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Abstract

required for MAMP/DAMP-induced calcium elevations.

calcium signal transduction

Background: Plant perception of conserved microbe-derived or damage-derived molecules (so-called microbe- or
damage-associated molecular patterns, MAMPs or DAMPs, respectively) triggers cellular signaling cascades to initiate
counteracting defence responses. Using MAMP-induced rise in cellular calcium levels as one of the earliest biochemical
readouts, we initiated a genetic screen for components involved in early MAMP signaling in Arabidopsis thaliana.

Results: We characterized here the changed calcium elevation 5 (cce5) mutant, where five allelic cce5 mutants were
isolated. They all show reduced calcium levels after elicitation with peptides representing bacteria-derived MAMPs
(flg22 and elf18) and endogenous DAMP (AtPep1), but a normal response to chitin octamers. Mapping, sequencing of
the mutated locus and complementation studies revealed CCE5 to encode the receptor-like cytoplasmic kinase (RLCK),
avrPphB sensitive 1-like 1 (PBLT). Kinase activities of PBL1 derived from three of the cce5 alleles are abrogated in vivo.
Validation with T-DNA mutants revealed that, besides PBL1, another RLCK, Botrytis-induced kinase 1 (BIK1), is also

Conclusions: Hence, PBL1 and BIK1 (but not two related RLCKs, PBST and PBL2) are required for MAMP/DAMP-induced
calcium signaling. It remains to be investigated if the many other RLCKs encoded in the Arabidopsis genome affect early
perhaps in dependence on the type of MAMP/DAMP ligands. A future challenge would be
to identify the substrates of these various RLCKs, in order to elucidate their signaling role between the receptor
complexes at the plasma membrane and downstream cellular signaling components.
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Background

During their infection attempt, microbes activate intra-
cellular signaling cascades in their potential host.
Specific pattern-recognition receptors (PRRs) from the
host recognize conserved microbe-associated molecular
patterns (MAMPs) or certain signature molecules
resulting from tissue damage, often designated as
damage-associated molecular patterns (DAMPs) [1].
PRRs are typically receptor-like kinases (RLKs), such as
FLS2 (Flagellin-Sensing 2), EFR (Elongation Factor Tu
Receptor) or PEPRI/PEPR2 (AtPep-Receptor 1/2).
These recognize the MAMPs, flg22 (N-terminal
flagellin-derived peptide), elf18 (N-terminal fragment of
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Elongation Factor Tu) and the DAMP, AtPepl, respectively
[2]. Upon binding of the respective ligand [3-5], FLS2,
PEPR1/PEPR2 or EFR hetero-oligomerize with BAKI1
(BRI1-Associated Kinase 1), a kinase originally found as an
interactor of the brassinosteroid hormone receptor, BRI1
[6]. Recent structural studies indicate that BAK1 is also in
direct contact with the C-terminal part of the FLS2-bound
flg22, and may thus be considered a co-receptor [7]. Ac-
cordingly, bakl mutants are impaired in responses to these
MAMPs/DAMPs [5,8,9]. Thus, BAKI acts as protein part-
ner (or co-receptor?) for multiple pathways in plant im-
munity and development [10]. On the other hand, signaling
induced by other MAMDPs, such as chitin is independent of
BAK1 [11]. This difference may be a consequence of the
different structure of the potential receptor(s) required for
perceiving chitin, CERK1 (Chitin Elicitor Receptor Kinase
1), a LysM-containing RLK in Arabidopsis [12-14] as
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compared to the LRR-type RLKs such as FLS2, EFR or
PEPR1/R2.

Among the earliest signaling events after MAMP/
DAMP perception are ion fluxes across the plasma mem-
brane including influx of calcium into the cytosol
[8,15-17]. The elevation of cytosolic calcium is detected by
a number of calcium-binding decoder proteins such as
calmodulins or calcium-dependent protein kinases (CPKs)
or Calcineurin B-like (CBL) proteins and their partners,
CBL-interacting protein kinases (CIPKs) to further trans-
mit the signal [18,19]. Calcium, as a signaling molecule, is
a prerequisite for most downstream responses elicited by
MAMPs/DAMPs. For instance, production of reactive
oxygen species (ROS) by the NADPH oxidase, RBOHD, in
Arabidopsis [20] is a calcium-dependent process stimu-
lated by direct binding of calcium to EF-hands in the N-
terminus of RBOHD. Furthermore, the calcium-
dependent protein kinase 5 (CPK5) phosphorylates
RBOHD to promote its activity [21]. Activation of
mitogen-activated protein kinases (MAPKSs) also requires
calcium since depletion of extracellular calcium or inhib-
ition of calcium channels block MAMP-induced MAPK
activation [9,22].

The importance of calcium for plant immunity is also in-
directly supported by the observation that phytopathogenic
bacteria secrete extracellular polysaccharides to sequester
apoplastic calcium and attenuate host MAMP signaling
[23]. However, much of plant calcium signaling remains to
be discovered, in particular, the steps between perception of
MAMPs/DAMPs and generation of the calcium signals.
We used an apoaequorin-expressing transgenic Arabidopsis
thaliana line to investigate MAMP signaling events in
whole seedlings [9]. Aequorin is a calcium sensitive re-
porter for measuring changes in cellular calcium levels [24].
Upon binding calcium, it oxidizes the bound coelenterazine
prosthetic group into excited coelenteramide, which emits
blue light at 469 nm. The so-called L/L,, ratio of the
aequorin-generated luminescence (L) to the total remaining
aequorin (L,,,,) is used as an estimate of relative calcium
levels. With the appropriate calibration parameters, it is
also possible to convert the L/L,, values into absolute
cytosolic calcium concentrations [25].

We previously demonstrated that the aequorin-based
measurement is amenable to high throughput screening
and used it to isolate mutants with a changed calcium
elevation (cce) phenotype after flg22 elicitation. The first
sets of identified cce mutants were the FLS2 receptor and
its partner kinase, BAK1 [26]. These mutants represent
proof-of-principle of the suitability of the screen in finding
signaling components between ligand recognition and cal-
cium flux. This current work reports the characterization
of the cce5 mutant and the identification of the receptor-
like cytoplasmic kinase (RLCK), PBS1-like 1 (PBLI) being
the CCES5 gene, where PBS1 stands for avrPphB sensitive
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1, an RLCK targeted by the Pseudomonas syringae pv.
phaseolicola protease avrPphB [27]. The analysis of mu-
tants of three related RLCKs revealed an additional re-
quirement of Botrytis-induced kinase 1 (BIK1) for the
MAMP/DAMP-induced calcium elevation.

Results

The changed calcium elevation 5 (cce5) mutant is affected
in early signaling

Four other independently isolated changed calcium eleva-
tion (cce) mutants did not restore a normal calcium re-
sponse to flg22 in the F1 generation when crossed to the
previously described cce5 mutant [26] (data not shown).
The lack of complementation suggests that these five cce
mutants are allelic and thus designated as cce5-1 to cce5-5.
All five cce5 mutant lines show a reduced flg22- and elf18-
induced calcium rise compared to the parental HVA1 line;
however, the reduction in the elf18-induced calcium levels
appears to be stronger than with flg22 (Figure 1A, B). Cor-
respondingly, elf18-induced MAPK activation was par-
tially reduced and delayed (Figure 1C). Surprisingly, the
reduction in flg22-induced MAPK activation was not as
obvious as for elf18. It was only visible if a lower concen-
tration (e.g. 10 nM) of the flg22 peptide was used; at
higher concentrations, no difference in comparison to
HVA1 was discernible (Additional file 1: Figure S1). Thus,
CCE5 may have different signaling role(s) for these two
MAMPs. Similarly, other rapid responses such as reactive
oxygen species (ROS) accumulation was also reduced
for the cce5 alleles, when treated with flg22 or elf18
(Additional file 1: Figure S2). Since MAPK activation and
ROS accumulation occur within minutes upon elicitation,
cce5 is mutated in some early signaling component(s).

Differential MAMP/DAMP response of the cce5 mutants is
reminiscent of a BAK1-dependent response, but CCE5 is
not BAK1

The background line for the cce5 mutants carries the
so-called HVAI transgene (in the Arabidopsis thali-
ana C24 ecotype), where the aequorin reporter is tar-
geted to the tonoplast outer surface, which detects
calcium exiting the vacuole but does not permit deter-
mination of absolute calcium concentrations [28]. In
order to perform calibrations required for calculating
absolute calcium concentrations, and to also confirm
the effect of the cce5 mutation on cytosolic calcium
levels, the five cce5 alleles were crossed into a HVA1
line (HVA1-P) that was additionally transformed with a
cytosolic apoaequorin  (pMAQ?2) construct. These
back-crossed lines also reduce possible effects from
secondary mutations arising from the chemical muta-
genesis. Seedlings from the F2 populations were
screened for the reduced MAMP-induced calcium
phenotype to identify homozygous cce5 plants and the
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Figure 1 Early responses are reduced in the changed calcium elevation 5 (cce5) mutants compared to the parental HVA1 line. Seedlings (~8 days
old) were elicited with 1 uM of flg22 (A) or 1 uM elf18 (B) and the calcium levels measured. Relative calcium levels are depicted as L/Lmax ratio (where L/
Lmax = luminescence counts per sec/total luminescence counts remaining). Error bars represent standard deviation (n > 12 seedlings). MAPK activation is
shown by immunoblotting (a-pTEpY) for the phosphorylated MAPKs after 1 uM elf18 elicitation (C). Amido black staining of the nitrocellulose membrane
was used to estimate equal loading. For MAPK activation after flg22 treatment, see Additional file 1: Figure S1.
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mutations were verified by CAPS marker analysis (see
Additional file 1: Table S2). Using these lines, a survey of
different MAMPs/DAMPs showed reduced calcium re-
sponses to flg22, elf18 and AtPepl but a normal response
to chitin octamers (ch8) in cceS (Figure 2). This differential
phenotype to various MAMP/DAMDPs is reminiscent of a
BAKI1-dependent type of response, where BAK1 is not re-
quired for the calcium elevation induced with ch8 [9].

BAK1 is the BRIl-associated receptor kinase shown to
interact with FLS2, EFR and PEPR1/R2 receptors in a
ligand-dependent manner [29]. To exclude that the cce5
mutants are weak alleles of BAKI or the related SOMATIC
EMBRYOGENESIS RELATED KINASE (SERK) members,
cce5-1 was crossed to the mutants bakl-4, serk4-1 and
serk5-1 [5]. Since the cceS effect was most prominent for
elf18 elicitation, we measured elf18-induced calcium fluxes
in F1 seedlings, and observed that the cce5 phenotype was
complemented (Figure 3). This result indicates that CCES is
not allelic to BAKI, SERK4 or SERKS and hence cce5 is mu-
tated in a different gene.

CCE5 encodes the receptor-like kinase, PBL1

To identify the CCES5 gene, an F2 population was gener-
ated by crossing cce5-1 with the Arabidopsis accession
Ler-0. Segregation analysis with 36 F2 plants indicated
that CCES is linked to the aequorin transgene, and lo-
cated on chromosome 3 between the INDEL markers
CER460928 (1 recombinant) and 473892 (1 recombin-
ant) [30]. The map positions of CER460928 and 473892
are 17.243303 and 21.186345 Mbp (based on TAIR 10).
This interval comprises 1107 gene loci, including the
PBSI-like 1 gene (PBL1, At3g55450) that encodes a
receptor-like cytoplasmic kinase (RLCK). Sequencing of
the PBLI gene of the cce5 mutants revealed single nu-
cleotide polymorphisms (SNP) in all five cceS5 alleles, but
not in the PBLI sequences from two other cce mutants,
cce7 and cce8 [26]. These SNPs lead to two premature
stops (cce5-2/R110- and cce5-4/Q272-) and three amino
acid exchanges (cce5-1/G70D, cce5-3/A97V and cce5-5/
R172Q) in the PBL1 sequence (Figure 4). Two gene
models are predicted for PBLI transcripts in the TAIR
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Figure 2 Calcium elevation is reduced after treatment with flg22 (A), elf18 (B) and AtPep1 (C) but not with chitin octamer (ch8) (D) in
all five cce5 mutants. To enable absolute cytosolic calcium measurements, the parental HVAT (C24) line was transformed with the pMAQ2 construct
(designated as HVA1-P) and used as a reference. The indicated genotypes were crossed with HVA1-P (i.e. a C24 Arabidopsis accession expressing
cytosolic apoaequorin). Seedlings from the F2 populations were screened for the cce phenotype to identify homozygous cce5 plants, the mutations
verified by CAPS marker analysis, and the progenies used for calcium measurements. Error bars represent standard errors of the mean.
J

database, but since we could not detect transcripts for the
predicted alternatively spliced gene model At3g55450.2
(data not shown), we used the 389 amino acid long PBL1
protein (predicted by the gene model At3g55450.1) to

designate the positions of the amino acid exchanges in the
cceS mutated proteins.

PBL1 or PBS1-like 1 belongs to subfamily VII of RLCKs
(Additional file 1: Figure S3) that include the founding
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showing that the cce5 phenotype was complemented when crossed with the bakl, serk4 and serk5 mutants and
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member avrPphB-susceptible 1 (PBS1) [31] and the Botry-
tis-induced kinase 1 (BIK1) [32,33]. To further validate
that CCES is PBL1, a T-DNA insertion mutant of PBLI
was isolated. For comparison, T-DNA mutants of related
members of this family of RLCKs shown to be involved in
PTI (BIK1, PBS1, PBL2) [34], were also obtained. The T-
DNA mutants were crossed with the cytosolic aequorin-
expressing (pMAQ?2 in Col-0 background) transgenic line.
However, silencing of the aequorin reporter was observed
in some crosses, and in these cases (i.e. for pbl2 and pbsI),
an independently generated line with the apoaequorin ex-
pression driven by the UBIQUITINI10 promoter (pUBQ-
AEQ in Col-0 background) was used for crossing.
Consistent with the cce5 mutants, a reduced calcium
elevation induced by flg22, elf18 and AtPepl could be re-
capitulated in the pbll T-DNA mutant (Figure 5A). Simi-
larly, a bik1 T-DNA mutant was compromised in calcium
elevations induced by flg22, elf18 and AtPepl whereas
pbl2 and pbsl showed no reduction in calcium elevation
(Figure 5B,C). In the experiments with pbl2 and pbsi, a
pbll line crossed with the plUBQ-AEQ line was used as a
control to demonstrate that the lack of phenotype in pbl2
and pbsl is not due to a different aequorin reporter
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Figure 4 Scheme of PBL1 (At3g55450) gene structure and
mutations in the cce5 alleles. Genomic DNA was prepared from
the five cce5 mutants and the PBLT gene amplified by PCR and
sequenced. The detected single nucleotide polymorphisms (SNPs)
and the resulting amino acid exchanges are indicated above the
exons. The gene model At3g55450.1 encoding a protein of 389
amino acids is used to designate the position of the amino acid
exchanges. Locations of key kinase domains (such as ATP binding
site and the kinase active center), relative to the corresponding
mutations, are marked.

background. Additionally, a pblibikl double mutant
showed further reduction of the flg22-, elf18- or AtPepl-
induced calcium elevations compared to the pbl1 and bikl
single mutants (Figure 5A). One should also note that the
altered calcium signature differs between the bikI and
pbll mutants (Figure 5A). Taken together, members of
this RLCK family contribute differentially to MAMP/
DAMP-induced calcium elevation and there are partial re-
dundancies between PBLI and BIK]I.

Differential downstream responses in the pbl1 and/or

bik1 mutants

Due to the possible trade-offs between defense and growth
regulation, continuous activation of defense responses is
often detrimental for plant growth. Growth inhibition as-
says are thus a facile measure of defense activation. This is
performed by comparing root lengths of seedlings grown
on normal and MAMP-containing agar plates. For this
assay, we grew the two genotypes to be compared side-by-
side on the same plate to eliminate differences that may
arise between plates (e.g. the amount of agar per plate af-
fects the absolute amount of MAMPs available to the
seedlings). Two-way-ANOVA was used to determine the
statistical significance of differences in root lengths be-
tween the genotypes and the treatments, respectively. For
simplicity, percent inhibition (as compared to the average
root length of plants grown on standard plates) is shown
in Figure 6. To reduce the effects of secondary mutations,
all cce5 mutants were backcrossed to the HVA1 parent,
screened for the cce phenotype and confirmed by CAPS
marker analysis before the assay. Reduced flg22-mediated
growth inhibition compared to the corresponding back-
ground lines could be seen for all five backcrossed cce5
mutants (Figure 6A) and the pb/1 T-DNA mutant, but not
for pbs1 and pbl2 (Figure 6B). Surprisingly, despite the re-
duced calcium increase (Figure 5A), the bikI mutant
showed no reduction in root growth inhibition. There was
also no additive growth reduction in the pblibikldouble
mutant (Figure 6B). A direct comparison between the
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Figure 5 MAMP/DAMP-induced calcium elevations in T-DNA insertion mutants of PBL1, BIK1, PBL2 and PBS1. T-DNA insertion mutants of
pbl1, bik1 or a pbl1bik1 double mutant were crossed with the pMAQ2 aequorin transgenic line. After verifying the mutant genotypes by PCR, changes
in calcium levels induced by the indicated MAMPs were measured in the F2 or F3 generations (A). Due to silencing when crossed to the pMAQ2
reporter for the pbl2 (B) and pbs! (C) mutants, crosses were made with an independently generated pUBQ-AEQ line with the expression of the
apoaequorin reporter driven by the UBIQUITIN-10 promoter. Hence, the parental pUBQ-AEQ line in Col-0 background was used as a reference for the
wild type calcium signature for pbl2 and pbs1. (Two independent pbl2 mutant alleles were included). Error bars represent standard errors.

pbll single mutant and the pblibikidouble mutant
assayed on the same plate also showed no statistically sig-
nificant difference in root growth inhibition (Figure 6B).
Since PBLI and BIKI expression levels in roots are quite
similar (i.e. similar signal intensities throughout the cur-
rently available microarray experiments, as analyzed by
Genevestigator), the differential impact on flg22-mediated

growth reduction is not due to lack of BIK1 expression in
roots. Thus, while PBL1 and BIK1 have an impact on early
signaling events like calcium increase, PBLI plays a more
important role than BIKI in the late root growth inhib-
ition response to flg22. On the other hand, BIK1, but not
PBL1, has been shown to play an important role in flg22-
mediated resistance to subsequent Pseudomonas syringae
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Figure 6 MAMP-induced growth inhibition is dependent on PBL1. Al

| five cce5 alleles were backcrossed (BC) with the HVAT parent before the

growth inhibition assay (A). For the T-DNA mutants (B), either Col-0 or the pMAQ?2 transgenic line (in Col-0 background) was used as reference. Wild
type and mutant seedlings were grown on ATS plates with or without 1 uM of flg22. Root length was measured after 14 days and depicted as percent
inhibition. Two-way ANOVA was used to assess significant differences in root length (*** =p < 0.001; ns = not significant).

infection, while both BIK1 and PBL1 regulate callose de-
position induced by selected MAMPs and defense gene
expression [34]. Hence, PBL1 and BIK1 have overlapping
but also distinct roles in defense signaling/responses as is
also reflected by the wildtype-like phenotype of pbli
plants compared to the altered growth phenotype and the
constitutive SA accumulation of bikl mutants [33].

Since calcium acts upstream of MAPK activation [9,22],
we analyzed MAPK activation in the T-DNA mutants of
PBL1, BIK1 and the double mutant. However, there was no
reduction in MAPK activation by flg22, elf18 and Pepl in
pbl1, bikl and pbl1bikl compared to their Col-0 (pMAQ?2)
background line (Figure 7). This is in contrast to the

J

reduced elf18-induced MAPK activation (Figure 1C) and
the dose dependent reduction in flg22-induced MAPK acti-
vation (Additional file 1: Figure S1) in the cce5S mutants.
Since the reduction of MAPK activation could be seen in
multiple cce5 lines, the difference is unlikely to be due to
secondary mutations in the ems-mutagenized lines.

Kinase activities and proper localization of RLCKs
determine downstream signaling

After MAMP stimulation of plants, a reduced mobility
of PBL1 and BIK1 protein bands in polyacrylamide gels
(i.e. a mobility shift ), indicative of in vivo phosphoryl-
ation of the kinases, has been reported [34,35]. Since
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equilibrated in 1.5 ml of fresh MS medium for ~24 h, and elicited by adding 0.5 ml of media containing a 4-fold concentrated stock of the indicated
MAMP/DAMPs. Samples were collected at the indicated time points (min) after treatment and proteins were extracted for immunoblotting to detect
phosphorylated (i.e. activated) forms of the MAPKs. Amido black staining of the nitrocellulose membranes was used to estimate equal loading.

pbl1bik1 double mutants. 14-day-old liquid-grown seedlings were

three of the cce5 alleles are predicted to encode PBL1 pro-
teins with a single amino acid exchange (Figure 4), we
tested these mutated PBL1 proteins as well as BIK1 with
regard to the gel mobility shift. As a negative control, we
mutated the presumed myristoylation site (G2A) of PBL1
and BIK1, which is expected to prevent the proteins from
targeting to the plasma membrane. All these constructs
were tagged with a C-terminal HA epitope for western
blot detection and transiently expressed in Arabidopsis
mesophyll protoplasts. A mobility shift could be seen for
wild type PBL1 and BIK1 after flg22 treatment of the pro-
toplasts, but not for the G2A myristoylation site variants
and the G70D, A97V and R172Q PBL1 variants (Figure 8A,
B). This indicates that there is no in vivo phosphorylation
of the mutated protein variants after flg22 treatment.

To test if the kinase activities have been affected, we
immunoprecipitated the proteins with anti-HA antibodies
and incubated the immunoprecipitates in the presence of
radioactive ATP to enable autophosphorylation. After separ-
ation on a SDS-polyacrylamide gel, radioactive signals corre-
sponding to the proteins could be seen for the wild type and
the G2A mutated PBL1 and BIK1, suggesting that these are
still active kinases (Figure 8C). Notably, the wild type BIK1
or PBL1 autophosphorylation signals are weak before flg22
treatment (highlighted with asterisks in Figure 8C, left
panel). However, compared to the wild type PBL1 protein,
there was no (or strongly reduced) autophosphosphorylation
of the G70D, A97V or R172Q mutated PBL1 variants
(Figure 8C). Taken together, these three cce5S mutations led
to the loss of PBL1 kinase activity, while the mis-localization

A B
BIK1 cce5-1 cce5-3 cce5-5  PBL1
BIK1 (G2A) PBL1 (G70D) (A97V) (R172Q) (G2A)
fig22 (100 nm): - + - + flg22 (100nM): - + - o+ -+ -+ - 4
o-HA™ e ™ P - - v

amido black |. o — o W

C untreated flg22 (10 min)
BIK1 PBL1 BIK1 PBL1
[<]
o >
< - < & &~ M~
= 85 =002 &
autorad. » . § 3
a-HA «heavy chain
(after IP) <BIK1/PBL1
amido black :
CHA | e e—————
(before IP) L
amido black ——

PBL1 (B), or the indicated variants. After overnight expression of the proteins, the protoplasts were treated with 100 nM flg22 (10 min), harvested and
subjected to western blotting with anti-HA. In vivo phosphorylation is implicated by a reduced mobility of the protein (highlighted with black arrowheads).
Amido black staining of the nitrocellulose membranes was used to estimate equal loading. In (C), autophosphorylation of the immunoprecipitated kinases
was used to determine if the kinase activities have been compromised by the mutations. The experiment was performed three times with similar outcome.
Note that the autophosphorylation of the wild type (WT) kinases in the untreated protoplasts is variable and typically low but a weak band can be seen
(indicated by asterisks). Autophosphorylation of the G70D, A97V and R172Q variants were always not visible (or lower than the wild type kinases).
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of PBL19** and BIK1** proteins prevented the in vivo
phosphorylation of these kinases after flg22 signaling.

As a final proof that PBL1 is required for the MAMP-
induced calcium elevation, we introduced a genomic
DNA fragment encompassing the PBLI gene locus into
the pbll T-DNA mutant. This genomic fragment com-
plemented the reduced calcium elevation (Figure 9A)
and the root growth inhibition (Figure 9B) phenotype in
pbll. As a negative control, mutation of the putative
myristoylation site (G2A) prevented the complementa-
tion of the cce phenotype (Figure 9A) as well as the
flg22-induced root growth inhibition (Figure 9C). Hence,
myristoylation and proper targeting of PBL1 to plasma
membrane is essential for signaling function of PBL1.

Discussion

Specific RLCKs required for calcium signaling and MAMP/
DAMP signaling

Using both forward and reverse genetics as well as com-
plementation studies, we identified the CCES5 gene as
encoding the receptor-like cytoplasmic kinase, PBLI,
and with the cce5 mutants, we isolated five new pbl1 al-
leles. We further showed that another RLCK, BIK1, but
not PBS1 and PBL2, is required for the MAMP/DAMP-
induced calcium elevation pathway. This is in agreement
with a recent report that flg22-induced calcium flux is
compromised in bikl [36]. Using these new pblI alleles
and T-DNA insertion mutants, a MAMP-mediated root
growth inhibition assay confirmed the requirement of
PBLI for downstream signaling leading to growth arrest.
However, the bikl mutation had no apparent effect on
flg22-mediated growth arrest. Thus, despite both pbl1
and biklI mutants showing a reduced MAMP/DAMP-
induced calcium elevation, downstream growth arrest
effects differ. One explanation is that PBL1 and BIK1 are
not simply redundant but also have distinct signaling
roles, which is reinforced by other studies showing
both overlapping and distinct requirements for PBL1
and BIK1 in MAMP-induced ROS production, callose
deposition, gene expression and pathogen resistance
[33,34,37,38]. This notion is, in fact, evident from the
different calcium signatures in the pbll and bikl mu-
tants (see Figure 5A). A second possibility is that a
signaling critical threshold of cytoplasmic calcium level
is not crucial or causal for determining the degree of
growth inhibition (or other MAMP-induced responses),
which would imply a more important signaling role of
PBL1, compared to BIKI, in mediating the possible
trade-offs between growth and defense activation. It is
possible that the inverse roles of BIK1 as a positive
regulator of defense but a negative regulator of brassi-
nosteroid signaling [39] contribute to this growth dif-
ferences. Recently, another RLCK, PBL27, was found
to be the preferential substrate (as compared to BIK1)
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of the CERK1 chitin receptor. By contrast, BAK1, which
is already known to phosphorylate BIK1, hardly phos-
phorylated PBL27. PBL27 also appears to be non-
essential for flg22 signaling [40]. Thus, depending on the
ligand, different RLKs or RLCKs are recruited for signal-
ing. These findings support the distinction of BAK1 re-
quirement for flg22, elf18 and AtPepl signaling to that of
chitin [5,9]. Our data on PBLI1 requirement for optimal
calcium signaling induced by flg22, elf18 and AtPepl, but
not chitin (Figure 5), fits into this pattern. In conclusion,
there appears to be a differential requirement for mem-
bers of the RLCK family downstream of the receptors for
distinct MAMP/DAMP signaling.

Phosphorylation is essential for signal relay

The recruitment (and/or exchange) of various RLKs and
RLCKs at the plasma membrane after MAMP/DAMP
perception is indicative of the roles of phosphorylation
cascades in early signaling. Prior to stimulation, FLS2
and BIK1 are already in a protein complex [38] and
BAK1 appears to be also in complex with BAKI1-
interacting RLKs (BIRs) [41]. Within minutes after flg22
stimulation, FLS2 recruits BAK1 [3] to phosphorylate
BIK1. Activated BIK1, in turn, cross-phosphorylates
FLS2 and BAK1 [38]. BAK1 also cross-phosphorylates
FLS2 but apparently at different residues as BIK1 [42].
Based on the autophosphorylation assay (Figure 8C), the
kinase activities of BIK1 and PBL1 appear to be higher
in the flg22-treated protoplasts. The lower activities of
BIK1/PBL1 in the untreated protoplasts may imply re-
pression by some other components (eg. phosphatases)
prior to elicitation. Along this idea, it is noteworthy that
the N-terminal myristoylation BIK19** and PBL1%**
mutants are routinely recovered with higher auto-
phosphorylation levels. One may speculate that mis-
localization of PBL19** and BIK19** prevent contact
with phosphatases that are presumably present in the
FLS2-BIK1 (or PBL1) protein complex to restrict defense
signaling. Indeed, Ser/Thr protein phosphatase type 2A
(PP2A) has been shown to associate with BAKI and
control the activation of PRR complexes [43]; and
whether the same or similar PP2As negatively regulate
BIK1 or PBL1 remains to be demonstrated. Recently, it
was shown that both BAK1 and BIK1 are dual-specific
kinases that modify both serine/threonine as well as
tyrosine residues [44]. The complex series of phosphor-
ylation between PRRs, BAK1, BIK1 and PBL1 are im-
portant as mutations abrogating activities of any of these
kinases block signaling. As shown by mobility shifts in
gel electrophoresis, the PBL1 protein, encoded by the
CCES gene, is apparently phosphorylated in vivo after
MAMP elicitation [34]. The loss (or reduction) of the
kinase activities of the cce5-derived protein variants
reported here (Figure 8C) corresponds to changes of
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important residues of the kinase domain. The G70D and
A97V mutations are found in the ATP binding region (i.e.
the kinase subdomains I and II, respectively) while R172Q
is N-terminal to the active center within kinase subdo-
main VI (c.f Figure 4 and Figure 8C). Taken together with
data from literature, the reduced calcium signaling of our
newly isolated cce5/pbl1 alleles shows that kinase activities
of PBL1 (and all the other recruited RLKS/RLCKSs) are
vital for early MAMP/DAMP signaling.

Is downstream MAPK activation affected in the pbl7 and
bik1 mutants?

Downstream of PBL1/BIK1 phosphorylation is calcium ele-
vation, which, in turn, has been shown through pharmaco-
logical inhibitor studies to be required for downstream
MAPK activation [22]. However, despite an attenuation of
calcium elevation, there was no reduction in MAPK activa-
tion by flg22, elf18 or AtPepl in the pbll and bikl T-DNA
mutants as well as pbl1bikl double mutant when compared
to their Col-0 (pMAQ?2) background line (Figure 7). This
observation is in agreement with previous reports [34,45,46].
On the other hand, we observed a reduction/delay in elf18-
induced MAPK activation in the cce5 mutants (Figure 1C),
while for flg22, a weak effect could be observed when a
lower concentration of the flg22 peptide was used. A
possible explanation for this discrepancy may be that the
mutated or truncated CCE5 proteins (with inhibitory prop-
erties) are expressed by the cce5 alleles as opposed to the
(presumably) lack of proteins in the T-DNA insertion mu-
tants. Alternatively, the different genetic background of the
mutants may also play a role. In all studies where no differ-
ence in MAPK activation was observed, the mutations were
in Col-0, while the cceS (pblI) mutants have a C24 back-
ground. We previously reported that the C24 accession has
higher levels of FLS2 receptor while, on the basis of public
gene expression profiling data, the opposite is true for the
EFR receptor [26]. Several SNPs were also detected within
the FLS2 and EFR genes of HVA1 (C24) [26], which may
further contribute to the different sensitivities to flg22 and
elf18. Together, this may explain the observed reduced
elf18-induced MAPK activation in the cce5 mutants but
only a dose-dependent flg22-induced MAPK response.
Along this notion, Zhang et al. [34] also reported that callose
deposition in the pbll mutant was normal upon flg22 treat-
ment but reduced when treated with elf18 [34]. Thus, the
differential MAMP receptor levels and/or yet unknown al-
terations in other signaling components between genotypes
may determine the sensitivity of the system in signal relay
from PBL1 to the MAPKs and other downstream events.
Additionally, the RLCK, RIPK, phosphorylates RIN4 and in
analogy to the recognition of the RIN4 phosphorylation by
the RPM1 resistance protein as compared to recognition of
RIN4: cleavage by RPS2 [47], one could speculate that the
MAMP-induced RLCK phosphorylation may also be
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differentially recognized by the differing configuration of re-
sistance protein spectrum between Arabidopsis accessions.

Localization to the membrane is a prerequisite for PBL1
and BIK1 function

Besides its kinase activities, localization of PBL1 and BIK1
appears to be important for complementation of the cce
phenotype. BIK1, as a GFP fusion protein, has been shown
to be plasma membrane-localized using heterologous ex-
pression in onion epidermal cells [33]. However, to our
knowledge, it has never been experimentally determined
whether this is due to targeting or recruitment by other
proteins. CASTAWAY, an RLCK required for organ ab-
scission, showed reduced plasma membrane localization
when a G2A mutation was introduced for the putative
myristoylation site. Myristoylation is often associated with
palmitoylation to enhance membrane interactions. How-
ever, no further decrease of CASTAWAY localization was
observed even when the neighboring palmitoylation site
(C4S) was additionally mutated [48]. Myristoylation is
thought to provide the initial but weak interaction with
the plasma membrane; stabilization of this membrane
localization may be further strengthened through other
modifications or interactions with resident plasma
membrane-localized components [49]. We now show that
the G2A mutation of the putative myristoylation site of
PBL1/BIK1 prevented signaling (i.e. no in vivo phosphor-
ylation after MAMP treatment, Figure 8) although kinase
(autophosphorylation) function is apparently intact. Fur-
thermore, the G2A variant did not complement the pbl1
mutation (Figure 9). In a similar manner, despite being
cleaved by the avrPphB cysteine protease, the active
PBS1 fragment that is recognized must be retained at the
plasma membrane for RPS5 activation [50]. In this case,
plasma membrane targeting is mediated by S-acylation of
a cysteine residue in the N-terminus of PBS1. Thus, not
only the function of the PBS1 protein but also the recogni-
tion of its perturbation (i.e. ETI) requires correct mem-
brane localization. Taken together, localization of the
RLCKs to the proper cell compartment is crucial for
function.

Disabling RLCK functions during pathogenesis blocks
defense signaling

PBS1 is the founding member of the PBL (PBS1-like)
group. The Pseudomonas avrPphB effector, a bacterial viru-
lence protein injected into host cells, cleaves PBS1 via its
cysteine protease activity [31]. Subsequently, it was discov-
ered that avrPphB can cleave at least 10 other PBS1-like
RLCKs [34]. Their cleavage/removal represents a virulence
function of avrPphB and suggests that these PBLs/RLCKs
act in resistance mechanisms against bacteria. Support for
this notion is provided by studies involving the Xanthomo-
nas XopAC effector, which appears to target multiple
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RLCKs [37]. Unlike avrPphB, XopAC does not cleave but
uridylates BIK1 and RIPK in susceptible plants [45]. This
transfer of uridine 5’-monophosphate to conserved phos-
phorylation sites in the activation loop of BIK1 and RIPK,
prevents phosphorylation, thereby reducing their kinase ac-
tivities and consequently inhibiting downstream defense
signaling. In accordance to the arms-race hypothesis,
XopAC appears to be a major avirulence factor for recogni-
tion in resistant plants such as the Arabidopsis Col-0 acces-
sion. Furthermore, there is more growth of Xanthomonas
campestris pv. campestris expressing XopAC in the pbl2
background. This suggests that the RLCK, PBL2 is required
for the XopAC-triggered immunity [37]. These observa-
tions of various pathogen effectors targeting RLCKs are in
line with the presumed importance of RLCKs in defense
signaling. However, although avrPphB cleaves multiple
PBLs/RLCKs [34], only PBS1 cleavage is recognized by
RPS5 [27,51]. We report here that PBL1 and BIK1, but nei-
ther PBL2 nor PBS1, are required for MAMP/DAMP-in-
duced calcium signaling (Figure 5). This raises the question
of why avrPphB would target PBS1 if PBS1 is not import-
ant for MAMP-induced calcium signaling. In fact, there is
no evidence so far for any importance of PBS1 in pathogen
resistance. As proposed by Zhang et al. [46], one idea is
that PBS1 may be a decoy [52] evolved to recognize per-
turbation of the real targets of the pathogen effectors. In
this case, PBL1 and BIK1 would be such real avrPphB tar-
gets, which are relevant for cross-phosphorylation of the re-
ceptor complex components and the subsequent triggering
of calcium and downstream defense signaling.

Conclusion

In summary, we showed the requirement for the two
RLCKs, PBL1 and BIK1, in MAMP/DAMP-induced cal-
cium signaling, and speculated on possible genotype varia-
tions that may differentially contribute to downstream
signaling events. There are many more RLCK genes in the
genome (Additional file 1: Figure S3) and it remains to be
investigated whether these also affect early calcium signal
transduction ~ perhaps in dependence on the type of
MAMP/DAMP ligands. The large number of available
RLCKs is presumably mirrored by an even wider repertoire
of their downstream substrates. Besides phosphorylating re-
ceptor complex components, BIK1 was recently shown to
target the NADPH oxidase, RBOHD, to control oxidative
burst in a calcium-independent manner [36,53]. Thus, a fu-
ture challenge would be to identify the substrates of these
various RLCKs and elucidate their role in cellular signaling.

Methods

Plant lines and cultivation conditions

The Arabidopsis thaliana lines pMAQ2 in Col-0 back-
ground and HVAL1 in C24 background were obtained from
M. and H. Knight [25]. These lines express the apoaequorin
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gene under the control of the cauliflower mosaic virus 35S
promoter. In the case of HVALI, the aequorin is targeted as a
pyrophosphatase (H + —PPase)-apoaequorin fusion protein
to the cytoplasmic-face of the tonoplast in the so-called
vacuolar microdomain (vimd); thus enabling measurements
of calcium changes at this vacuolar vicinity. For the back-
cross shown in Figure 2, the HVA1 (C24) line was first
retransformed with pMAQ?2 construct to obtain a line ex-
pressing additionally cytosolic apoaequorin (designated
HVAI1-P). This HVAI1-P line was then crossed to the cce5
mutants. T-DNA lines used in this study are listed in the
Additional file 1: Table S1). Plants for ROS assays were
grown on soil in climate chambers under short day condi-
tions (8 h light, 16 h dark cycles). For calcium and MAPK
assays, seeds were surface-sterilized, stratified at 4?C for >2
d and grown in liquid MS under long day conditions (16 h
light, 8 h dark cycles) as described [25].

Calcium measurements

Seed sterilization, growth of seedlings and other experi-
mental set-up for the calcium measurements in a 96-
well plate format was performed as described [26].

ROS, MAPK and growth inhibition assays

Detection of early MAMP-triggered responses such as
MAPK activation and reactive oxygen species (ROS) accu-
mulation was performed as described [9]. As a late response
to MAMPs, growth inhibition assay was performed as de-
scribed [26]. Briefly, seedlings were grown vertically on ATS
agar plates with or without 1 uM flg22 for 14 days. To dis-
tinguish between growth differences due to treatment versus
genotype effects, two-way ANOVA was performed on log,-
transformed root length data (genotype vs. treatment; p <
0.001; R statistical package) [54]. For a more compact and
simplified overview, data in Figure 6 were depicted as per-
cent growth inhibition compared to control.

Transient expression in protoplasts, immunoprecipitation
and autophosphorylation

Transient expression in Arabidopsis protoplasts was per-
formed as described [9]. For each sample, 1 ml of proto-
plasts (~2 x 10° protoplasts ml™) was transformed; of
which 300 pl were kept for western blot analysis of pro-
tein expression. The remaining 700 pl were used for im-
munoprecipitation. Proteins were extracted from the
transfected protoplasts as described except that the ex-
traction buffer was supplemented with 1% Triton X-100
[55]. The proteins were incubated with anti-HA (Cov-
ance) and protein-G-sepharose (for at least 2 h, 4?C).
Washing of the beads was performed as in Lee et al.
[55], with centrifugation in between washes to pellet the
sepharose beads. Finally, sepharose beads with the
immunoprecipitated proteins were resuspended in 20 pl
of kinase buffer (20 mM Hepes pH 7.5, 15 mM MgCl,,
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5 mM EGTA, 1 mM DTT); 5 ul was kept for a western
blot to confirm recovery of the HA-tagged proteins.
y32P-ATP (3000 Ci mmol™) (0.1 ul) was added to the
remaining 15 ul and incubated at 30?C for 1 h to initiate
autophosphorylation. Five pl of 4xSDS-loading buffer
was added to the beads, incubated at 95?C for 5 min,
and 12 pl loaded on a 10% SDS-PAGE. After electro-
phoresis, the gel was dried, exposed overnight and ana-
lyzed by Phosphorimaging.

Mapping

An F2 population was generated from the cross of cce5-1
(C24) with the Arabidopsis ecotype Landsberg erecta
(Ler-0). F2 plants containing the aequorin transgene (i.e.
showing coelenterazine-dependent luminescence) were se-
lected and selfed. DNA was isolated from leaves of F2
plants or from pooled F3 seedlings, and 3 to 5 markers
(SNPs, INDELs) of each chromosome were genotyped.
Calcium measurements were performed with the F3 seed-
lings and the segregation of the phenotype used to infer if
the corresponding F2 parent is heterozygous or homozy-
gous for the cce5 mutation.

Molecular cloning, plant transformation and
complementation

For complementation analysis, a genomic fragment cov-
ering the PBL1-ORF and 2 kb upstream cis-regulatory
region was amplified by PCR using Phusion? Hot Start
High-Fidelity DNA polymerase (Thermo Scientific) with
primers PBL1-Prom/-STOP and cloned into pENTR /
D-TOPO according to manufacturer s instructions. Mu-
tation of the N-myristoylation site (G2A) was performed
using the QuikChangell-Kit (Stratagene) with primers
PBL1-NMSmut-F/-R according to manufacturers in-
structions. Clones were verified by sequencing and
transferred via LR reaction into destination vector
pGWBI to obtain pPBL1::PBL1 and pPBLI:PBL1(G2A).
After transfer of the constructs into Agrobacterium
tumefaciens (GV3101), Arabidopsis pbll mutant plants
were transformed by floral-dip transformation. Trans-
genic plants were selected on hygromycin-containing
plates and crossed with pblI-AEQ to introduce the
apoaequorin transgene. For transient expression in pro-
toplasts, PBL1- and BIK1-ORFs were amplified from
c¢DNA obtained from Col-0 or the indicated cce5 alleles
by PCR using Phusion? Hot Start High-Fidelity DNA
polymerase (Thermo Scientific) with primers PBL1-
START/-NoSTOP and BIK1-START/-NoSTOP and
cloned into pENTR™/D-TOPO according to manufac-
turers instructions. Mutation of the N-myristoylation
site (G2A) was introduced using primers PBL1-
STARTmut and BIK1-STARTmut. Clones were verified
by sequencing and transferred via LR reaction into des-
tination vector pUGW14 to obtain p35S:PBL1-3xHA,
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p358:BIK1-3xHA, p35S:PBL1(G2A)-3xHA and p35S:
BIK1(G2A)-3xHA.

The aequorin-ORF was amplified from plasmid
pMAQ2 by PCR using Phusion? Hot Start High-Fidelity
DNA polymerase (Thermo Scientific) with primers
AEQ-START/-STOP, cloned into pENTR™/D-TOPO
according to manufacturers instructions, verified by se-
quencing and transferred via LR reaction into destin-
ation vector pUB-DEST to obtain plUUBQI0:AEQ. After
transfer of the construct into Agrobacterium tumefaciens
(GV3101), Arabidopsis Col-0 plants were transformed
by floral-dip transformation and transgenic plants were
selected by spraying with BASTA? (glufosinat-ammo-
nium; Bayer). All primers used for cloning are listed in
the Additional file 1: Table S3).

Availability of supporting data

All the supporting data are available within the article or
as additional files. The phylogenetic tree (Additional file 1:
Figure S3) has been deposited in treebase (ID: 16757) and
the data will be available at the following URL: http://purl.
org/phylo/treebase/phylows/study/TB2:516757.

Additional file

Additional file 1: Figure S1. MAPK activation in cce5 mutants. Reduced
MAPK activation in cce5-1 mutant is seen with flg22 elicitation at low
concentrations (10 nM) (A) but not obvious at higher concentrations (100
nM flg22) (B). Figure S2. MAMP-induced reactive oxygen species (ROS)
accumulation. Reduced ROS accumulation in the cce5 mutants after elf18
(A) or flg22 (B) treatments. Figure S3. Evolutionary relationships of 51
group VIl RLCKs. Table S1. Mutant lines used in this study. Table S2.
CAPS markers for genotyping the cce5 mutant alleles. Table S3. Primers
used for molecular cloning.
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