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Abstract

partially rust-resistant grass pea genotype by RNA-seq.

Background: Grass pea (Lathyrus sativus L) is a valuable resource for potentially durable partial resistance to rust.
To gain insight into the resistance mechanism and identify potential resistance genes, we generated the first
comprehensive transcriptome assemblies from control and Uromyces pisi inoculated leafs of a susceptible and a

Results: 134,914 contigs, shared by both libraries, were used to analyse their differential expression in response to
rust infection. Functional annotation grouped 60.4% of the contigs present in plant databases (37.8% of total) to 33
main functional categories, being “protein”, “RNA", “signalling”, “transport” and “stress” the most represented.
Transcription profiles revealed considerable differences in regulation of major phytohormone signalling pathways:
whereas Salicylic and Abscisic Acid pathways were up-regulated in the resistant genotype, Jasmonate and Ethylene
pathways were down-regulated in the susceptible one. As potential Resistance-genes we identified a mildew
resistance locus O (MLO)-like gene, and MLO-related transcripts. Also, several pathogenesis-related genes were
up-regulated in the resistant and exclusively down regulated in the susceptible genotype. Pathogen effectors
identified in both inoculated libraries, as e.g. the rust Rtp1 transcript, may be responsible for the down-regulation
of defence-related transcripts. The two genotypes contained 4,892 polymorphic contigs with SNPs unevenly distributed
between different functional categories. Protein degradation (29.7%) and signalling receptor kinases (8.2%) were the
most diverged, illustrating evolutionary adaptation of grass pea to the host/pathogens arms race.

Conclusions: The vast array of novel, resistance-related genomic information we present here provides a highly
valuable resource for future smart breeding approaches in this hitherto under-researched, valuable legume crop.
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Background

Rusts are among the most important diseases of legumes
[1] and grass pea (Lathyrus sativus L.) is not an exception
[2-4]. Rusts are caused by biotrophic fungi that keep
infected host cells alive for their development. They form
elaborate intracellular accommodation structures called
haustoria, which maintain an intimate contact between
fungal and plant cells over a prolonged period of time [5].
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Rust in Lathyrus spp. is caused by Uromyces pisi
(Pers.) Wint and U. viciae-fabae (Pers.) ]. Schrot [6,7],
but and in addition to Lathyrus, U. pisi infects a broad
range of other legumes too [7,8]. Plants have developed
multifaceted defence responses, many of which are
induced only upon pathogen attack. These responses
may include induction of pathogenesis related (PR)
genes, the production of secondary metabolites (as e.g.
phytoalexins), as well as the reinforcement of cell walls [9].
Associated with these responses may be the production of
reactive oxygen species (ROS) and the induction of
localized cell death (the hypersensitive response, HR) [10].
The induction of this basal plant defence machinery
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occurs upon the recognition of conserved molecules
which are present in a variety of microbial species,
but absent in the host. These pathogen associated
molecular patterns (PAMPs) are molecular components
highly conserved within a class of microbes, where they
have essential functions for their fitness or survival [11].
These include, for example, fungal chitin, f-glucan and
ergosterol. The specific virulence factors of the pathogen,
known as fungal effectors, are recognized by corresponding
resistance (R) genes of the host plant. Both rust-causing
pathogens of Lathyrus are able to efficiently overcome
R-gene based resistance [12]. To date, most fungal effectors
identified are lineage-specific small secreted proteins (SSP)
of unknown function [13,14]. The U. viciae-fabae rust
transferred protein 1 (Rtpl) was the first fungal effector
visualized in the host cytoplasm and nucleus after in
planta secretion by the rust fungus [15]. Rtp1 belongs to a
family of cysteine protease inhibitors that are conserved
in the rust species (order Pucciniales formerly known as
Uredinales) [16].

Gene-for-gene resistance is associated with the activation
of, for instance, the salicylic acid (SA)-dependent signalling
pathway, leading to expression of defence-related genes like
PR1, the production of ROS and finally to pro-
grammed cell death [17,18]. Other phytohormones in-
volved in plant/pathogen interaction are ethylene (ET)
and jasmonates (JA). Plant defence responses appear
specifically adapted to the attacking pathogen, with
SA-dependent defences acting mainly against biotrophs,
and JA- and ET-dependent responses acting mainly against
necrotrophs [5,19,20].

Grass pea is a diploid species (2n=14) with a genome
size of approx. 8.2 Gbp [21]. Although grass pea is primarily
self-pollinated, a 2 to 36% outcrossing rate was reported,
depending on location and genotype [22-24]. Outcrossing
is mainly driven by pollinators, and therefore can be mini-
mized when grown in isolation [22]. There is a great poten-
tial for the expansion of grass pea in dry areas and zones
that are becoming more drought-prone as a result of
climate change [25]. Partial resistance to U. pisi has been
reported in grass pea as a clear example of prehaustorial
resistance, with no associated necrosis. This resistance is
due to restriction of haustoria formation accompanied by
frequent early abortion of the colonies, reduction in the
number of haustoria per colony and decreased intercellular
growth of infecting hyphae [26]. Though prehaustorial
resistance is typical for non-hosts, it has also been
implicated in host partial resistance [27,28] and is
common in resistance of major cool season grain legumes
against rusts [1,29]. Additionally, resistant Lathyrus
genotypes may serve as a source of new and useful
genetic traits in the breeding of related major legume crops
such as peas, lentils and vetches. Cross-incompatibility has
been reported between pea and L. sativus, but successful
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fusion of Pisum sativum and L. sativus protoplasts [30]
creates new possibilities for gene transfer between these
species. However, the slow progress in understanding the
genetic control of important traits, such as disease resist-
ance, in Lathyrus species hampered the development of
modern cultivars or the introgression of their interesting
traits into related species.

In economically important warm season legumes such
as common bean and soybean, complete monogenically
controlled resistances to rusts and associated rust resistance
genes have been described together with closely linked
markers for use in marker assisted backcrossing [29,31-34].
By contrast, most rust resistances described so far in cool
season food legumes are incomplete in nature and the
genetic basis of resistance is largely unknown. Although
QTL mapping studies confirmed the polygenic control of
resistance as e.g. in pea [35], faba bean [36] and chickpea
[37], no markers suitable for marker assisted selection
(MAS) are available yet.

Genomic resources for grass pea are still scarce (e.g. in
April 2014 the NCBI database contained only 178 EST
sequences from L. sativus [38]), and the two linkage
maps existing for grass pea do not contain sufficiently
informative markers to bridge between them [4].

The advent of next-generation sequencing (NGS) tech-
nologies was an important breakthrough enabling the
sensitive and quantitative high-throughput transcriptome
analysis referred to as RNA-seq [39,40]. RNA-seq discrimi-
nated between microbial and host transcriptomes, during
plant-microbe interactions, using original or phylogenetic-
ally related genomes as a reference for transcript annota-
tion [41-44]. RNA-seq gene expression patterns provided
also information on complex regulatory networks and on
variations in expressed genes, such as SNPs and SSRs, in
an increasing number of non-model plants [45] and thus
may be well suited to overcome the bottleneck of lacking
genomic resources in Lathyrus.

Here we employed RNA-seq to study the response of
L. sativus to U. pisi infection. We used MapMan and
metabolic pathway analyses to interpret the results
and assessed allelic diversity in transcripts as a source
for genic markers for future (comparative) mapping
studies. In addition, the expression of a set of selected
genes was measured by qRT-PCR to validate the RNA-seq
results.

To our knowledge, this is the first study on the global
expression profiling of genes in grass pea/pathogen
interaction using NGS. Our results will assist the
elucidation of pathways and genes associated with
resistance to rust in grass pea and related species.
This approach may represent one of the initial steps
towards the development of effective strategies for
resistance breeding against such a quickly evolving
pathogen.
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Results

Contigs from the RNA-seq transcriptomes of resistant and
susceptible L. sativus genotypes

The RNA-seq libraries from control and inoculated leafs
from the resistant genotype BGE015746 were united
prior to assembly to generate a comprehensive data set
enabling the generation of contigs of maximum length.
They included 46,994,629 reads which were assembled into
105,288 contigs, ranging in size from 150 to 13,929 bp, with
a mean contig length of 544 bp. The respective united
library from the susceptible genotype BGE024709
comprised 72,566,465 reads which assembled in 119,870
contigs, with a size range of 150 to 15,658 bp and a mean
contig length of 524 bp.

A reference assembly using both genotypes and
treatments assembled in 134,914 contigs, ranging in
size from 150 to 13,916 bp, with a mean contig
length of 501 bp. The mapping and quantification of
both genotypes’ libraries to the reference assembly
allowed the analysis of their differential expression in
response to U pisi infection. 9,501 contigs were unique to
the resistant and 15,645 contigs were unique to the
susceptible genotype.

Redundancy of the reference assembly was checked
using the clustering algorithm UCLUST, identifying only
49 (0.036%) transcripts with identity higher than 95%.

This Transcriptome Shotgun Assembly project has been
deposited at DDBJ/EMBL/GenBank under the accession
GBSS00000000. The version described in this paper is the
first version, GBSS01000000.

RNA-seq validation by quantitative RT-PCR assay

To validate the RNA-seq results, expression levels of a
set of 9 selected genes were analysed by qRT-PCR.
Genes were selected by their level of expression and
transcript count, in order to represent a broad range of
expression profiles. Further, the number of their
transcripts differed between inoculated and control
samples by log2 ratios ranging from -6.39 to 4.70 at
q-values < 0.05. Their read count numbers were generally
higher than 100, with exception of contig a45744;151,
“mitochondrial chaperone BCS1”, with 2 counts in
the resistant control and 36 counts in the resistant
inoculated line, and contig a32859;123 “seed maturation
protein”, with 3 counts in the susceptible inoculated line
and 104 counts in the resistant inoculated line (Table 1).
The best housekeeping genes for normalization suggested
by the geNorm software were, for the resistant genotype
samples, “B-tubulin” (a6507;507) and “photosystem I P700
apoprotein A2” (al60;902), and “O-methyltransferase”
(a5102;390), for the susceptible genotype. A good correl-
ation (R=0.82 for the resistant and R=0.80 for the
susceptible genotypes) was observed between the log2 fold
changes measured by RNA-seq and qRT-PCR (Figure 1).
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Differential gene expression in resistant and susceptible
L. sativus genotypes during infection

Differentially expressed contigs were grouped by expression
patterns based on up- or down-regulation (log2=2 or
log2 < -2; respectively, q-value <0.05) after inoculation.
Within each expression pattern group, comparisons were
performed between genotypes. Expression patterns were
grouped in eight response types, according to their up- or
down-regulation, in susceptible and resistant genotypes,
respectively. The number of contigs and description of each
group is summarized in Table 2. Most representative
groups are group F (contigs down regulated in both
genotypes) and H (contigs down-regulated only in the
resistant genotype) with 2,516 and 1,606 contigs respect-
ively, followed by group A that includes 814 contigs
up-regulated in both resistant and susceptible genotypes
upon infection. A detailed list with all the identified
contigs, their description and expression pattern groups
can be found in Additional file 1.

As depicted in Figure 2, from the 134,914 contigs that
could be identified and quantified, 68,889 were shared
among all libraries. Of these, 974 contigs were up-regulated
and 5,203 contigs down-regulated in the resistant genotype
BGE015746 and 772 contigs up- and 4,617 down-regulated
in the susceptible genotype BGE024709. Furthermore, from
the 5,807 contigs only present in the resistant genotype’s
libraries, 132 were up- and 485 down-regulated (inoculated
vs. control). From the 7,938 contigs only found in the
susceptible genotype’s libraries, 134 were up- and 689
down-regulated.

Annotation

From the 134,914 contigs detected in all libraries, 50,937
(37.75%) contigs could be matched via BLAST to entries
in plant databases and 961 (0.71%) matched only to
fungal databases. The latter contigs were present only
in the inoculated libraries. Also, 4,558 contigs were
absent in control samples and found exclusively in
fungal databases, or with a higher bit-score in fungal
databases than in plant databases and thus, most probably
correspond to U. pisi sequences.

As indicated in Figure 3, BLAST produced hits mainly
to other legume species with frequencies in the order
Medicago truncatula (26,728; 19.81%), Glycine max
(11,436; 8.48%), P. sativum (1,538; 1.14%) and Lotus
japonicus (921; 0.68%). Vitis vinifera (2,409; 1.79%),
Populus trichocarpa (656; 0.49%) and the model Arabidopsis
thaliana (607; 0.45%) were the best matching non-legume
species. BLAST hits from L. sativus comprised only 0.02%
(33 contigs) of the total illustrating the scarcity of Lathyrus
entries in the data bases.

From the 4,558 contigs that were absent in control
samples and found exclusively in fungal databases, or
with a higher bit-score in fungal databases, 20 contigs



Table 1 Log2 fold expression results for RNA-seq and qRT-PCR experiments

Reference BLAST hit BGE015746 BGE024709

assetr_'nbly Control Control Inoculated Inoculated Inoculated/ DEGSeq Inoculated/ Control Control Inoculated Inoculated Inoculated/ DEGSeq Inoculated/

contig counts RPKM counts RPKM control g-value control counts RPKM counts RPKM control g-value control

DEGSeq qPCR (log2) DEGSeq qPCR (log2)
(log2) (log2)

a1310;251  Chromodomain 4063 0.0362 6436 0.0396 -0.53 1.0E-77 0383 4149 0.0287 8009 0.0379 -0.33 17E-33 551
helicase DNA-
binding protein

al15017;192 Type IIB calcium 850 00135 1855 0.0204 —-0.07 3.2E-01 1.90 1165 00144 4635 0.0391 072 6.5E-64 338
ATPase

a19532;154 Amino acid 1965 0.0312 1328 0.0145 -1.76 8.4E-266 173 2045 0.0251 2224 0.0187 -1.15 3.2E-151 042
transporter

a22579;158 Hypothetical 1329 0.0592 901 0.0277 -1.76 2.2E-179 -0.39 602 0.0208 245 0.0058 -2.57 3.0E-135 261
protein MTR
2 9062700

a2401;404  Lectin 776 00415 1061 0.0392 -0.75 1.5E-27 -135 813 00337 4283 0.1214 -1.12 6.8E-125 -192

a32859;123 Seed maturation 276 00438 185 0.0202 -1.77 1.9E-38 -3.74 104 00128 3 0.0003 —6.39 4.9E-39 —-1.81
protein

a45744;151  Mitochondrial 2 00004 36 0.0051 297 7.8E-05 6.29 7 00011 440 0.0480 4.70 1.2E-65 8.35
chaperone BCS1

a5330,269  Alpha- 1092 00373 1443 0.0341 -0.79 8.9E-43 —-0.60 1203 00319 2387 0.0433 -029 2.8E-08 191
galactosidase 1

a6560;334  GDSL esterase/ 1981 0.0904 1917 0.0604 —1.24 3.3E-160 0.00 2164 0.0765 1101 0.0266 —2.25 0.0E+00 039

lipase EXL3

RPKM: reads per kilobase per million.
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Figure 1 Correlation between RNA-seq and qRT-PCR. The relative expression levels obtained by RNA-seq using DEGseq and by gRT-PCR using
the AACt method. Pearson’s correlation coefficient (R) between relative expression levels is shown above the trendline.
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Table 2 Classification of contigs according to their
differential expression in the susceptible and resistant
genotype upon infection with U. pisi

Expression pattern  Feature # of

group contigs

A Up-regulated in Resistant 814
Up-regulated in Susceptible

B Up-regulated in Resistant 32
Up-regulated in Susceptible, higher in
Susceptible

C Up-regulated in Resistant, higher 56
in Resistant
Up-regulated in Susceptible

D Up-regulated in Susceptible 319

E Up-regulated in Resistant 576

F Down-regulated in Resistant 2,516
Down-regulated in Susceptible

G Down-regulated in Susceptible 548

H Down-regulated in Resistant 1,606

Total 134914

Up regulated: (log2 > = 2; g-value < 0.05); Down-regulated: (log2 < -2; g-
value < 0.05); higher in Susceptible: (log2 fold change between all resistant
and susceptible genotype contigs < = —2; g-value < 0.05); higher in Resistant:
(log2 fold change between all resistant and susceptible genotype

contigs > = 2; g-value < 0.05).

from the 49 accessions described in UniProtKB/Swiss-Prot
and UniProtKB/TrEMBL as U. viciae-fabae, were identified
(see list in Additional file 2). None of these 20 contigs
were significantly differentially expressed between the two
inoculated genotypes. For example, among the eight
contigs out of the 20 without a plant database hit,
five were homologous to “invertase 1”7, and the three
others to “rust transferred protein — Rtpl”, “amino
acid transporter” and “putative permease”. Six other
contigs absent in control samples and found exclusively in
fungal databases or with a higher bit-score in fungal
databases, were homologous to housekeeping genes
that can be found throughout different kingdoms (three
“tubulin beta chain”, two “succinate dehydrogenase” and
one “plasma membrane (H+) ATPase”.

Functional annotation of the contigs via Mercator
and MapMan, depicted in Figure 4, grouped 60.4% of
them into 33 main functional categories, of which the
categories “protein” (11.0%), “RNA” (8.0%), “signalling”
(6.7%), “transport” (5.4%) and “stress” (4.2%) were most
crowded. A total of 39.4% could not be assigned to any
functional category.

Analysis of functional categories, within each expression
pattern group, identified differences among the functions
present within each group. Comparisons were also
performed among the different expression profiles in each
category (Figure 5). Transcripts included in the functional
categories “stress” and “protein” were present at a higher
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Figure 2 Venn diagram of the number of unique and shared contigs between the two genotypes and its expression. In black boxes the
number of up (log, fold 2 2) and down (log, fold < —2) regulated contigs in the inoculated condition versus control. Resistant genotype:
BGE015746, susceptible genotype: BGE024709.
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-

100000

26728

Number of BLAST hits

Figure 3 Number of contigs that could be BLASTed to different plant species.
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Figure 4 Percentage of contigs assigned in each main functional category.

wall” category. In group B, joining contigs up-regulated in
both genotypes with a higher expression in the susceptible
genotype, the categories “secondary metabolism” and
“hormone metabolism” were over-represented. Interestingly,
the functional category “signalling” was over-represented
in contigs up- regulated only in the susceptible genotype,
as in group D.

Biotic stress related proteins

In order to restrict the number of analysed contigs to
the ones probably more directly related to resistance, we
focused mostly on contigs up-regulated at a higher ratio,
or exclusively, in the resistant genotype (groups C and E),
contigs exclusively down-regulated in the susceptible
genotype (group G) and contigs exclusively down-regulated
in the resistant genotype (group H).

From the subcategory “stress.biotic”, two contigs in
group E corresponded to the well- studied mildew
resistance locus O (MLO) gene which was first identified
in barley, conferring resistance to powdery mildew [46].
Also, from a total of 25 “MLO-like” contigs, 12 were
differentially expressed. One of these was down-regulated
in the resistant genotype (group H). These might be
related to MLO susceptibility genes, as reported by several
previous studies [47-49]. Interestingly, in the susceptible

genotype, one “PREDICTED: beta glucosidase 12-like”,
identified by Mercator as “PENETRATION 27, required
for MLO-mediated resistance and belonging to the
functional category “secondary metabolism”, was
down-regulated (group G). Group G also contained
one “acidic endochitinase” and two LRR proteins, one
TIR-NBS-LRR and one containing LRR and NB-ARC
domains. In group C, a pathogenesis related protein 1
(PR-1) contig was identified.

The subcategory “stress.abiotic” contained, i.a., genes
involved in response to heat that also respond to biotic
stresses. For example, in group C and E, we identified
one “DNAJ heat shock protein” in both groups, three
“heat shock protein 70 family” (group E) and one
“18.1 kDa class 1 heat shock protein” (group E). Group
G, however, contained one “DNAJ homolog subfamily
B member” and one “double Clp-N motif-containing
P-loop nucleoside triphosphate hydrolases superfamily
protein”.

Several contigs related to secondary metabolism were
exclusively up-regulated in the resistant genotype (group E).
These comprised a “reticuline oxidase-like protein” involved
in alkaloid biosynthesis, an “isoflavone 2’hydroxylase”,
functioning in the isoflavonoid biosynthesis pathway, a
“dihydroflavonol-4-reductase”, with roles in the flavonoid
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up-regulated only in the resistant genotype; F - contigs down-regulated in both resistant and susceptible genotypes similarly; G - contigs down-regulated
only in the susceptible genotype; H - contigs down-regulated only in the resistant genotype.
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and brassinosteroid metabolic pathway and an “AMP-
dependent CoA ligase”, acting in the JA and lignin
biosynthesis pathways. In group G, 17 contigs were related
to secondary metabolism including four involved in the
flavonoid pathway, two in the isoprenoid/terpenoid path-
way and one “WAX 2-like” involved in wax biosynthesis.
PTI (pathogen-associated molecular pattern triggered
immunity) relies on an efficient signalling network in
order to control the infection [50]. Receptor kinases are
important for the plant’s pathogen recognition and their
expression may be constitutively expressed or up-regulated
in resistant genotypes or down-regulated in susceptible
genotypes in response to effectors from the pathogen.
Receptor kinases and kinases exclusively up-regulated in
the resistant genotype and contained in group E may be
part of such signalling cascades. These included one
protein kinase with thaumatin (PR-5) domain, six “DUF 26,
one “CRINKLY4”, one “FERONIA receptor like kinase”, and
also a MAP kinase “M APKKK5” and a G-protein “zinc
finger (Ran-binding) family protein”. In contrast, the
down-regulation of such transcripts in the susceptible
genotype (group G) may contribute to susceptibility. Here
we identified three “DUF 267, three LRR (“NIK1”, “RKF1”
and “PXY”), two G-proteins (“guanine nucleotide-binding
protein” and “dynamin-related protein 1E-like”), two

MAP kinases (“PAS domain-containing protein tyrosine
kinase family protein”) and three genes involved in calcium
signalling (“calcium-transporting ATPase”, “calmodulin-
binding heat-shock protein” and “calmodulin-domain
protein kinase 9”). Interestingly, calmodulin also plays a
role in the MLO response, where the lack of a calmodulin
binding site decreases its defence response [51].

The “cell wall” category contained seven cellulose
synthase contigs: one in group E “IRREGULAR XYLEM 3
(IRX3)” and four in group C (three “IRX1” and one
“CESAL”). In group G, we identified two cellulose synthase
“IRX14” and two “pectinesterase inhibitor” contigs.

From the genes normally associated with defence
response, only one “endo-beta-1 3-glucanase” was identified
in group C, while two others “endo-beta-1 3-glucanase”
were detected in group G. Also in group G, we identified
two “peroxidase” and two “glutathione S-transferase” genes.

SNPs in resistance pathways

In the 68,889 contigs present in both the susceptible and
the resistant genotypes, we identified 2,634 contigs
containing Single Nucleotide Polymorphisms (SNPs)
discriminating between their respective alleles. The number
of SNPs in functional (MapMan) categories varied consid-
erably. The categories “RNA regulation of transcription”
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(9.5%) and “protein.degradation” (8.9%) contained by far
the most SNPs, followed by the protein-related categories
“protein.postranslational modification” (4.3%) and “protein.
synthesis” (3.2%). Other categories including the most
SNP-containing contigs were “signalling.receptor kinases”
(2.5%), “protein.targeting” (2.4%) and the stress related
categories, “stress.biotic” (1.8%) and “stress.abiotic” (1.6%)
(Figure 6).

EST-SRR development

200 EST-SSR potential polymorphic markers between the
two genotypes were designed. EST-SSRs were identified
by the Phobos software [52], using as search parameters,
perfect SSRs with a repeat unit lenght of two to six nucleo-
tides. Polymorphisms between the resistant and susceptible
genotypes were manually identified and flanked by primer
pair using the Primer3 software [53]. To validate the
EST-SSR sequences, 40 primer pairs were randomly
selected for PCR amplification to confirm the presence of
size polymorphism between the two accessions. PCR reac-
tions were conducted twice in order to confirm the results.
From the total 40 EST-SSR tested, 25 (62.5%) primer pairs
successfully amplified polymorphic fragments between
the two accessions. 6 (15.0%) primer pairs amplified
monomorphic fragments and 5 (12.5%) produce a very
complex pattern. The remaining 4 (10.0%) primer pairs
were not able to produce any fragments.

Discussion
Lathyrus spp. is a potential source of resistance to several
pathogens [4,25] and especially L. sativus provides resistance
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to several fungal and bacterial diseases [26,38,54,55].
However, the lack of genetic and/or genomic information
was a barrier to further identify resistance-related genes
and to use them in breeding.

In the present study we therefore attempted to improve
this unfavourable situation by identifying ESTs and SNPs,
potentially involved in resistance, that may be used in
future smart breeding approaches. We describe for the first
time a high-throughput transcriptome assembly of grass
pea/pathogen interaction, using genotypes contrasting in
response to rust infection, to unravel the involved partial
resistance mechanism and associated resistant genes.

Our study has identified a large number of differentially
expressed genes corresponding to biological categories that
are thought to be most relevant in grass pea response to
rust. A limitation of our study is the fact that only a single
pooled sample was investigated for each genotype and
condition. Although the biological variance could not
be assessed in the bulked approach, the large number
of individual samples in the pool is likely to level out
many of possible outliers. Nevertheless, the validation of
twelve genes by RT-qPCR, using three biological replicates,
provided a good correlation with RNA-seq results.

Another motive that could also be influencing our
results is that we used different cDNA synthesis primers,
oligo(dT) for the RNA-seq and poly(A) for RT-qPCR,
what might yield different quantities of poly-adenylated
and non-adenylated transcripts.

Our study was severely hampered by the low number
of annotated sequences, which is due to the lack of a
reference genomic sequence for Lathyrus. Nevertheless,
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we could annotate between 34% and 46% of differentially
expressed contigs to hits in plant databases, depending on
the genotype and the infection status of the plants. We
further developed new gene-based molecular tools as e.g.
expressed sequence tags, gene-based simple sequence
repeats (EST-SSR) and SNP-based markers. Moreover,
we identified a number of U. pisi effectors in the infected
tissues though the overall low number of observed fungal
transcripts probably reflects the low quantity of fungal
structures in early-infected leaves [56]. Thus, our present
study will help to overcome the problems we encountered
in previous work, where the transfer of molecular markers
from close related species had a very low rate of success
(18% for pea EST-SSRs and 6% for pea genomic SSRs, [57])
Therefore, the present RNA-seq libraries will boost the
availability of specific EST-SSRs and SNP-based markers
that will be equally important for future development of
more effective grass pea resistance breeding approaches.

The high amplification rate of the developed EST-SSRs
validates the quality of the RNA-seq data. The few primers
that failed to produce amplification products or produced
amplicons with an unexpected pattern may be caused by
the location of the respective primers across splice regions
or the presence of a large intron, since genomic regions
are absent from ¢cDNA. In addition also primers could be
derived from chimeric cDNA clones [58].

Besides the novel markers, the deep insights into
pathogenesis-related mechanisms provided by this study are
of particular interest. The most interesting pathogenesis-
related protein that we identified, the “MLO-like protein” is
involved in signalling in response to biotic stress. MLO was
described for the first time in barley, where it conferred
partial resistance to powdery mildew by inducing the
thickening of the cell wall at fungal penetration sites
[46]. Two “MLO-like” contigs were up-regulated exclusively
in the resistant genotype (group E), and perhaps related to
this, also in group E and more strongly up-regulated in
the resistant genotype (group C), we identified cellulose
biosynthesis genes. The exclusively resistance-up-regulated
group E contained one “IRREGULAR XYLEM 3” (IRX3)
gene and three “IRX1”. Additionally, one “cellulose synthase
1”7 (CESA1) was stronger up-regulated in the resistant
genotype than in the susceptible one (group C). Consistent
with the assumed importance of MLO signalling for rust
resistance, some genes important for MLO function
as eg. “calmodulin”, involved in calcium signalling as a
prerequisite for MLO function [51], were down-regulated
in the susceptible genotype (group G). Another gene
involved in MLO resistance and down-regulated in
the susceptible genotype, is the glycosyl hydrolase
“PENETRATION 2” gene [59]. Since rust resistance in
grass pea is of prehaustorial type we consider MLO as a
candidate R-gene. In order to confirm this assumption,
callose deposition, as a potentially durable resistance
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mechanism against rusts, should be further investigated in
rust-resistant and susceptible grass pea genotypes.
The down-regulation of several “MLO-like” contigs in
response to infection in both, susceptible and resistant
genotypes, does not necessarily contradict our assumption,
since several MLO orthologs were demonstrated to
function as susceptibility genes [47-49].

Plant responses to biotic stressors are, i.a., controlled by
phytohormones as e.g. salicylic acid (SA), abscisic acid
(ABA), jasmonates (JA) and ethylene (ET). Differences in
expression of hormone-related genes of the susceptible
and resistant genotype, in response to the pathogen, also
occurred in our gene expression patterns. For example,
plant resistance to biotrophic pathogens is mainly
controlled by the SA pathway [18] and the importance of
SA in the induction of systemic acquired resistance in
legumes against rust fungi has been reported [60,61]. In our
study an inducer of the SA pathway, the “ethylene response
factor 5” (ERF5) gene, which at the same time inhibits the
JA and ET biosynthesis pathways [62], was exclusively
up-regulated in the resistance genotype (group E), whereas
two Apetala2/Ethylene Responsive Factor (AP2/ERF)
transcription factor genes, important for the regulation of
defence responses [63], were down- regulated in the
susceptible genotype (group G).

ABA regulates defence responses through its effects on
callose deposition and production of ROS intermediates
[18], activating also stomata closure as a barrier against
pathogen infection [64]. In the resistant genotype, the
transcript for “9-cis-epoxycarotenoid dioxygenase 27, a
key regulator of ABA biosynthesis in response to drought
[65], and involved in the crosstalk between ABA and
SA signalling in plant-pathogen interactions [66], was
up-regulated (group E), whereas several transcripts engaged
in ABA, auxin and JA signalling, were down-regulated in
the susceptible genotype (group G). This is consistent with
a susceptible response to a biotroph attack [18].

The image emerging from the transcription profiles, of
the resistant and susceptible genotype, further highlights
that pathogenesis related (PR) proteins are key players in
Lathyrus-rust interactions since several PR genes were
mainly up-regulated in the resistant genotype, after
inoculation. Among these were two chitinases (PR-3
and PR-9) involved in the degradation of the fungal cell wall
[9] and a thaumatin (PR-5) gene, which causes an increase
of the permeability of fungal membranes by pore-forming
mechanisms [67]. In group E, we found a “pathogenesis re-
lated protein 1”7 (PR-1) and a “protein kinase-coding resist-
ance protein”, a receptor kinase with a thaumatin domain
(PR5K), presumably involved in thaumatin signaling and
described previously as delaying infection [68]. Another
important PR-gene, an “acidic endochitinase” (PR3), was
down regulated exclusively in the susceptible genotype.
Genes involved in secondary metabolism were also
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detected. Legumes utilize flavonoids, notably isoflavones
and isoflavanones, for defence against pathogens and as
signalling molecules, with a number of phenylpropanoids
having antimicrobial activity and restricting pathogen
growth and disease symptoms [69]. In group G, we
identified a “reticuline oxidase-like protein”, up regulated
in non- race-specific resistance to stripe rust in wheat [70],
an “isoflavone 2’-hydroxylase” from the isoflavonoid
pathway [71] and a “dihydroflavonol-4-reductase” catalysing
the first enzymatic step in anthocyanin biosynthesis, in the
flavonoid pathway [72].

Also, exclusively down regulated in the susceptible geno-
type, we found some genes important for defence response
within the miscellaneous category, like “endo-beta-1
3-glucanase”, “glutathione S-transferase” (GST) and
“peroxidase”. In plants, beta-glycosidases serve a number of
diverse and important functions, including bioactivation of
defence compounds, cell wall degradation in endosperm
during seed germination, activation of phytohormones, and
lignifications [73]. GSTs are detoxification-related proteins,
protecting cells from secondary metabolites produced in
response to pathogen attack, including peroxidases [74].
Finally, peroxidases function as resistance factors against
invading fungi, inhibiting hyphal elongation, and when
H,0, is present, causing oxidative burst [75].

Effectors are expected to be excellent targets for the
control of pathogens, but, unlike effectors from some
other plant pathogens, relatively little is known about
rust effectors [76]. In this study, several unigenes were
identified in fungal databases. The most known rust
effector identified was “rust transferred protein 1”
(Rtpl). This effector aggregates into amyloid-like filaments
in vitro [77]. Immunoelectron microscopy localized this
effector to the extrahaustorial matrix protuberances extend-
ing into the host cytoplasm, although the exact role for this
protein remains to be discovered [78]. Other Uromyces
effectors identified in this study were “succinate dehydro-
genase”, “invertase” and “permease”. From the total poten-
tial rust transcripts identified, a selection of effector
proteins could be used as probes to identify the target host
proteins as a first step in the development of effector-driven
legume breeding, maximizing the durability of resistance
against the quickly evolving rust pathogens [79].

From the DE contigs obtained in the present study,
2,634 presented SNPs between the resistant and the
susceptible lines. The MapMan software aided in the
functional categorisation of SNPs, revealing that the
categories “RNA regulation of transcription” (9.5%) and
“protein.degradation” (8.9%) contained by far the most
SNPs. Within these categories, ubiquitins were most
polymorphic (5.6%). Ubiquitins tag proteins for proteasome
degradation and play a central role in signalling pathways
[80]. Especially ubiquitin “E3 RING” and “SCF F-BOX”
contigs contained a large number of SNPs (1.7% and 1.8%
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respectively). E3 RING and SCF F-BOX proteins are
involved in several aspects of plant immunity ranging from
pathogen recognition to both PTI to effector-triggered
immunity (ETI). From the differentially expressed
contigs identified as containing SNPs, we found one E3
RING, “PREDICTED: RING-H2 finger protein ATL2-like”,
down regulated in the susceptible genotype. Four other
functional categories, “RNA.regulation of transcription”
(9.5%), “protein.postranslational modification” (4.3%),
“protein.synthesis” (3.2%) and “signalling.receptor kinases”
(2.5%), also contained significant numbers of polymor-
phisms. Especially the “signalling.receptor kinases” category
may be of particular interest for further studies since recep-
tor kinases recognize pathogen effectors and their rapid
evolution, reflected by large numbers of polymorphisms,
may represent plants adaptation to a rapidly changing
spectrum of pathogens in the arms race between them and
their hosts [81].

The large number of SNPs that we identified will
be instrumental for the development of linkage and
high-throughput association mapping approaches and
for the expansion of our previous diversity studies in
Lathyrus [57,82].

Our results provide an overview of gene expression
profiles of contrasting L. sativus genotypes inoculated
with rust, offering a valuable set of sequence data for
candidate rust resistant gene discovery.

Conclusions

Our transcriptome analysis provided comprehensive
insight into the molecular mechanisms underlying pre-
haustorial rust resistance in L. sativus.

The differences in resistance between the two L. sativus
genotypes investigated appear to be mainly due to the acti-
vation of the SA pathway and several pathogenesis related
genes, including the ones regulated by MLO. The fastest-
evolving pathways differentiating between the two geno-
types are the general RNA’s regulation of transcription,
followed by the Ubiquitin-26S proteasome system and hav-
ing also as most mutated receptor-based signalling genes
and biotic and abiotic stress related genes. The detected
polymorphic SNPs will allow the development of new gene-
based molecular tools. Altogether, 51 genes were identified
as potential resistance genes, prioritizing them as specific
targets for future functional studies on grass pea/rust inter-
actions. Besides a plethora of pathogenesis-related host
genes, 4,558 transcripts, including putative effectors, were
also identified for the rust fungus U pisi. As a consequence
of the newly developed wider array of genetic and genomic
resources, future work will focus on high throughput map-
ping of the genetic basis of disease resistance in L. sativus
and eventual comparative mapping with other legume
species, contributing all to an improved exploitation of this
under used highly potential legume species.
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Methods

Plant and fungal material, inoculation and RNA isolation
The two L. sativus genotypes, BGE015746 and BGE024709
analysed in the present work were kindly provided by the
Plant Genetic Resources Centre (CRF-INIA), Madrid, Spain.
Seeds were multiplied in insect proof cages in order to
minimize outcrossing. Evaluation for their resistance against
U. pisi demonstrated that BGE024709 is susceptible to rust,
whereas BGE015746 displays partial resistance [26]. Upon
infection, both genotypes present well-formed pustules, with
no associated chlorosis or necrosis. They contrast, however,
in disease severity (DS), ie. the percentage of leaf area
covered by the fungus. Whereas the partial resistant
genotype has a DS = 9%, the susceptible one has a DS = 30%.

The U. pisi monosporic isolate UpCo-01 from the fungal
collection of the Institute for Sustainable Agriculture-CSIC
(Cérdoba, Spain) was used for the experiment. Inoculum
was multiplied on plants of the susceptible P. sativum cv.
Messire before use.

Twenty-four plants per each genotype and treatment
(inoculated/control) were used. Two-week-old L. sativus
seedlings were inoculated by dusting all the plants at the
same time with 2 mg of spores per plant, diluted in pure
talk (1:10), with the help of a small manual dusting
device in a complete random experiment. Inoculated
and control plants were incubated for 24 h at 20°C, in
complete darkness, and 100% relative humidity, then
transferred to a growth chamber and kept at 20 +2°C
under 14 h light (150 pmol m™? s™") and 10 h dark.

RNA was extracted from inoculated and non-inoculated
fresh leaves collected 37 hours after inoculation. The
material was immediately frozen in liquid nitrogen and
stored at —80°C. RNA was isolated using the GeneJET Plant
RNA Purification Mini Kit (Thermo Scientific, Vilnius,
Lithuania), according to the manufacturer’s instructions.
The extracted RNA was treated with Turbo DNase I
(Ambion, Austin, TX, USA), and RNA quantification was
carried out using the NanoDrop device (Thermo Scientific,
Passau, Germany).

Sequencing and quantification

For each of the 4 combinations, genotype and treatment
(BGE015746 control, BGE015746 inoculated, BGE024709
control and BGE024709 inoculated) total RNA from 24
plants was extracted and pooled in equal amounts for
sequencing. Three RNA-seq libraries (one for each genotype
and one reference assembly, including all genotypes and
treatments) were generated by GenXPro GmbH, Germany,
using a proprietary protocol. In short, mRNA was captured
from 20 pg of total RNA using Oligo dT(25) beads
(Dynabeads; life Technologies). The purified mRNA
was randomly fragmented in a Zn>* solution to obtain
approximately 250 bp long RNA fragments. cDNA was
synthesized by reverse transcription starting from 6(N)
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random hexamer oligonucleotides followed by second
strand synthesis. Barcoded Y-adapters were ligated to the
¢DNA and the library was amplified with 10 cycles of
PCR. The libraries were sequenced on an Illumina
Hiseq2000 machine. After Illumina paired-end sequencing,
raw sequence reads were passed through quality filtering,
thereby also removing sequencing adapter primers and
c¢DNA synthesis primers. All high-quality reads were
assembled using the Trinity RNA-Seq de novo assembly
(Version: trinityrnaseq_r2011-11-26). In order to minimize
the redundancy, CAP3 software [83] was also used with
overlap length cutoff of 30 bp and overlap percent identity
cutoff of 75%. Redundancy was tested using the clustering
algorithm UCLUST ([84], available at http://drive5.com/
usearch/manual/uclust_algo.html). The resulting contigs
were annotated via BLASTX to publically available
databases (ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/nr.gz,
nr, plants only). To identify fungal transcripts, an additional
BLASTX to public fungal databases (http://www.ebi.ac.uk/
uniprot, UniProtKB/Swiss-Prot and UniProtKB/TrEMBL)
was performed. The sequenced reads were mapped with
novoalign software (V2.07.14; http://www.novocraft.com/)
to the own assembled contigs. RPKM was calculated as the
normalized transcript expression value [85]. Our obtained
counts were subsequently passed through DEGSeq to
calculate the differential gene expression (R package
version 1.16.0) [86].

SNP detection

SNPs were discovered between the two L. sativus genotypes
using Joint-SNV-Mix [87]. The mappings from the
transcriptome analysis were also analysed by Joint-SNV-Mix
and the output was furthermore processed by GenXPro’s
in-house software to detect SNPs discriminating the bulks.
SNP calling was performed taking in account only the
inoculated samples. A minimum coverage of 15 reads
in each genotype in the inoculated condition was
needed to call a SNP. Polymorphic contigs and their
respective SNPs are listed in Additional file 3.

EST-SSR development and genotyping

EST-SSRs were selected in silico by identifying the
polymorphic SSRs between the two L. sativus genotypes.
Identification of the SSRs was done using Phobos plug-in
[52] for the Geneious software [88], using as search
parameters, perfect SSRs with a repeat unit length of two
to six nucleotides. Length polymorphisms were manually
identified by aligning SSR-containing contigs of one
genotype against the whole library of the other genotype.
Primers were designed using Primer3 plug-in [53] for
the Geneious software, using as parameters a melting
temperature from 59 to 63°C, a GC content of 50 to 60%
and a primer size raging from 18 to 24 nucleotides. The
developed EST-SSR markers are listed in Additional file 4.
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PCR reactions for the EST-SSRs genotyping were con-
ducted using the M13 tail labelling strategy described by
Schuelke [89] in a total volume of 10 ul containing 10 ng
of template DNA, 0.04 uM of M13(-21) tagged forward
primer, 0.16 uM of IRD700 or IRD 800 M13(-21) and
0.16 uM of reverse primer, 0.2 mM of each dNTP, 1.5 mM
of MgCl,, and 0.2 unit of Taq DNA polymerase (Promega,
Madison, USA). The amplification reaction consisted of a
denaturing step of 5 min at 94°C, followed by 30 cycles of
30 s at 94°C, 45 s at 56°C, 45 s at 72°C, and 8 cycles of
30 s at 94°C, 45 s at 53°C, 45 s at 72°C. The reaction was
terminated at 72°C for 10 min.

SSR fragments were resolved with 6.5% polyacrylamide
gel using a LI-COR 4300 DNA Analyzer (Lincoln,
NE, USA).

Quantitative RT-PCR assay

1 pg of total RNA from each of three randomly chosen
plants per genotype, per treatment (inoculated/control),
was reverse transcribed in duplicates, using the High
Capacity cDNA Reverse Transcription Kit (Applied
Biosystems, Foster City, CA, USA) following manufacturer’s
instructions. Three independent reverse-transcription
reactions (RT) were performed for each cDNA sample in
a total of nine samples per genotype, per treatment. For
all genes studied, the product of each of these reactions
was analysed in technical duplicates, in a total of six
technical replicates per treatment. qRT-PCR reactions
were performed with a iQ™5 Real-Time PCR Detection
System (Bio-Rad, Munich, Germany). Primers were
designed using the Primer3 software [53]. Primer sequences
can be found in Additional file 5. For data analysis, the
Genex software package (MultiD, Goteborg, Sweden),
including the geNorm software [90] was used.

Contig annotation and data analysis
In order to classify the contigs into functional categories,
the Mercator pipeline for automated sequence annotation
([91], available at http://mapman.gabipd.org/web/guest/
app/mercator) was employed. The mapping file was created
excluding contigs without BLAST hit in previous analyses
and accessing the following, manually curated databases:
Arabidopsis TAIR proteins (release 10), SwissProt/UniProt
Plant Proteins (PPAP), TIGR5 rice proteins (ORYZA),
Clusters of orthologous eukaryotic genes database (KOG),
Conserved domain database (CDD) and InterPro scan
(IPR). The Mercator mapping file was then employed for
pathway analysis by the MapMan software ([92], available
at http://mapman.gabipd.org/web/guest/mapman).
Differentially expressed contigs were identified by com-
paring their expression in leaves of the resistant genotype
BGEO015746, control vs. inoculated, and of the susceptible
BGE024709, control vs. inoculated, using DEGseq [86]. In
cases where a particular transcript reacted in the same way
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in both genotypes, the total transcript count before and
after inoculation was compared, allowing the identification
of basal genotypic differences between the two genotypes.

Availability of supporting data

The raw RNA-seq data supporting the result of this
article is available in the Sequence Read Archive
(SRA), with accession numbers SRS686331, SRS687370,
SRS687371 and SRS687373. This Transcriptome Shotgun
Assembly (TSA) project has been deposited at DDB]J/
EMBL/GenBank under the accession GBSS00000000.
The version described in this paper is the first version,
GBSS01000000.

Additional files

Additional file 1: Lists of genes in expression pattern groups
mapped to the reference assembly. RPKM: reads per kilobase per million.

Additional file 2: List of contigs, mapped to the reference
assembly, present only in the inoculated condition with a higher
bit-score in fungal databases than in plant databases.

Additional file 3: List of detected polymorphic SNPs between grass
pea accessions BGE015746 and BGE024709.

Additional file 4: List of detected polymorphic EST-SSRs between
grass pea genotypes BGE015746 and BGE024709.

Additional file 5: Contig information and primer sequences for
qRT-PCR.
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