication events in response to evolutionary
pressure [27,28]. Alternatively, there is a possibility
that the same one of the serine/threonine receptor kinase
genes is responsible for resistance to multiple pathotypes
of P. hordei based on previously reported broad spectrum
resistance conferred by both Rpg1 and Rpg5 to stem rust
in barley. Both Rpg1 and Rpg5 encode serine/threonine re-
ceptor kinases and are believed to show marked hom-
ology. Rpg5 maps approximately 20 Mb away from the
predicted Rph9.am locus, however, a recent study screen-
ing Australian barley cultivars with the Rpg5 marker iden-
tified only 6 out of the 14 lines postulated to carry Rph9.
am also carried Rpg5 suggesting they are not the same
gene [29].



Table 5 Bioinformatic analysis of functional annotation based on Pfam of the 75 predicted genes in the genomic region
on Morex 5HL at the RphCantala locus based on linkage disequilibrium analysis performed on linked DArT-seq markers

Gene identifyer Physical postion in
Morex genome

Sequence annotation Pfam Length
(amino acid residues)

MLOC_67435 Chromosome 5: 504,807,504-504,808,889 Uncharacterised protein 1282

MLOC_63880 Chromosome 5: 504,837,984-504,844,416 Uncharacterised protein 4770

MLOC_63879 Chromosome 5: 504,837,985-504,840,518 Peptidase domain 1900

MLOC_14877 Chromosome 5: 504,848,281-504,851,127 Uncharacterised protein 2578

MLOC_72642 Chromosome 5: 504,851,380-504,854,051 Uncharacterised protein/transmembrane 818

MLOC_15752 Chromosome 5: 504,856,869-504,860,258 Uncharacterised protein//serine/threonine
protein kinase

1279

MLOC_67813 Chromosome 5: 504,866,847-504,868,082 Uncharacterised protein 156

MLOC_58355 Chromosome 5: 504,868,629-504,870,096 Uncharacterised protein/Myb homeobox 96

MLOC_39379 Chromosome 5: 504,881,559-504,882,690 CytochromeP450/uncharacterised protein 193

MLOC_55782 Chromosome 5: 505,224,634-505,228,648 Uncharacterised protein/Bromodomain 350

MLOC_12507 Chromosome 5: 505,231,551-505,235,061 Transmembrane domain/uncharacterised protein 99

MLOC_56550 Chromosome 5: 505,251,077-505,252,833 Uncharacterised protein 212

MLOC_67579 Chromosome 5: 505,267,327-505,268,018 Uncharacterised protein 73

MLOC_79114 Chromosome 5: 505,304,761-505,305,695 Uncharacterised protein 180

MLOC_38843 Chromosome 5: 505,401,971-505,402,516 Uncharacterised protein/zipper 144

MLOC_22183 Chromosome 5: 505,411,541-505,418,638 Uncharacterised protein 345

MLOC_22184 Chromosome 5: 505,411,592-505,420,058 Microtubule-associated protein 556

MLOC_44070 Chromosome 5: 505,421,803-505,425,401 Uncharacterised protein 346

MLOC_61309 Chromosome 5: 505,435,524-505,436,686 Uncharacterised protein 176

MLOC_67384 Chromosome 5: 505,437,805-505,442,456 Uncharacterised protein/BIPPOZ fold 190

MLOC_14335 Chromosome 5: 505,450,976-505,451,416 Uncharacterised protein 46

MLOC_78241 Chromosome 5: 505,457,197-505,458,593 Glycosyltransferase 2 363

MLOC_37117 Chromosome 5: 505,487,438-505,491,448 Uncharacterised protein/MIP1 Leuczipper 608

MLOC_63425 Chromosome 5: 505,505,232-505,509,647 Uncharacterised/AP2 transcription factor 631

MLOC_58589 Chromosome 5: 505,517,232-505,521,660 Eukaryotic translation initiation factor 3 subunit C 868

MLOC_71335 Chromosome 5: 505,523,834-505,525,773 Cytochrome P450/Uncharacterised protein 453

MLOC_44341 Chromosome 5: 505,572,931-505,576,253 Uncharacterised protein 515

MLOC_11008 Chromosome 5: 505,604,769-505,610,921 Kinesin motor domain/uncharacterised protein 340

MLOC_55124 Chromosome 5: 506,586,998-506,588,618 Ribosomal S14/predicted protein 56

MLOC_55125 Chromosome 5: 506,594,987-506,597,286 Uncharacterised protein 284

MLOC_64140 Chromosome 5: 506,607,831-506,611,618 Malate dehydrogenase 358

MLOC_39143.3 Chromosome 5: 506,613,176-506,622,502 Uncharacterised protein 503

MLOC_4524 Chromosome 5: 506,631,764-506,637,466 Uncharacterised protein 144

MLOC_63065 Chromosome 5: 506,640,602-506,644,654 Uncharacterised protein/protein-kinase
domain leucine rich repeat

608

MLOC_37278 Chromosome 5: 506,647,621-506,649,939 Uncharacterised/cytP450 515

MLOC_11920 Chromosome 5: 506,671,388-506,671,569 Uncharacterised protein

MLOC_61101 Chromosome 5: 506,676,442-506,678,678 Alpha/beta hydrolase domain/uncgharacterised 377

MLOC_52788 Chromosome 5: 506,712,820-506,716,335 Alpha-tubulin 4 451

MLOC_52896.1 Chromosome 5: 506,720,817-506,722,983 Myb/Homeobox/Uncharacterised protein 299

MLOC_77955 Chromosome 5: 506,728,560-506,729,777 Homeobox/leucine zipper/uncharacterised protein 154

MLOC_52360.1 Chromosome 5: 506,734,900-506,736,938 tRNA-butesine synthase/uncharacterised protein 240
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Table 5 Bioinformatic analysis of functional annotation based on Pfam of the 75 predicted genes in the genomic region
on Morex 5HL at the RphCantala locus based on linkage disequilibrium analysis performed on linked DArT-seq markers
(Continued)

MLOC_52361 Chromosome 5: 506,737,533-506,741,133 Pentatricopeptide/uncharacterised 682

MLOC_17956 Chromosome 5: 506,743,784-506,750,717 Uncharacterised protein/N-acetylglucosaminyl
transferase component (Gpi1)

541

MLOC_66827 Chromosome 5: 506,758,816-506,764,116 AMP-binding enzyme/uncharacterised protein 700

MLOC_71512 Chromosome 5: 506,765,725-506,767,027 Oligopeptide transporter 292

MLOC_71514 Chromosome 5: 506,771,066-506,774,511 Uncharacterised protein 947

MLOC_36533 Chromosome 5: 506,774,624-506,778,739 Giberellin signalling 548

MLOC_36533 Chromosome 5: 506,779,918-506,782,319 NB-ARC protein/uncharacterised protein 591

MLOC_79498 Chromosome 5: 506,783,900-506,786,958 Peptidase/protein inhibition/Uncharacterised protein 377

MLOC_17927 Chromosome 5: 506,792,732-506,798,457 WRKY transcription factor /Uncharacterised protein 1032

MLOC_66348 Chromosome 5: 506,818,362-506,820,563 NAM protein 337

MLOC_16892 Chromosome 5: 506,827,938-506,828,895 Tetraspanin/peripherin/uncharacterised protein 183

MLOC_14114 Chromosome 5: 506,834,758-506,838,333 FAD reductase/uncharacterised 430

MLOC_23699 Chromosome 5: 506,884,357-506,888,420 RNA polymerase III 120

MLOC_70664 Chromosome 5: 506,907,468-506,911,192 Lipoxygenase 863

MLOC_17894 Chromosome 5: 506,912,481-506,913,432 Uncharacterised protein 145

MLOC_10360 Chromosome 5: 506,913,595-506,916,553 NBS-ARC-LRR disease resistance
protein/Uncharacterised

766

MLOC_19228 Chromosome 5: 506,923,278-506,929,445 Cullin repeat-like superfamily 351

MLOC_3679 Chromosome 5: 506,929,610-506,930,486 GTP binding Elongation factor 113

MLOC_10567 Chromosome 5: 506,948,227-506,953,875 Inosine-5′-monophosphate dehydrogenase 496

MLOC_44818 Chromosome 5: 506,995,429-506,995,800 Uncharacterised protein 30

MLOC_76586 Chromosome 5: 506,996,531-506,997,720 Uncharacterised protein 51

MLOC_66071 Chromosome 5: 509,522,514-509,527,272 Calmodulin binding
protein/uncharacterised

588

MLOC_66074 Chromosome 5: 509,528,020-509,529,376 Photosystem I reaction
center subunit III

439

MLOC_62114 Chromosome 5: 509,534,583-509,540,642 Calmodulin binding
protein/uncharacterised

615

MLOC_61300 Chromosome 5: 509,556,146-509,556,624 Uncharacterised protein/Zinc finger 137

MLOC_61302 Chromosome 5: 509,560,844-509,561,551 Uncharacterised protein/Zinc finger 156

MLOC_2917 Chromosome 5: 509,561,748-509,564,141 Protein binding GTP-Elongation Factor 322

MLOC_66343 Chromosome 5: 509,613,233-509,613,914 Uncharacterised protein 59

MLOC_7003 Chromosome 5: 509,663,223-509,664,904 Chaperone J 96

MLOC_4695 Chromosome 5: 509,722,893-509,727,266 F-box domain cyclin/Uncharacterised protein 411

MLOC_66212 Chromosome 5: 509,843,699-509,844,569 Uncharacterised protein 245

MLOC_4789 Chromosome 5: 509,860,275-509,861,218 Uncharacterised protein 146

MLOC_12556 Chromosome 5: 509,866,159-509,866,865 Uncharacterised protein 110

MLOC_66971 Chromosome 5: 509,878,445-509,880,991 Ribose 5P isomerase
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The Australian barley cultivars postulated to carry Rph9.
am were all closely related based on available pedigree in-
formation. Multipathotype testing performed in this study
using five P. hordei pathotypes suggests that Rph9.am is
likely to be present in 14 Australian cultivars. Further
pedigree analysis of all Australian cultivars postulated to
carry Rph9.am demonstrated strong relatedness and shared
ancestral pedigrees through ‘Gull’ and ‘Binder’, which trace
the source of the Rph9.am resistance to a landrace from ei-
ther Sweden or the former Czechoslovakia. Both ‘Cantala’
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and ‘Stirling’ share a common pedigree in ‘Maja’ that was
produced from an intercross between ‘Gull’ and ‘Binder’
[30]. A previous study reporting on the genealogical ana-
lysis and diversity of spring barleys released from the
former Czechoslovakia and the Czech Republic determined
that three ancestral landraces, including ‘LV-Gotland’, con-
tributed significantly to feed barley cultivars. These cultivars
were enriched in germplasm of more productive genotypes
and were donors of biotic stress resistance at the sacrifice
of malting qualities during breeding [31]. Previous re-
search has also found however that ‘Gull’ is susceptible to
Australian P. hordei pathotypes and only carried the Rph4.
d allele at the Rph4 locus. This evidence suggests that
'Binder' not 'Gull' is the more probable source of the
Rph9.am resistance from ‘Cantala’.

Conclusions
Consolidating both previous and present studies, at least
three alleles contributing to leaf rust resistance [Rph9,
Rph12 (Rph9.z) and Rph9.am (Rph9.am)], each with dis-
tinct race specificity, map to chromosome 5HL at poten-
tially the same locus. Of these three alleles, Rph12 and
Rph9.am appear to be most common in Australian germ-
plasm. Genetic mapping and LD analysis in this study de-
termined that Rph9.am is likely to be located in a physical
region spanning 5 Mb on chromosome 5HL. Furthermore,
this region contained three potential gene candidates
which will inform future gene cloning efforts of the
Rph12/Rph9.am locus for diagnostic marker development.
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