
Zila et al. BMC Plant Biology  (2014) 14:372 
DOI 10.1186/s12870-014-0372-6
RESEARCH ARTICLE Open Access
Genome-wide association study of Fusarium ear
rot disease in the U.S.A. maize inbred line
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Abstract

Background: Resistance to Fusarium ear rot of maize is a quantitative and complex trait. Marker-trait associations
to date have had small additive effects and were inconsistent between previous studies, likely due to the combined
effects of genetic heterogeneity and low power of detection of many small effect variants. The complexity of
inheritance of resistance hinders the use marker-assisted selection for ear rot resistance.

Results: We conducted a genome-wide association study (GWAS) for Fusarium ear rot resistance in a panel of 1687
diverse inbred lines from the USDA maize gene bank with 200,978 SNPs while controlling for background genetic
relationships with a mixed model and identified seven single nucleotide polymorphisms (SNPs) in six genes associated
with disease resistance in either the complete inbred panel (1687 lines with highly unbalanced phenotype data) or in a
filtered inbred panel (734 lines with balanced phenotype data). Different sets of SNPs were detected as associated in
the two different data sets. The alleles conferring greater disease resistance at all seven SNPs were rare overall (below
16%) and always higher in allele frequency in tropical maize than in temperate dent maize. Resampling analysis of the
complete data set identified one robust SNP association detected as significant at a stringent p-value in 94% of data
sets, each representing a random sample of 80% of the lines. All associated SNPs were in exons, but none of the genes
had predicted functions with an obvious relationship to resistance to fungal infection.

Conclusions: GWAS in a very diverse maize collection identified seven SNP variants each associated with between 1%
and 3% of trait variation. Because of their small effects, the value of selection on these SNPs for improving resistance to
Fusarium ear rot is limited. Selection to combine these resistance alleles combined with genomic selection to improve
the polygenic background resistance might be fruitful. The genes associated with resistance provide candidate gene
targets for further study of the biological pathways involved in this complex disease resistance.
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Background
Fusarium ear rot disease of maize, caused by the fungus
Fusarium verticillioides (Sacc) Nirenberg, is endemic to
maize production systems in the United States and
worldwide [1]. The fungus is present as a symptomless
endophyte in most maize seed lots [2-4]; pathogenic
colonization of developing maize kernels is common in
the low rainfall high-humidity climates of the southern
United States and lowland tropics [5]. Infection by F.
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verticillioides can result in decreased grain yield, reduced
grain quality, and grain contamination by the mycotoxin
fumonisin. Fumonisin is a suspected carcinogen and is
associated with various diseases in livestock and humans
[5-7]. In areas of the world where maize is a dietary staple
and occurrence of Fusarium ear rot infection is high (such
as sub-Saharan Africa), consumption of infected grain has
been linked to esophageal cancer in adults and growth
retardation in children [8-10].
The most effective method for controlling Fusarium

ear rot infection and reducing fumonisin contamination
is through the deployment of maize hybrids possessing
genetic resistance. Resistance to the disease is under
polygenic control, and no fully immune genotypes have
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Table 1 Sample size (N), mean ear rot severity, genotypic
variance component estimates σ̂G

2
� �

, average prediction

error variance σ 2
PPE

� �
and heritability ĤC

� �
estimates for

Fusarium ear rot resistance in the full inbred association
panel, filtered association panel, across the topcross
experiment, and within the B47 and PHZ51 topcrosses,
respectively

N Mean (%)a σ̂
G

2
� �b σ 2

PPE

� �c
ĤC

Full inbred panel 1687 38.5 0.15 0.24 0.21

Filtered inbred panel 734 33.0 0.18 0.14 0.61

Topcrosses 556 21.0 0.13 0.10 0.63

B47 243 23.1 0.15 0.16 0.46

PHZ51 313 19.4 0.06 0.10 0.18
aMean ear rot severity is reported as the average of the entry least square
means (back-transformed to the original 0-100% disease severity scale).
bEstimated genetic variance component from ASReml.
cAverage prediction error variance among all pair-wise comparisons of entries
from ASReml.
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been discovered [11-13]. Previous linkage-based and
association mapping studies have shown that resistance
quantitative trait loci (QTL) have relatively small effects
and are not consistent between populations [14-17]. The
complex nature of resistance has made it difficult for
maize breeders to effectively incorporate novel resistance
alleles into adapted breeding pools; as a result, most com-
mercial maize hybrids have lower levels of resistance than
desired [18]. Although the heritability of individual plot
measures of resistance to Fusarium ear rot and fumonisin
contamination is low, resistance on an entry mean-basis
from replicated bi-parental and diversity panel studies is
moderately to highly heritable [19-22]. Empirical studies
demonstrate that phenotypic selection for improved ear
rot resistance can be effective [21,23]. However, most
novel sources of disease resistance are unadapted inbreds
with poor agronomic performance that often come from
tropical or other exotic germplasm pools [12,22].
Genome-wide association studies (GWAS) can be a

powerful tool in the identification of specific allele variants
that confer improved resistance to various diseases in
maize. Utilizing a maize core diversity panel of 279 public
inbred lines [24] and over 47,000 SNPs from the Illumina
maize 50 k array [25], Zila et al. [22] identified three genes
associated with improved resistance to Fusarium ear rot.
However, the three loci associated with improved ear rot
resistance all had small allelic effects (±1.1% on a percent-
age ear rot scale), and each individual locus was associated
between 3 to 12% of the observed variation in line means
after accounting for the additive polygenic background
genetic variance captured by the genomic kinship matrix.
The alleles conferring greater resistance at all three loci
were at higher frequency in tropical maize than in temper-
ate maize, suggesting that tropical germplasm is a good
source of resistance alleles that might not be found easily
in elite temperate maize. Therefore, further searches for
new resistance alleles should target diverse, mostly trop-
ical, maize germplasm.
The USDA-ARS North Central Regional Plant Intro-

duction Station (NCRPIS) located in Ames, IA maintains
a large and diverse collection of maize inbred lines that
represents a century of public and private maize breeding
efforts in the United States and from across the globe
[26]. Within the last year, almost 680,000 genotype-by-
sequencing (GBS; [27,28]) markers on 2,815 accessions
from the NCRPIS collection have become available
through the efforts of Romay et al. [26]. The availability
of this large set of markers on the NCRPIS collection
provides the opportunity for significantly expanding the
sample of maize diversity and the marker density for
GWAS studies in maize. The objectives of this study
were to evaluate 1687 diverse inbred lines from the
NCRPIS collection and a subset of their topcross hy-
brids for resistance to Fusarium ear rot across several
years and to conduct genome-wide association studies
of resistance to this important disease using a set of
200,978 GBS SNPs from Romay et al. [26].

Results
Line means and heritability
Significant (P < 0.001) genotypic variation for ear rot
resistance was observed in both the inbred association
panel and topcross experiments. Ear rot least squares
means among 1687 entries of the inbred association
panel ranged from 0.2% to 100% with a mean score of
38.5% (Table 1 and File S4 in Additional file 1). Least
square means for topcross hybrids ranged from 2.5% to
84.8% with a mean score of 21.0%. Entry mean-basis
heritability of ear rot resistance in the full inbred associ-
ation panel was 0.21, while in the balanced subset of 734
entries all tested across three years it was 0.61. Heritability
of topcross rot resistance averaged across testers (for the
set of lines evaluated in combination with both testers)
0.63, while heritabilites of resistance within the B47 and
PHZ51 topcross sets individually were 0.46 and 0.18,
respectively. The genotypic correlations between inbred
ear rot resistance and resistance in topcrosses to B47 and
PHZ51 were 0.39 and 0.42, respectively. The genotypic
correlation between performance of B47 topcrosses and
PHZ51 topcrosses was 0.48. On an inbred per se basis,
B47 had a mean ear rot score of 28.1%, whereas PHZ51
had a mean score of 58.7% (File S4 in Additional file 1).

Genome-wide association mapping of Fusarium ear rot
resistance
Background polygenic effects modeled by K accounted
for 31% of the variation among entry means in the full
inbred association panel analysis and 42% of the entry
mean variation in the balanced subset inbred association
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panel (Table 2). Principal component decomposition of
K revealed little association between mean rot scores in
the inbred association panel and large-scale population
structure (Figure 1). In the topcross analyses, K accounted
for 31% of the variation among B47 topcross entry means
and 39% of the variation among PHZ51 topcross entry
means (Table 2).
From the analysis of the full inbred association panel,

two SNPs (at bp 64,771,372 on chromosome 5 and at bp
19,532,465 on chromosome 9) were identified as signifi-
cantly associated with ear rot resistance at a false discovery
rate (FDR) of < 0.20 (Table 3; Figure 2). These two SNPs
also had the highest RMIP values among SNPs across the
50 data subsamples; the chromosome 9 SNP had an asso-
ciation with ear rot with p-value < 10−5 in 47 of the 50 data
subsamples (Table 3; Figure S1 in Additional file 1; File S6
in Additional file 1).
When the analysis was conducted on a filtered data

set including only lines with data from all three years, a
distinct set of five SNPs, all on chromosome 4, were
identified as significantly associated with ear rot resistance
(Table 3; Figure 2). No significant SNPs at FDR < 0.20
were identified from either the B47 topcross analysis or
the PHZ51 topcross analysis (Figure 3), where the mini-
mum raw P-values among SNP association tests were
1.3 × 10−5 and 2.3 × 10−5, respectively.
SNPs identified from either of the two inbred analyses

explained relatively small proportions of the observed
variance in entry means after accounting for the back-
ground polygenic effects (individual SNP R2 values ranged
from 1.3% to 3.0%, Table 3), and each SNP also had a
small allelic effect (−0.13% to −0.27% back-transformed
to the original percentage ear rot scale). All significant
associations had negative allelic effects, indicating that
the minor allele was associated with lower ear rot
(increased diseased resistance) at all loci.
Table 2 Number of lines, number of groups and
compression level of the full 2480 × 2480 kinship matrix,
and proportion of total line mean variance explained by
additive relationship matrix from the four mixed-linear
model (MLM) analyses

Na Groupsb Compressionc σ̂G
2

σ̂G
2þσ̂2

� �d

Full inbred panel 1687 2100 1.18 0.31

Filtered inbred panel 734 2000 1.24 0.42

B47 topcrosses 243 1760 1.41 0.31

PHZ51 topcrosses 313 1770 1.40 0.39
aTotal number of entries included in the analysis.
bNumber of groups determined by optimum compression (note that the
complete kinship matrix for 2480 lines was used for all analyses).
cCompression level is the average number of individuals per group.
dPolygenic additive background genetic variance divided by total phenotypic
variance. This ratio was estimated in GAPIT by fitting the kinship matrix (K) in
the mixed linear model without any SNP marker effects.
The frequency of disease resistance alleles were esti-
mated at the seven significantly associated SNPs in the
same five major maize subpopulations analyzed by Zila
et al. [22] – stiff stalk temperate (SS), non-stiff stalk tem-
perate (NSS), tropical/subtropical (TS), popcorn (PC), and
sweet corn (SC) [26]. Alleles associated with increased dis-
ease resistance at all seven SNP loci were significantly
(p ≤ 1.7 × 10−5) overrepresented in the tropical and/or
popcorn groups compared to the three other temperate
groups (Table 4). Disease resistance alleles at all seven
SNP loci were absent or nearly absent in the SS, NSS, and
SC subpopulations. However, examination of the average
of least squares means across lines sampled within a sub-
population showed no major difference in disease severity
between the groups, largely agreeing with the principal
component analysis of the K matrix (Table 4; Figure 1).

Genes colocalized with associated SNPs
To gauge the resolution of associations, we inspected
the local LD structure around the significant associations
(Figures 4 and 5). Romay et al. [26] summarized the
genome-wide LD characteristics of this panel, noting
that LD tends to decay rapidly to below r2 = 0.2 within
1 kb, but that there is substantial variation around this
average value among genome regions and germplasm
groups. The regions around our associations on Chromo-
some 4 near 125 Mb and on Chromosome 9 exhibit the
typical rapid decay of LD observed in diverse maize. LD
was slightly more extensive around the Chromosome 5
association, with a few SNPs about 200 kb away from
the significant association having r2 of about 0.5 with
the associated SNP. Finally, the region on Chromosome
4 between 7.5 and 9.5 Mb had the most extensive LD,
with SNPs separated by almost 2 Mb still having high LD,
although much of the region between the ends of this
section had much lower LD. Romay et al. [26] observed
that Chromosome 4 has particularly high LD. The high
LD region reported here is coincident with the interval
containing the gametophyte factor 1 (Ga1) locus [29],
which is under selection in the popcorn subgroup and
may also be more widespread in tropical maize due to
selfish gene evolution [30]. These selection effects asso-
ciated with Ga1 may be involved in maintaining LD in
the region.
Genes containing SNPs significantly associated with

ear rot resistance were characterized using the filtered
predicted gene set from the annotated B73 reference
genome [31] (Additional file 1: File S7). All seven SNPs
identified across both inbred association panel analyses
were within predicted genes on the maize physical map, five
of the seven localized to exons (all coding for nonsynon-
ymous mis-sense variations), one to the 3′ untranslated
region, and one to an intron (Table 3). The disease associ-
ated SNP on chromosome 5 was in a sucrose synthase gene



Figure 1 Genetic relationships between the 1687 lines of the full inbred association panel visualized using a principal component
analysis of the K matrix. The horizontal and vertical axes are the first and second principal components, respectively. The color gradient from
blue to red of the points represents the relative mean Fusarium ear rot score of each line (blue is most resistant and red is most susceptible). Five
major recognized heterotic group clusters are labeled in large gray font, and the 26 nested association mapping (NAM) population founders and
Mo17 are labeled in small black font for reference.
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(GRMZM2G060659) located in an LD block extending
approximately 0.2 Mbp on chromosome 5 (Figures 4C and
5C). Examination of the lines carrying the minor allele at
this locus revealed no relationship between population
structure due to kernel type (namely the sweet corn and
popcorn groups) and presence of the minor allele. The as-
sociated SNP on chromosome 9 was in a DNA replication
factor CDT1-like gene (GRMZM2G035665) located at the
Table 3 Chromosome locations (AGP v2 coordinates), allele e
summary statistics for the seven SNPs significantly associated
association panel analyses

Chromosome
SNP physical
position (bp) p-value

FDR adjusted
P-value

Minor alle
frequency

Full inbred panel (1689 lines) analysis

5 64,771,372 8.83 × 10−7 0.089 0.07

9 19,532,465 8.44 × 10−8 0.017 0.15

Filtered inbred panel (737 lines tested in thre

4 7,566,354 7.34 × 10−7 0.074 0.10

4 7,618,125 2.67 × 10−6 0.175 0.10

4 7,618,284 3.96 × 10−6 0.175 0.11

4 9,353,851 6.14 × 10−7 0.074 0.07

4 124,930,006 4.36 × 10−6 0.175 0.04
aAllele effects are reported back-transformed to the original 0-100% disease severit
bR2, proportion of total entry mean variance associated with a SNP after accounting
end of a 0.1 Mbp LD block on chromosome 9 (Figures 4D
and 5D). All five SNPs identified in the balanced subset of
the inbred association panel analysis were located on
chromosome 4 (Figures 4A, B and 5A, B). Four of those
SNPs were located in a 1.8 Mbp region between physical
positions 7,566,354 bp and 9,353,851 bp, representing a
region of high linkage disequilibrium covering a genetic
distance of less than 1 cM (Liu et al. 2009) (Figure 4A).
ffect estimates, genes containing SNP, and other
with Fusarium ear rot resistance from the two inbred

le Allele
effect (%)a (R2)b

Gene
containing SNP SNP effect RMIP

−0.170 1.3 GRMZM2G060659 mis-sense (A/T) 0.38

−0.134 1.5 GRMZM2G035665 mis-sense (V/A) 0.94

e years) analysis

−0.230 2.9 GRMZM2G372364 intron variant

−0.225 2.6 GRMZM2G012821 mis-sense (N/D)

−0.205 2.5 GRMZM2G012821 mis-sense (D/N)

−0.254 3.0 GRMZM2G419836 3′ UTR variant

−0.271 2.5 GRMZM2G106752 mis-sense (L/S)

y scale. Effects are in reference to the minor allele.
for background polygenic variance.



Figure 2 Manhattan plots showing significant associations (points above the red FDR = 0.20 threshold lines) from the full inbred
association panel (A) and filtered inbred association panel (B) GWAS analyses. The vertical axis indicates –log10 of P-value scores, and the
horizontal axis indicates chromosomes and physical position of SNPs.
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The four SNPs in this region were all in high LD relation-
ships with each other (r2 from 0.62 to 0.84; Figure 5A).
Two of the SNPs in this region localized to an exon of an
F-box domain gene, one localized to a thioredoxin gene,
and the last localized to a gene of no known function
(GRMZM2G012821, GRMZM2G419836, and GRMZ
M2G372364, respectively). The fifth SNP identified on
chromosome 4 located at position 124,930,006 bp localized
to an exon of a loricrin-related gene (GRMZM2G106752).
Discussion
Heritability and genotypic correlation between experiments
The removal of lines that were not tested in all three
years (consisting mostly of 953 unreplicated inbred lines
that were present only in the 2010 NCPRIS collection
experiment) substantially improved the entry mean-basis

heritability. (H^c ¼ 0:21 in full data set versus H^c ¼ 0:61
in filtered data set). This large difference in heritability
provided justification for conducting separate GWAS on
the complete and filtered inbred association panel data
sets. Improved heritability of the mean values from the
filtered panel will contribute to increased power of
GWAS [32], but this is balanced by the loss of diversity
and reduced allele replication in the subset compared to
the complete set of inbreds. Analyses on the full versus
filtered inbred data sets identified different genomic
regions significantly associated with Fusarium ear rot
resistance (Table 3). These differing results presumably
reflect the tradeoffs between higher heritability and lar-
ger sample size that affect GWAS power.
Although the heritability estimate for ear rot resist-

ance averaged across testers in the topcross experiment

H^c ¼ 0:63
� �

was comparable to that of the filtered inbred

data set, no SNPs were identified as being significantly
associated with ear rot resistance in either the B47 or
PHZ51 topcross data sets. Estimates of genetic variance
in the heritability calculations revealed reduced genetic
variance in the topcross experiment compared to the



Figure 3 Manhattan plots showing significant associations (points above the red FDR = 0.20 threshold lines) from the B47 topcross
(A) and PHZ51 topcross (B) GWAS analyses. The vertical axis indicates –log10 of P-value scores, and the horizontal axis indicates chromosomes
and physical position of SNPs.

Table 4 Allele frequencies of significantly associated SNPs in the five major maize subpopulations and P-value of
Fisher’s exact test of the null hypothesis of equal allele frequencies across subpopulations

Resistance allele frequency (%)a Nb

Chromo-some SNP physical position (bp) SSc NSS TS PC SC P-value SS NSS TS PC SC

4 7,566,354 1.2 0.0 32.0 60.4 0.0 <2.2 × 10−16 164 171 222 48 51

4 7,618,125 0.6 0.0 30.7 47.9 0.0 <2.2 × 10−16 164 171 215 48 52

4 7,618,284 0.6 0.0 36.5 66.0 0.0 <2.2 × 10−16 159 168 211 47 51

4 9,353,851 0.6 0.6 31.9 0.0 0.0 <2.2 × 10−16 161 168 213 61 50

4 124,930,006 0.0 1.8 8.8 3.3 0.0 1.7 × 10−5 162 166 238 60 51

5 64,771,372 0.0 4.7 8.1 14.8 0.0 3.2 × 10−6 164 170 246 61 51

9 19,532,465 2.5 7.2 26.6 26.7 2.0 4.9 × 10−15 158 167 241 60 51

Ear rot mean (%)d 39.6 39.6 43.0 41.3 61.1
aAt all SNP loci the minor allele is associated with increased disease resistance.
bN, total number of lines within each subpopulation with marker calls at a particular SNP locus.
cSS, stiff stalk; NSS, non-stiff stalk; TS, tropical/subtropical; PC, popcorn; SC, sweet corn.
dOverall phenotypic ear rot means are the average of least squares means across members of each subpopulation.
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Figure 4 LD heatmaps showing LD measure (r2) calculated for each pair-wise combination of SNPs in an approximately ±0.5 Mbp
region surrounding each SNP significantly associated with ear rot resistance in the two inbred association panel analyses. (A) LD
around the four SNPs chromosome 4 SNPs located in the 7.6 Mbp to 9.4 Mbp interval. (B) LD around chromosome 4 SNP at physical position
124.9 Mbp. (C) LD around chromosome 5 SNP. (D) LD around chromosome 9 SNP. The significant SNP(s) on each chromosome is highlighted by
the perpendicular black lines within each heatmap. Colors indicate the magnitude of each pair-wise r2 measure (r2 = 1 is red to r2 = 0 is white).
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inbred experiments (Table 1). Smaller genotypic sample
size of the topcross experiment also contributes to
reduced power of detection of SNP associations. In
addition, genotypic correlations between inbred per se
resistance and hybrid performance in the two sets of
topcrosses were moderately low (rg ≤ 0.42).
Association mapping
Two SNPs significantly associated with ear rot resistance,
located on chromosomes 5 and 9, respectively, were iden-
tified in the full inbred association panel analysis, and five
additional SNPs (representing two different LD blocks)
were identified on chromosome 4 in the filtered inbred



Figure 5 Local gene annotations, SNP density, and LD r2 between each SNP within 0.5 Mbp of a SNP association. Positions of genes in
the filtered gene set are shown as green boxes on Y-axis, brief annotations of the genes are shown along with the number of SNPs scored in the gene
in parenthesis. SNPs are colored circles, their position on X-axis represent their LD r2 with respect to the SNP reported as significantly associated with
Fusarium ear rot. Note that the X-axis limits vary. The positions of significantly associated SNPs are indicated with horizontal lines. (A) Four significant
SNPs located in the 7.6 Mbp to 9.4 Mbp interval on chromosome 4 displayed with different colors. The color of circles indicates the significant SNP to
which the pairwise LD estimate refers. Two SNPs are located in an F-box gene so closely that their positions and LD values with other SNPs cannot be
distinguished at this scale; their LD estimates are shown in blue. (B) A 1-Mbp region around a significantly associated SNP at 124,930,006 bp on
chromosome 4. (C) A 1-Mbp region around a significantly associated SNP at 64,771,372 bp on chromosome 5. (D) A 1-Mbp region around a
significantly associated SNP at 19,532,465 bp on chromosome 9.
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panel analysis (Table 3). Although all SNPs localized to
genic regions, no obvious relationship exists between the
predicted functions of these genes and Fusarium ear rot
resistance; however the currently limited understanding of
pathways contributing to resistance restricts our ability to
predict what genes might be involved in resistance to this
complex disease.
These SNP associations are different than those previ-

ously reported by Zila et al. [22] based on analysis a subset
of 267 lines with a smaller and largely distinct set of SNPs.
The closest pair of associations between the two studies
were the SNPs on chromosome 5, which localized to the
same genomic bin; however, they are 34 Mbp distant from
each other physically, and 14.4 cM apart genetically [33].
The differences between the results presented here and
those reported by Zila et al. [22] may be due to sample
size and sampling of alleles and also due to differences
in the SNPs tested for association. None of the three
SNPs reported as associated with ear rot resistance by
Zila et al. [22], located on chromosomes 1 (63,540,590 bp),
5 (30,997,717 bp), and 9 (151,295,233 bp), were present in
the filtered GBS Romay et al. [26] marker set, and thus we
had no potential to detect them in this study. The nearest
neighboring filtered GBS SNP to each of the three SNPs re-
ported by Zila et al. [22] were located 82 bp (raw p = 0.44),
2902 bp (raw p = 0.74), and 299 bp away (raw p = 0.11),
respectively. However, the chromosome 9 SNP from the
Zila et al. [22] study located was present in the original
unfiltered Romay et al. [26] marker set, but a follow-up
analysis of this single marker in GAPIT using the full
inbred panel found it insignificant (raw P = 0.78). Finally,
only the three SNPs in the LD block from 7.5 – 9.2 Mb
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on Chromosome 4 in this analysis colocalized with any
QTL intervals identified in two biparental families by
Robertson-Hoyt et al. [15]. QTL positions for Fusarium ear
rot are not consistent among biparental families [15,16],
but this one QTL region on Chromosome 4 was excep-
tional in being identified by linkage in two families by
Robertson-Hoyt et al. [15] and by association in this study.
The variability in SNP association results among

different germplasm samples may be due in part to the
relatively small effect sizes of the potentially many
underlying causal variations, coupled with low frequency
of many variants and rapid decay of LD in diverse maize
germplasm. This could result in a situation where even
SNPs physically close to a causal variant are not likely to
be associated with enough phenotypic effect to permit
their robust and reliable detection through association
analysis in diverse populations. The high frequency of
detection of the chromosome 9 SNP (in nearly all ran-
dom subsamples of 80% of the full data set; Figure S1 in
Additional file 1; File S6 in Additional file 1), and the
consistency of its effect even in the filtered subsample
(where although it did not pass the FDR threshold of
0.2, its raw p-value was 2.15 × 10−5, Additional file 1:
Table S1), suggest that its association in very diverse
maize is reliable.
The five SNPs on chromosome 4 that were detected in

the filtered but not the complete inbred panel had
substantially higher allele effect estimates in the filtered
panel, but similar allele frequencies across panels (Table
S1 in Additional file 1). The difference in these results
may be due to a reduction in the influence of many line
means with only a single environment observation asso-
ciated with a lower heritability in the full inbred line
panel, and possibly greater precision of the resulting
allele effect estimates. In contrast, the two SNPs detected
in the full panel had consistent allele frequencies and
effect estimates across the two analyses, but simply did
not have sufficient statistical significance to stand out
among the hundreds of thousands of tests performed
(Table S1 in Additional file 1).
Although this study used four times the number of

SNP markers (200 k versus 47 k) and an association panel
almost six times as large as those used by Zila et al. [22],
the number of genic regions identified as significantly
associated with ear rot was about the same for the two
studies (four and three, respectively). Furthermore, the
proportion of phenotypic variance among entry means
explained on average by the K matrix across the two inbred
analyses and two topcross analyses was similar to results
reported by Zila et al. [22]. These results suggest that the
genetic architecture of resistance to Fusarium ear rot is
highly polygenic, with substantial genetic variability gener-
ated by a large number of effective variants, each with indi-
vidually small effects. Even with increased marker coverage
and a larger association panel, the results of this study high-
light the limitations of GWAS to precisely identify allele
variants with small effects on complex traits.
Marker coverage in this study is still insufficient to

provide SNPs in high LD with all segregating sequence
variants; Romay et al. [26] suggested that more than
700,000 SNPs would be required to tag almost all variant
regions in diverse maize. Examination of the annotated
genes around the significant associations reveals a number
of genes nearby that contain no SNPs in our data set
(Figure 5; Additional file 1: File S7), suggesting that we are
likely to miss some true associations. Thus, it is possible
that a further increase in marker density might reveal
more SNP associations and possibly some genetic variants
with larger effects. However, if the genetic architecture
really is highly polygenic, then the benefit of increasing
marker density on increasing the likelihood of tagging
additional causal variations by LD association is likely to
offset by the increasingly stringent significance thresholds
imposed by the larger number of association tests con-
ducted. The additional benefit of adding markers is also
somewhat limited if most of the markers have low minor
allele frequency (MAF), as is the case for the GBS markers
used here [26]. The SNP associations detected in this
study had minor allele frequencies ranging from 0.04 to
0.15 (missing phenotypic observations caused some
markers to have MAF < 0.05 in the GWAS), compared
to minor allele frequencies below 0.05 for more than
half of the complete GBS marker set. Besides having low
power of detection just due to reduced allele replication,
rare alleles tend to be highly associated with population
structure since they are usually limited to a single subpop-
ulation, thereby further reducing their potential for trait
association following correction for population structure.
In this study, we removed SNPs with MAF < 0.05 to
ensure reliable associations based on sufficient replication
across lines. If rare alleles are a major component of the
genetic architecture, however, we may have missed many
important associations by dropping SNPs with low allele
frequencies that would represent the best possible associa-
tions with rare functional alleles. Further studies would be
required to better understand the compromises between
improving reliability of results by removing rare SNPs
versus potentially missing important but rare functional
variants.
No significant SNPs were identified in either topcross

analysis, and examination of the empirical distribution
of P-values from the four analyses revealed a tendency
towards higher P-values in the two topcross analyses
compared to the two inbred panel analyses (Figures S2,
S3, S4, and S5 in Additional file 1). Heterosis plays a
significant part in Fusarium ear rot resistance, reducing
both genetic variance and the mean level of disease in F1
hybrids compared to inbred parents [34], which can
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reduce the ability to discriminate levels of disease resist-
ance in topcross hybrids. Further, within a set of hybrids
created from crosses to a common tester, each topcross
hybrid has an equal contribution of half of its alleles at all
loci from the common tester, which also reduces genetic
variation among the hybrids. The reduction of genetic
variance, along with the smaller sample sizes, reduced the
power of detection in hybrids relative to inbreds.

Candidate genes for Fusarium ear rot resistance
Genetic and biochemical pathways leading to resistance
to Fusarium ear rot are entirely unknown. Therefore,
GWAS provides a forward genetics approach to screen
efficiently many thousands of genes for association with
the phenotype without requiring assumptions about
what gene functions might be involved in resistance.
The SNP associations reported here may help suggest
and prioritize candidate genes for resistance to Fusarium
ear rot, although we emphasize that associations between
genetic variants and phenotypes do not imply that either
the SNP is a functional variant or even that the gene
containing the SNP is causally involved in resistance.
Independent studies, particularly focusing on the biology
of the gene functions in relation to infection of maize
seeds or other plant tissues, will be required to determine
if any of the genes identified here have a role in Fusarium
ear rot resistance. Conversely, we expect that GWAS was
unable to identify some true functional variants because
of the combined effects of small effect size, allele fre-
quency, limited LD in maize, and insufficient SNP density.
The genes containing significant SNP associations in

this study include a thioredoxin gene, an F-box gene, a
loricrin gene, a sucrose synthase, a CTD1 gene, and a
gene of unknown function. The common theme among
the likely functions of these genes is that they are very
generally important for a variety of cellular processes.
The thioredoxin protein family is involved in redox sig-
naling for nearly every plant cellular process [35]; F-box
genes are one of the most abundant gene superfamilies
in plants and their protein products are involved in
uniquitination and degradation [36]; loricrin is likely to
be involved in cell membrane function, sucrose synthase
is a key enzyme in plant metabolism, and CTD1 is in-
volved in DNA replication. Because of the generality and
importance of these gene classes, variation in their func-
tion is expected to affect a variety of cellular mechanisms,
complicating their possible functional relationship to
Fusarium ear rot resistance. Thus, our ignorance of the
pathways to resistance to Fusarium suggests that the
gene containing a SNP association but no known func-
tion should have similar priority for further research as
the other candidate genes.
In addition to the genes containing the associated

SNPs, there are some cases where LD appears to be
sufficiently extensive as to suggest other genes in the
region may be important. Around the associations reported
between 7.5 and 9.4 Mb on Chromosome 4, for example, it
is clear that SNPs in a number of genes across this nearly
2 Mb region are in high LD and will share the association
signal with the functional variant in this region. There
is a nearby cluster of defense-related and wound-induced
proteins around 9.6 to 9.7 Mb that might be considered as
putative candidates for further research. Two of those
genes had no SNPs in our data set, so we cannot test their
associations directly with these data. A few other genes
very close to some of significant association also lacked
SNPs for testing (Figure 5; Additonal file 1: File S7), and
these could not be ruled out as potential candidates. Out-
side of the region on the short of Chromosome 4, how-
ever, the LD decay appears so rapid that it seems unlikely
that the SNP associations are more than a few kb from a
functional variant. Finally, we also note that there are
some larger intergenic regions that lack SNPs (Figure 5),
and some sequence variation in these regions may impact
gene regulation important to ear rot resistance, but we are
likely to miss many such variants in our GWAS scan.

Conclusions
Zila et al. [22] suggested that GWAS could be a useful tool
for identifying specific disease resistance allele variants in
unadapted maize germplasm, thereby allowing maize
breeders to more effectively introgress specific allele vari-
ants into adapted germplasm. However, the small effects
of resistance loci identified in this study and Zila et al. [22]
suggest that introgressing a few specific resistance loci
may not have a large overall impact on resistance levels
within temperate breeding populations. Directly targeting
low frequency SNP alleles, particularly when they are
harbored in unadapted subpopulations like the tropical
and popcorn populations identified both here and by Zila
et al. [22], combined with genomic selection for the poly-
genic background for both the target trait and general
adaptation traits (which will favor selection of individuals
with higher proportions of adapted alleles), however,
may be a useful compromise to leverage the benefits of
both approaches to prediction and selection, although
the effectiveness of such schemes will depend in part
on the targeted SNPs having a consistent association with
a significant proportion of genotypic variation [37].

Methods
Germplasm and experimental design
In 2010, the NCRPIS collection of inbred lines [26] was
evaluated for disease resistance at the Central Crops
Research Station in Clayton, NC. The 2010 field experi-
ment consisted of 2572 inbred line entries and was
arranged in an augmented single replicate design. Ex-
perimental entries were divided into 18 sets of differing
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sizes based on maturity and field assignment, and sets
were then randomly subdivided into incomplete blocks
(where the maximum block size across sets was 23
plots). Each block within each set was augmented with
a B73 check plot in a random position, and five other
checks of varying maturities (IL14H, Ki11, P39, SA24, and
Tx303) were included once per set in a random position.
In 2011 and 2012, a novel association mapping panel

consisting of 771 diverse inbred line entries was evaluated
for disease resistance in Clayton, NC. Based on pheno-
typic information from the 2010 field experiment, a subset
of 681 inbred lines from the NCRPIS collection represent-
ing a range of both pedigrees and disease severity scores
was chosen for the panel. An additional 90 lines, mostly
modern public lines available from North Carolina State
University as well as a few lines developed by private
industry with recently expired Plant Variety Protection
Act (exPVPA) coverage that had become available through
the NCRPIS in the spring of 2011 were included. The
complete panel of 771 entries was divided into eight sets
based on maturity and replicated across the two years
using an augmented design. Within years, sets were ran-
domized within the field, and each set was blocked using
an α-lattice design [38]. Similar to the NCRPIS evaluation,
each block was augmented by a randomly assigned B73
check plot, and five other checks representing a range of
maturities and disease reactions (GE440, NC358, 794,
B47, and Tx303) were included once per set.
Topcross F1 hybrids representing a subset of inbred

lines from the 2011–2012 association panel were also
evaluated in Clayton, NC in 2011 and 2012. Due to seed
availability, topcross seed was limited to a sample of 405
inbred lines from the total 771 entries of the association
panel. F1 hybrid seed was generated by crossing inbred
lines to either the stiff stalk exPVPA inbred tester
PHB47 or the non-stiff stalk exPVPA inbred tester
PHZ51 (or both). Overall, 92 lines were crossed only to
B47, 162 lines were crossed only to PHZ51, and 151
lines were crossed to both testers, resulting in a total of
556 F1 hybrid entries in the topcross panel. In the 2011
and 2012 field experiments, topcross entries were classi-
fied by tester and maturity (early or late, for a total of four
tester ×maturity combinations), and each tester ×maturity
combination was randomly subdivided into three groups.
One random group of each tester ×maturity combination
was assigned to a set, for total of three sets (with four
groups per set). Similar to the inbred association panel,
sets were randomized within the field in each year, groups
were randomized within set, and each group was then
subdivided into incomplete blocks, but the topcross hy-
brids were grown in different field blocks than the inbreds.
Each block was augmented with a B73 × PHZ51 topcross
check plot in a random position, and two other hybrids
that exhibited relatively good resistance to Fusarium ear
rot in previous experiments (Pioneer 31G66 and NC478 ×
GE440) were included once per group. Lastly, one add-
itional check plot of P39 × PHZ51 or CML52 × PHZ51
was included once per group depending on maturity (early
or late, respectively).

Inoculation and phenotyping methods
The 2010 NCPRIS collection experiment and the 2011/
2012 inbred association panel experiments were inocu-
lated with local toxigenic Fusarium verticillioides isolates
using the toothpick method [12,22]. Approximately one
week after flowering, a toothpick containing dried F. verti-
cillioides conidia was inserted near the base of the primary
ear of five plants in each plot. At maturity, inoculated ears
were harvested and visually scored for Fusarium ear rot
symptoms. Scores were assigned to each ear in increments
of 5% from 0% to 100% diseased based on the percentage
of the ear displaying disease symptoms [19].
Topcross hybrid experiments in 2011 and 2012 were

inoculated with a suspension of F. verticillioides conidia
using the method described by Robertson et al. [19].
Approximately one week after flowering, 5 mL of a liquid
suspension containing 2 × 106 conidia mL−1 was injected
into the silk channel of the primary ear of five plants in
each plot. One week following the first inoculation, 5 mL
of the conidia suspension was injected near the base of
the primary ear of the same plants inoculated in the first
week. At maturity, inoculated ears were harvested and
visually scored using the same protocol as the inbred
disease experiments. Raw data from both the inbred and
topcross experiments are provided in supplemental data-
sets File S1 and File S2 in Additional file 1, respectively.

Genotypic data
The genotypic data used in this study consisted of
200,978 SNPs filtered from the GBS markers developed
by Romay et al. [26]. The original set of markers consisted
of 681,257 SNPs generated by the approach described by
Elshire et al. [27] and Glaubitz et al. [28] with missing data
imputed using the haplotype-based imputation method
described by Romay et al. [26]. SNP data are available at
http://panzea.org/db/gateway?file_id=Romay_etal_2013_
imputed_geno_data. In addition, the Romay et al. [26]
marker set was augmented with GBS data for the ninety in-
bred lines in the 2011/2012 association panel that were not
present in the NCPRIS collection in 2010. GBS data for the
aforementioned lines were obtained through the Institute
for Genomic Diversity at Cornell Unversity, Ithaca, NY
(http://www.igd.cornell.edu). Even after haplotype-based
imputation, some missing genotypes exist because the
imputation method of Romay et al. [26] does not impute
missing data when the observed scores within a test haplo-
type window do not sufficiently match the reference haplo-
type set. Therefore, the augmented SNP marker set was

http://panzea.org/db/gateway?file_id=Romay_etal_2013_imputed_geno_data
http://panzea.org/db/gateway?file_id=Romay_etal_2013_imputed_geno_data
http://www.igd.cornell.edu
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then filtered to include only those markers that had less
than 20% missing data (after haplotype-based imputation)
and a minor allele frequency (MAF) greater than 5%. Dupli-
cate samples present in the Romay et al. [26] data set were
also removed from the augmented data set; after this filter-
ing step, genotypic data were available for a total of 2480 in-
bred lines from across all years combined. The final
genotypic data set used in the GWAS analyses is provided
in supplemental dataset File S3 in Additional file 1.

Statistical analyses
Estimation of least square means
Fusarium ear rot data from the 2010 NCPRIS collection
experiment and the 2011/2012 inbred association panel
experiments were first analyzed separately to determine
the best fitting spatial model within each year, and then
the best models within each year were combined together
to form a single multi-environment trial analysis. Within
each year, a model was first fit with a fixed entry effect,
fixed first, second, third, and fourth order polynomial
trend effects in both the row and column directions [39],
and flowering time as a fixed linear covariate. Only those
fixed trend effects significant at P < 0.01 were chosen to re-
main in the model, and flowering time was also dropped
from the model if it was not significant at P < 0.05. Once
significant fixed effects were selected, random effects were
chosen using Akaike’s Information Criterion [40] to com-
pare four different models within each year: a model fitting
only the significant fixed effects; a model fitting significant
fixed effects and random set and block within set effects; a
model fitting fixed effects and an anisotropic correlated
error structure [39]; and a model fitting fixed effects,
random set and block within set effects, and an anisotropic
correlated error structure. All models were weighted by
the number of ears scored within each plot, and a natural
logarithmic transformation of raw ear rot scores was used
in all analyses due to an association between the magni-
tude of predicted ear rot values and residuals. All analyses
were performed using ASReml version 3 software [41].
Once the best model within each year was selected, a

single multi-environment trial analysis was conducted by
nesting the various best spatial models within year. Fixed
effects from the individual year analyses were checked
again for significance in the combined model, and those
which became insignificant in the combined model were
dropped. The combined model had the form:

Y ijkl ¼ μþ YEARi þ SET YEARð Þij
þ BLOCK SET � YEARð Þijk þ xr−ijklβrow
þ x2c−ijklβcol þ LINEl þ LINE � YEARil þ εijkl:

The effects in this model were a fixed entry (line) effect
(LINEl), random year (YEARi) and line × year effects, a
heterogeneous error variance structure within each year
εijkl (with unique variances in each year), and the various
spatial effects nested within their respective years: a ran-
dom set effect in 2010 (SET(YEAR)ij), a random block
within set effect in 2010 (BLOCK(SET × YEAR)ijk), a fixed
first order trend in the row direction in 2011 (βrow with
associated indicator variable, xr-ijkl, indexing the row pos-
ition in the field), and a fixed second order trend in the
column direction in 2011 (βcol with associated indicator
variable, x2c-ijkl, indexing the column position in the field).
Of the 2480 inbred lines with available genotypic data,
least squares means were estimated for 1687 lines from
the combined model (File S4 in Additional file 1). Means
were not estimable for the remaining lines due to missing
phenotypic observations in all years (typically due to ex-
treme time to maturity or poor seed production). Given
the imbalance in the number of experimental entries in
2010 versus 2011/2012, a second filtered least squares
mean data set was created that included only the 734
inbred lines for which we had data from all three years of
testing (File S4 in Additional file 1).
Ear rot data from the 2011/2012 topcross experiments

were analyzed using the same model selection protocol
as the inbred experiments. The only difference in model
selection in the topcross experiments was the testing of
random set, group within set, and block within group
effects in addition to other fixed and random effects
tested in the inbred models. The combined model for
the topcross experiments consisted of a fixed entry effect,
random year and entry × year effects, a heterogeneous
error variance structure within each year, and the signifi-
cant spatial and experimental design factors nested within
years: a fixed flowering time covariate in both years, an
anisotropic correlated error structure in the row direction
in both years, and a fixed first order trend in the row dir-
ection in 2011. From the combined model, least squares
means were estimated for all 556 topcross hybrid entries.
Means were then divided into two separate data sets based
on tester. The B47 topcross set contained 243 means, and
the PHZ51 topcross set contained 313 means (File S4 in
Additional file 1).
Heritability of Fusarium ear rot resistance was esti-

mated within the inbred association panel and topcross
hybrid experiments. The same models used to estimate
least square means were used to estimate heritability
except entries were treated as random effects to obtain
estimates of genetic variance. Entry mean-basis heritabil-
ity was estimated as

Ĥc ¼ 1−
σ2PPE
2 σ̂ 2

G

where σ2
PPE is the average prediction error variance for all

pairwise comparisons of entries and σ̂ 2
G is the estimated
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genetic variance [42]. Five entry mean-basis heritabilities
were estimated: across the full inbred association panel,
within the filtered inbred subset of 734 lines, across all
topcross hybrids, within the B47 topcrosses, and within
the PHZ51 topcrosses.
Genotypic correlations between inbred rot resistance

and hybrid rot resistance were estimated using individual
location least square means for inbred entries and their
corresponding topcross hybrids in a multivariate mixed
model in ASReml. The least squares means used to
calculate genetic correlations were only from years in
which both inbred entries and hybrids were evaluated
simultaneously (2011 and 2012). The model statement
in ASReml was specified as

Y INB;YB47;YPHZ51 ¼ Trait þ Trait:Year þ Trait:Entry

where YINB is the inbred per se rot score variate, YB47 is
the B47 topcross hybrid rot score variate, YPHZ51 is
PHZ51 topcross hybrid rot score variate, Trait fits the
mean for all three disease variates, Trait.Year fits a fixed
year effect for each disease variate, and Trait.Entry fits
the random genotype effect for each disease variate.
Each term in the model was associated with one vari-
ance component for each trait and three covariance
components between the three traits.

Association analyses
A genetic kinship matrix (K; File S5 in Additional file 1)
for all 2480 inbred lines based on observed allele fre-
quencies ([43]; method 1) was created using R software
version 3.0.1 [44]. A subset of 10,241 SNP markers from
the entire genotypic data set of 2480 inbred lines was
used to produce K. The subset of markers was created
by selecting markers from the complete marker set with
less than 1% missing data. Missing genotypes remaining
in the marker subset were imputed using a stochastic
approach described by Zapata-Valenzuela et al. [45]. This
method imputes a categorical genotype based on the fre-
quency of all genotypes observed at the same locus across
all individuals. This method imputes genotypic values
that are expected to maintain the genotypic frequencies
observed across the non-missing data. A principal com-
ponents analysis in R was used to obtain the first two
principal components of K in order to study the associ-
ation of population structure with mean Fusarium ear
rot scores.
The R package GAPIT version 3.35 [46] was used for

the genome-wide association analyses based on a com-
pressed mixed linear model [47]. Analyses were con-
ducted on four sets of means: the entire set of inbred
lines with phenotype data (1687 entries); the filtered set
of inbred lines tested in all years (734 entries); the B47
topcross set (243 entries); and the PHZ51 topcross set
(313 entries). In each set of means, missing values were
included to allow for the same kinship matrix to be used
across all analyses. The mixed linear model implemented
by GAPIT was

y ¼ Xβþ Zuþ e

where y is the vector of ear rot least squares means on
the natural-log scale, β is a vector of fixed effects includ-
ing SNP marker effects, u is a vector of random additive
genetic effects from background QTL for lines, X and Z
are design matrices, and e is a vector of random resid-
uals. The variance of the u vector was modeled as

Var uð Þ ¼ Kσ2a

where K is the 2480 × 2480 matrix of pairwise kinship
coefficients and σ2a is the estimated additive genetic variance
[47]. The full Kmatrix was used for all analyses.
Restricted maximum likelihood estimates of variance

components were obtained using the optimum compres-
sion level and population parameters previously determined
(P3D) options in GAPIT [47]. The positive false discovery
rate (FDR) across all 200,978 tests of association between
one SNP and ear rot resistance was estimated by GAPIT
using the Benjamini - Hochberg method [48]. The Mai-
zeGDB genome browser [49] was used to identify predicted
genes either containing or located within 0.5 Mb of signifi-
cant SNP hits from the GWAS. Annotations of predicted
genes were combined from the maize reference sequence
5b filtered gene set (available from MaizeGDB; http://ftp.
maizegdb.org/MaizeGDB/FTP/B73_RefGen_v2_dumps/)
and the 6a reference sequence available at Phytozome V10
(http://phytozome.jgi.doe.gov/pz/portal.html) [31]. SNP
positions were also converted to RefGen V3 positions
to permit use of the Ensembl variant effect predictor
tool (http://plants.ensembl.org/Zea_mays/Info/Index) to
determine the type of mutation caused by SNPs [50].
The 1687 lines of the full inbred panel with phenotype

data were grouped into one of five major maize subpop-
ulations (stiff stalk, non-stiff stalk, tropical, popcorn, and
sweet corn) based on pedigree information compiled
by Romay et al. ([26]; http://genomebiology.com/content/
supplementary/gb-2013-14-6-r55-s1.xlsx). Pedigree descrip-
tors of the additional North Carolina State University
lines added to the experiment in 2011 were obtained
from http://www.cropsci.ncsu.edu/maize/germplasm.html
and appended to the Romay et al. [26] data set. Lines of
mixed ancestry (“unclassified”) were dropped from the
analysis. Landraces were also dropped due to very small
sample size. The frequencies of alleles that reduced dis-
ease severity at significantly associated SNPs from the
GWAS were estimated within each subpopulation in R
software, and a Fisher’s exact test was used to test the

http://ftp.maizegdb.org/MaizeGDB/FTP/B73_RefGen_v2_dumps/
http://ftp.maizegdb.org/MaizeGDB/FTP/B73_RefGen_v2_dumps/
http://phytozome.jgi.doe.gov/pz/portal.html
http://plants.ensembl.org/Zea_mays/Info/Index
http://genomebiology.com/content/supplementary/gb-2013-14-6-r55-s1.xlsx
http://genomebiology.com/content/supplementary/gb-2013-14-6-r55-s1.xlsx
http://www.cropsci.ncsu.edu/maize/germplasm.html
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null hypothesis that the frequency of the allele confer-
ring increased disease resistance was the same across
all five subpopulations.

Data resampling analysis
To measure the robustness of GWAS associations de-
tected in the full inbred panel analysis, we generated 50
subsample data sets, each containing phenotypic data
from a random sample of about 80% of the inbred lines.
Subsample data sets were generated in 10 replications in
each replication the complete data set was partitioned into
five folds, each fold containing an approximately equally
sized random sample of lines. GWAS was conducted on
each of the 50 subsample data sets in the same manner as
for the full data set. The resample model inclusion prob-
ability (RMIP; [51]) for each SNP was computed as the
frequency across the 50 data subsamples with which the
SNP’s association test had a p-value less than 10−5.

Availability of supporting data
The data sets supporting the results of this article are
available at the Panzea.org repository: http://www.panzea.
org/db/gateway?file_id=Zila_etal_2014_data_and_supp.

Additional file

Additional file 1: Contains Figures S1 to S5, Table S1, and
descriptions of supporting data Files S1 to S7.
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