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Deletion of the low-molecular-weight glutenin
subunit allele Glu-A3a of wheat (Triticum
aestivum L.) significantly reduces dough strength
and breadmaking quality
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Abstract

Background: Low-molecular-weight glutenin subunits (LMW-GS), encoded by Glu-3 complex loci in hexaploid
wheat, play important roles in the processing quality of wheat flour. To date, the molecular characteristics and
effects on dough quality of individual Glu-3 alleles and their encoding proteins have been poorly studied. We used
a Glu-A3 deletion line of the Chinese Spring (CS-n) wheat variety to conduct the first comprehensive study on the
molecular characteristics and functional properties of the LMW-GS allele Glu-A3a.

Results: The Glu-A3a allele at the Glu-A3 locus in CS and its deletion in CS-n were identified and characterized
by proteome and molecular marker methods. The deletion of Glu-A3a had no significant influence on plant
morphological and yield traits, but significantly reduced the dough strength and breadmaking quality compared
to CS. The complete sequence of the Glu-A3a allele was cloned and characterized, which was found to encode a
B-subunit with longer repetitive domains and an increased number of α-helices. The Glu-A3a-encoded B-subunit
showed a higher expression level and accumulation rate during grain development. These characteristics of the
Glu-A3a allele could contribute to achieving superior gluten quality and demonstrate its potential application to
wheat quality improvement. Furthermore, an allele-specific polymerase chain reaction (AS-PCR) marker for the
Glu-A3a allele was developed and validated using different bread wheat cultivars, including near-isogenic lines
(NILs) and recombinant inbred lines (RILs), which could be used as an effective molecular marker for gluten quality
improvement through marker-assisted selection.

Conclusions: This work demonstrated that the LMW-GS allele Glu-A3a encodes a specific LMW-i type B-subunit
that significantly affects wheat dough strength and breadmaking quality. The Glu-A3a-encoded B-subunit has a long
repetitive domain and more α-helix structures as well as a higher expression level and accumulation rate during
grain development, which could facilitate the formation of wheat with a stronger dough structure and superior
breadmaking quality.
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Background
Wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD),
as a complex allohexaploid species, is one of the most
important crops widely cultivated across the world.
Wheat grains contain about 10 ? 15% proteins, and are
one of the richest protein sources in the human diet. It
is well known that wheat breadmaking quality is largely
determined by the seed storage proteins present in the
grain endosperm, which mainly consist of polymeric glu-
tenins and monomeric gliadins [1,2]. The polymeric glu-
tenins are further subdivided into high-molecular weight
glutenin subunits (HMW-GS) and low-molecular-weight
glutenin subunits (LMW-GS) according to their mobil-
ities on a sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE) gel, which determine their
dough elasticity, viscosity, and strength [2,3].
LMW-GS can be separated into three groups, the B,

C, and D subunits, based on their electrophoretic mobil-
ities on an SDS-PAGE gel. Genetic analysis showed that
these subunits are encoded by the Glu-A3, Glu-B3, and
Glu-D3 loci on the short arms of the chromosomes 1A,
1B, and 1D, respectively [4,5]. Some components were
also found to be encoded by genes on the short arms of
the group 6 and 7D chromosomes [6]. Based on their N-
terminal amino acid sequences, LMW-GS are classified
into three subclasses, LMW-m, LMW-s, and LMW-i types,
according to the first amino acid residue of the mature pro-
tein: methionine, serine, and isoleucine, respectively [6].
The LMW-s type subunit seems to be predominant [7,8].
Typically, the N-terminal amino acid sequence is SHIPGL-
in LMW-s type subunits, while LMW-m type subunits
have various N-terminal sequences such as METSHIGPL-,
METSRIPGL-, and METSCIPGL- [9-11]. The LMW-i type
subunit, first reported by Pitts et al. [12], lacks the N-
terminal domain and starts directly with the repetitive
region of ISQQQQ- after the signal peptide. Although the
typical N-terminal domain is absent, LMW-i type subunits
can be expressed normally, similar to LMW-m and LMW-
s, in the wheat endosperm [13,14]. Most LMW-GSs pos-
sess eight cysteine residues, although their positions vary in
the different types of subunits, which plays important roles
in the formation of intra- and inter-molecular disulfide
bonds in the gluten macropolymer [14].
Compared to the Glu-1 loci encoding HMW-GS, Glu-3

loci exhibit more extensive allelic variations that are
closely related to gluten quality. Early work by Gupta and
Shepherd [15] identified and named six alleles at Glu-A3,
nine alleles at Glu-B3, and five alleles at Glu-D3 loci in
common wheat. Recently, 14 unique LMW-GS genes in
the wheat cultivar Xiaoyan 54 were identified, four of
which were located at Glu-A3, three at Glu-B3, and seven
at Glu-D3, based on bacterial artificial chromosome
(BAC) library screening and proteomics analysis [16]. The
results from a set of Aroona LMW-GS near isogenic lines
(NILs) showed that the Glu-A3 locus has two m-type and
2? 4 i-type genes [17]. Analysis of the micro-core collec-
tions (MCC) of Chinese wheat germplasm identified more
than 15 LMW-GS genes from individual MCC accessions,
4? 6 of which were located at the Glu-A3 locus [18].
Since extensive allelic variations are present at Glu-3

loci, it is generally difficult to accurately determine the
functional properties of individual alleles in different
genotypes. To date, the main method used to investigate
the effects of different Glu-3 alleles on dough quality has
involved determination of their effects and ranks in
NILs. Earlier research on the durum wheat NILs Lira 42
and Lira 45 showed that the LMW-2 type subunit in
Lira 45 had significantly greater beneficial effects on glu-
ten strength and breadmaking quality than the LMW-1
subunit in Lira 42 [19]. In bread wheat, Glu-A3d pos-
sesses three active LMW-GS genes and produces the
highest Zeleny sedimentation value (ZSV) and Extenso-
graph maximum resistance (Rmax) [17]. Other reports
also showed that the Glu-A3d allele had a superior effect
on dough strength [20-22]. Recent work on a set of
Aroona NILs showed that Glu-A3b contributed to a lon-
ger midline peak time (MPT) and better raw white
Chinese noodle (RWCN) color [23]. Despite the large
number of studies performed on the functions of Glu-3
alleles, more comprehensive and in-depth analyses on
the structures and functions of the individual alleles at
Glu-3 loci are still lacking.
In the current work, we conducted the first comprehen-

sive investigation on the molecular characteristics and
functional properties of the LMW-GS allele Glu-A3a by
using a Glu-A3 deletion line in the Chinese Spring (CS)
wheat cultivar in combination with various proteomics
and molecular biology approaches. Our results demon-
strate that the deletion of Glu-A3a significantly reduces
wheat dough strength and breadmaking quality. In
addition, we demonstrated that Glu-A3a results in a
longer repetitive domain and more α-helices in the
encoded subunit, as well as a higher expression level
and accumulation rate during grain development, which
could help to improve the formation of a stronger
dough structure and superior quality.

Results
Identification and characterization of seed proteins in CS
and the Glu-A3 deletion line CS-n
A Glu-3 deletion line of CS was screened and developed
in our laboratory, and named CS-n. Compared to CS,
the morphological characteristics of plants, spikes, and
seeds, as well as the growth and development traits of
CS-n showed no significant differences (Additional file 1:
Figure S1, Additional file 2: Figure S2, and Additional file 3:
Table S1). The grain protein compositions of CS and CS-n
were identified by using various proteome approaches
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(Figure 1 and Additional file 4: Figure S3). The results indi-
cated that CS-n showed the same albumin and globulin
compositions as CS, while gliadins displayed minor diffe-
rences between CS-n and CS; only one gliadin band
obtained by acidic polyacrylamide gel electrophoresis
(A-PAGE) was absent in CS-n (Additional file 4: Figure S3).
Glutenin subunits identified by SDS-PAGE indicated that

HMW-GS in CS-n were the same as those in CS (N, 7 + 8,
2 + 12), and most LMW-GS bands were also identical, ex-
cept that one clear B-type LMW-GS encoded by Glu-A3a
was absent in CS-n (Figure 1a). Two-dimensional electro-
phoresis (2-DE) analysis revealed that Glu-A3a encodes
two proteins (spots 1 and 2 in Figure 1b), which were fur-
ther determined to be one LMW-i type subunit by liquid
chromatography-tandem mass spectrometry (LC-MS/MS),
as shown in Table 1. Reversed-phase ultra-performance
liquid chromatography (RP-UPLC) analysis further con-
firmed that Glu-A3a encodes two protein components
(peaks 1 and 2 in Figure 1c), which were eluted at 15.5 min
and 16 min, respectively. Both peaks accounted for 22.58%
of the total LMW-GS in CS.
To obtain the accurate molecular mass of the Glu-

A3a-encoded B-subunit, the expected protein band on
the SDS-PAGE gel indicated in Figure 1a was collected
and then analyzed by matrix-assisted laser desorption/
ionization time-of-flight mass spectrometry (MALDI-
TOF-MS). As shown in Additional file 5: Figure S4, the
Glu-A3a-encoded LMW-GS B-subunit was easily identi-
fied, and its molecular mass was determined to be
41,701.2 Da.

Confirmation of Glu-A3a deletion in CS-n with a
sequence-tagged site polymerase chain reaction
(STS-PCR) marker
To further confirm the deletion of the Glu-A3 locus in
CS-n, a pair of STS primers developed from the single
Figure 1 Identification of Glu-A3a in Chinese Spring (CS) and Glu-A3 d
well as LMW-GS and HMW-GS were indicated. b. 2-DE: two differentially ex
marked by ① and ②. c. RP-UPLC: two protein peaks encoded by Glu-A3a i
nucleotide polymorphisms (SNPs) in Glu-A3 allelic
variants [24] were used to amplify the Glu-A3a gene. As
shown in Figure 2, one specific PCR product of 529 bp
was amplified in CS, the CS-1Sl/1B substitution line, the
CS-1Sl addition line, and Aroona, which contain the
Glu-A3a allele, whereas no such fragments were ob-
tained in the other materials without Glu-A3a, such as
CS-n. The specific amplified 529-bp fragment was se-
quenced, and the sequence was the same as those from
the upstream 140 ? 395 bp of the Glu-A3a-coding
sequence shown in Additional file 6: Figure S5. Thus,
these results confirmed that the Glu-A3 locus was
deleted in CS-n.

Comparison of gluten quality properties between CS-n
and CS
Dough strength and breadmaking quality testing showed
that the main gluten quality parameters in CS-n were
significantly reduced compared to those of CS (Tables 2
and 3). In general, flour yield, water absorption, final vis-
cosity, and peak viscosity between CS-n and CS showed
no apparent differences. However, deletion of Glu-A3a in
CS-n increased the ash content by 15.39%. Ash content is
an important indicator of flour quality, which has a mod-
erately negative effect on noodle color [25]. In addition,
the deletion of Glu-A3a in CS-n resulted in a significant
decrease of the gluten index (4% reduction) and an in-
crease in the flour falling number (5.05% increase), as
shown in Table 1. The gluten index was shown to have a
positive relationship with strong dough property [26].
Farinograph analysis indicated that development time,

stability time, tolerance index, and farinograph quality
number in CS-n were significantly lower than those in
CS (Table 2). These properties led to a decrease in loaf
volume of CS-n from 760 to 735 cm3 (Table 2 and Figure 3).
Bread texture analysis showed that the hardness and
eletion line CS-n. a. SDS-PAGE: the Glu-A3a encoded B-subunit as
pressed protein spots between CS and CS-n encoded by Glu-A3a were
n CS as well as LMW-GS and HMW-GS were indicated.



Table 1 LC-MS/MS analyses of peptides obtained after
tryptic digestion of the isolated spot and bands

Protein
origin

Identified sequences Unique
PepCount

Start Stop

Prokaryotic
expression

VFLQQQCIPVAM 1735.0381 194 205

VFLQQQCIPVAMQR 1719.0387 194 207

SQMLQQSICHVMQQQCCQQLR 2693.0386 212 232

SDS-PAGE VFLQQQCIPVAMQR 1735.0381 194 205

2-DE spots MKTFLVFALLALAAA 1735.9338 1 15

VFLQQQCIPVAMQR 1733.9270 214 227

QIPEQSRHESIR 1479.7839 253 264

QIPEQSR 857.4691 253 259

TLPTMCSVNVPLYETTTSVPLGVGI 2649.4285 347 371
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resilience of bread in CS were superior to those in CS-
n. Further cell size analysis of the bread demonstrated
that the quality in CS-n was significantly reduced
(Table 3). For example, wrapper length, slice brightness,
and wall thickness of CS-n bread slices were much
lower than those of CS. The cell diameter and elong-
ation in CS-n were also reduced as a result of Glu-A3a
deletion.

Molecular characteristics of the LMW-GS allele Glu-A3a
To further understand the molecular mechanisms
underlying the significant effects of Glu-A3a on gluten
and breadmaking quality, the complete coding sequence
of Glu-A3a was amplified and sequenced by allelic-
specific (AS) PCR. Based on the previously characterized
Glu-A3 genes, a pair of specific primers (A3-F and A3-
R) for the Glu-A3 locus was designed and used to amp-
lify the Glu-A3a allele from CS. As shown in Additional
file 7: Figure S6, a single band of approximately 1100 bp
was obtained from CS, whereas no product was ampli-
fied from CS-n. Since most of the complete coding se-
quences of LMW-GS genes vary in length between 909
and 1167 bp [6,27-29], the size of the amplified band
corresponded well to the known LMW-GS gene sizes.
Figure 2 Identification of Glu-A3a by STS-PCR markers. 1. CS
(Glu-A3a), 2. CS-n; 3. CS-1Sl/1B; 4. CS 1Sl addition line; 5. Aroona-A3a
(Glu-A3a); 6. Aroona-A3b (Glu-A3b); 7. Aroona (Glu-A3c); 8. Aroona-A3d
(Glu-A3d); 9. Aroona-A3e (Glu-A3e); 10. Aroona-A3f (Glu-A3f); 11. Glenlea
(Glu-A3g); 12. CB037A. M. molecular mass marker: 2000 bp, 1500 bp,
1000 bp and 500 bp. Glu-A3a fragment with 529 bp was arrowed.
After sequencing of the amplified product, a complete
open reading frame of 1134 bp was obtained. Se-
quence alignment showed that the cloned gene had no
internal stop codons and contained typical structural
features of LMW-GS, and therefore was named as
Glu-A3a (Additional file 7: Figure S6). After searching
the GenBank database, we found that the cloned Glu-A3a
gene had the same sequence as GluA3-11 from cultivar
Aroona-A3a (GenBank accession number FJ549928). The
deduced amino acid sequence of Glu-A3a showed the
presence of an isoleucine as the first amino acid residue in
the N-terminal of the mature protein, indicating that it
belongs to the LMW-i type subunit [6].
The complete coding sequence of Glu-A3a was

aligned with 15 other known LMW-i type genes to de-
tect SNP and insertion/deletion (InDel) variations, and
the results are listed in Table 4. These LMW-i genes
originated from different Triticum species, including T.
aestivum and T. dicoccoides. Six SNPs at different posi-
tions, resulting from G-A or C-T transitions and two de-
letions at nucleotides 81 and 854, were identified in Glu-
A3a. Six SNPs could produce amino acid substitutions,
and thus are considered nonsynonymous SNPs.
The deduced amino acid sequence of Glu-A3a had

376 amino acid residues with a predicted molecular
mass of 41,346.1 Da, corresponding well to that deter-
mined by MALDI-TOF-MS (41,701.2 Da). Multiple
alignment of the deduced amino acid sequences of Glu-
A3a with the other 14 LMW-i type subunits (Figure 4)
showed that all have conserved signal peptides and four
domains in the mature protein sequences, including a
repetitive domain, cysteine-rich region, glutamine-rich
region, and C-terminal conservative region, as reported
by Cassidy et al. [27]. Similar to other LMW-i type sub-
units, the Glu-A3a-encoded subunit contained eight cyst-
eine residues at relatively conserved positions (Additional
file 8: Table S2). It is speculated that the first and seventh
cysteines of the LMW-GS form the inter-molecular disul-
fide bond, while the rest form three intra-molecular disul-
fide bonds [30,31].
The number of repeats present in the repetitive do-

main is mainly responsible for the length variation and
the general hydrophilic character of LMW-GS [30]. The
Glu-A3a-encoded subunit contained the typical repeat
motif of LMW-GS: P1 ? 2FP/SQ2 ? 6. Our results showed
that Glu-A3a has a rather large and regular repeated
sequence domain that includes a high proportion of glu-
tamine residues (about 46%) in the repeats (consensus
sequence PPFSQQQQ), and two polyglutamine stretches
with 11 and 12 continuous glutamine residues in the
repetitive and C-terminal domains, respectively. Repeat
motif numbers in LMW-i subunits are much higher than
those in the LMW-m and LMW-s subunits, ranking
them the longest protein subunits among all Glu-3 loci.



Table 2 Quality parameters of dough and bread slices in CS and CS-n

Materials Flour yield (%) Ash (%) Wet glutenin (%) Total protein (%) Water absorption Development
time (min)

Stability (min)

CS 56.26 0.52 ? 0.01** 50.8 ? 0.5* 17.74 56 ? 0.1 4.7 ? 0.8** 11.4 ? 0.4*

CS-n 55.14 0.61 ? 0.01 52.1 17.68 56.4 ? 0.1 2.9 ? 0.4 9.3 ? 0.9

Materials Tolerance
index (FU)

Farinograph
quality number

LV (cm3) P/L of Alveograph NG
Consistograph

Hardness (Force1) Resilience sec
(Area F-T)

Attenuation
ratio (2:3)

CS 121 ? 5* 509 ? 5 770 ? 5** 0.25 ? 0.005** 628.4 ? 6.9* 7438.5 ? 326 64.02 ? 0.1

CS-n 95 ? 12 486 ? 11 735 ? 2.5 0.35 ? 0 586.87 ? 10.3 7093.6 ? 43 63.66 ? 0.6

**significant difference (P < 0.001), *means difference (P < 0.05).
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Secondary structure and function prediction of the
Glu-A3a-encoded protein
The secondary structures of the Glu-A3a-encoded protein
(FJ549928) and five other LMW-i type subunits from bread
wheat (AY724436, AY724437, AY263369, AY831866, and
AY542896) were predicted by the PSIPRED server, as
shown in Table 5. The results showed that the α-helices
and β-strands were dispersed in the normal configuration
in C-terminal I and were highly conserved in C-terminal
III. FJ549928 contained seven α-helices, mainly located at
the C-terminal, and one β-strand dispersed in the con-
served C-terminal region. Thus, the number of α-helices in
FJ549928 was much higher than that of the other five
subunits, which contain only 0? 3 α-helices. For example,
the LMW-i type glutenin subunit AY542896, assigned to
the 1A chromosome, only has one α-helix, which was con-
firmed to co-migrate with the LMW-50 subunit that plays
an important role in determining good quality characteris-
tics of Glenlea [13] and the XYGluD3-LMWGS1 subunit
(AY263369), with only 3 α-helices, is also considered to
have a positive effect on dough quality [37].

Phylogenetic analysis of Glu-A3a and other LMW-GS
genes
A homology tree was constructed to reveal the phylogen-
etic relationships among 25 LMW-GS genes at Glu-3 loci
from different species and genomes through nucleotide
sequence alignment of their coding regions using MEGA5
software (Figure 5). These sequences comprised 21 LMW-
GS genes from different genomes of Triticum diploid,
tetraploid, and hexaploid species. The phylogenetic tree
displayed two clear branches, which corresponded well to
distinguishing the LMW-i type from the LMW-m and
LMW-s type subunits. This demonstrated that LMW-i
Table 3 Comparison of C-cell parameters of bread slices betw

Materials Wrapper
length

Slice
brightness

Cell
contrast

Number
of cells

Cell
density

CS 1910 ? 4** 140.5 ? 1.8 0.747 ? 0.006 3163 ? 23 0.012178 ?
0.000138*

CS-n 1857 ? 7 137 ? 0.4 0.747 ? 0.001 3086 ? 45 0.012287 ?
0.000128

**Highly significant difference (P < 0.001), *Significant difference (P < 0.05).
type genes have undergone greater divergence during
evolution compared to LMW-s and LMW-m genes, as
previously reported [38,39]. Sine LMW-m and LMW-s
type subunit genes generally show higher consistency, they
showed close phylogenetic evolutionary relationships.
Glu-A3a showed a closer relationship with other LMW-i
type genes from common wheat. All of the LMW-i type
subunit genes from common wheat and related species
shared higher sequence identity, indicating their high
evolutionary conservation.

Heterologous expression of Glu-A3a in Escherichia coli
and determination of the corresponding native protein
encoded by Glu-A3a
The Glu-A3a-coding region without signal peptides was
expressed in E. coli. The expressed fusion protein was
separated by both SDS-PAGE and 2-DE, and was further
identified by LC-MS/MS. SDS-PAGE identification
(Figure 6a) indicated that the relative mobility of the
expressed protein was the same as that of the native
Glu-A3a-encoded subunit of CS, confirming that Glu-A3a
without the N-terminus can be expressed normally, simi-
lar to other LMW-i type genes [13]. Furthermore, 2-DE
separation of the expressed protein (Figure 6b) demon-
strated a similar pattern as that shown in Figure 1b. LC-
MS/MS identification also confirmed that the expressed
protein was the Glu-A3a-encoded subunit present in CS,
as revealed by the previous tandem MS results (Table 1).
To verify the authenticity of the cloned sequence, LC-

MS/MS was conducted by using the native Glu-A3a
subunit digested by trypsin. We compared the results of
LC-MS/MS of the SDS-PAGE band of CS, the hetero-
logous protein, 2-DE spots, and the amino acid sequence
of the Glu-A3a gene. This gives a coverage rate of 18.26%
een CS and CS-n

Wall
thickness

Cell
diameter

Coarse/Fine
clustering

Average cell
elongation

Net cell
elongation

3.2 ? 0.03* 15.51 ? 0.66* 0.102 ? 0.018 1.78 ? 0.01 * 1.33 ? 0.03 *

3.07 ? 0.04 14.27 ? 0.06 0.077 ? 0.001 1.7 ? 0.02 1.23 ? 0.04



Figure 3 The loaves baking pictures and C-cell pictures of CS, CS-n. (a) The loaves baking pictures of CS and CS-n. (b) the C-cell pictures of
CS and CS-n.
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(65/356 amino acids of the mature polypeptide). These re-
sults revealed consistency in the peptide sequences among
the samples, confirming the correspondence of the Glu-
A3a gene and its native encoded subunit.

Dynamic expression profiles of the Glu-A3a gene and its
encoded protein during grain development
The dynamic transcription expression profiles of the
Glu-A3a gene at 5, 11, 14, 17, 20, 23, 26, and 29 days
post anthesis (DPA) of grain development were detected
by quantitative real-time (qRT)-PCR in both CS and CS-
n. Real-time melting temperature curves for the gene
Table 4 The positions of SNPs and InDels identified between

LMW-GS 81-103

FJ594428 -

Fifteen other LMW-i genes CACCACCATTTTCGCAGCAACAACA

*Horizontal dashes indicated the deletions of nucleotide. Other 15 LMW-i genes inc
AY831865, AY831866, DQ217661, EU189087, FJ549931, FJ549932, FJ549933, FJ5499
showed a single peak. qRT-PCR efficiency was deter-
mined by five serial five-fold dilutions of cDNA, and the
standard curve confirmed high RT-PCR efficiency rates
(Additional file 9: Figure S7). As shown in Figure 7a, the
Glu-A3a gene displayed an up-down expression pattern
during grain development of CS, with peak expression
occurring at 14 DPA. However, Glu-A3a mRNA could
not be detected in CS-n, further confirming the dele-
tion of the Glu-A3 locus. SDS-PAGE analysis showed
that the Glu-A3a-encoded B-subunit exhibited a grad-
ual up-regulated expression pattern, and it began to rap-
idly accumulate after 11 DPA (Figure 7b). At 5 DPA, no
Glu-A3 and other LMW-i type gene*

167 198 377 421 436 441 854

T G T T C A -

C A C C/- T/- - G

luded: 453157, AY453158, AY453159, AY453160, AY542896, AY831863,
34, JQ417918.



Figure 4 Multiple alignment of the deduced amino acid sequences of Glu-A3a and other 14 LMW-i glutenin genes. These genes
including GenBank number AB062877 [14], AY542896 [13], DQ307386 [32], EU189087 [33], EU594335 and EU594336 [34], FJ549929, FJ549931,
FJ549932 and FJ449933 [24], FJ876819 (Han, 2009), GQ870245, GQ870249 [35] and GU942731 [36]. Signal represents signal peptide (I), repetitive
domain (II) and three sub-regions of C-terminal domain were indicated, respectively. The first amino acid residue of the mature proteins and
cysteine residues were highlighted by black box and red shading, respectively. Deletions were indicated by dashes. Polyglutamine stretches were
indicated by broken line frames.
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LWM-GS genes could be detected, and both LMW-GS
and HMW-GS showed trace expression levels. After 14
DPA, the B-subunit as well as other LMW-GS and
HMW-GS genes displayed significant up-regulation, and
peak expression occurred at 17 DPA (Figure 7b).

Development and validation of an SNP-based molecular
marker for Glu-A3a
An AS-PCR marker was developed based on the SNPs de-
tected in Glu-A3 genes. A pair of specific primers for Glu-
A3a (Glu-A3a F: GCAAAGAAGGAAAAGA GGTGG, R:
GGTTGTTGTTGTTGCTGCA) was designed and tested
in different genotypes and hybrid generations with diffe-
rent Glu-A3 alleles. The materials with different Glu-A3
alleles included 48 bread wheat cultivars, the CS-1Sl/1B
substitution line, and the CS-1Sl addition line, as well as
seven Aroona NILs and four recombinant inbred lines
(RILs) derived from a cross between the CS substitution
line CS-1Sl/1B with Glu-A3a and the bread wheat cultivar
CB037A with Glu-A3c (Additional file 10: Table S3). The
Glu-A3 allele compositions of all materials used were
identified by SDS-PAGE (Figure 8a). The PCR results



Table 5 The secondary structure prediction of the six deduced LMW-GS

LMW-GS Structure
motifs

Contents
(%)

Total Dispersal in every region

N-terminal domain Repetitive domain C-ter domain I C-ter domain II C-ter domain III

AY724436 α-helix - - - - - - -

β-strand 1.32 2 - - - - 2

Y724437 α-helix 10.51 3 - - 2 - 1

β-strand 0.68 1 - - - - 1

AY263369 α-helix 11.6 3 - - 2 - 1

β-strand 1.4 2 - - 1 - 1

AY831866 α-helix 5.98 3 - - 2 - 1

β-strand 1.09 2 - - - 1 1

AY542896 α-helix 2.72 1 - - - - 1

β-strand 1.09 2 - - 1 - 1

Glu-A3a α-helix 15.87 7 - 1 5 1 -

β-strand 0.79 1 - - - - 1

Zhen et al. BMC Plant Biology 2014, 14:367 Page 8 of 17
http://www.biomedcentral.com/1471-2229/14/367
showed that one specific PCR product of 507 bp was amp-
lified in all cultivars with Glu-A3a (Figure 8b). To validate
the effectiveness of the STS marker, seven NILs and four
RILs with different Glu-A3 allele compositions were used
for PCR amplification. The results showed that the 507-bp
Figure 5 Homology tree constructed based on the coding regions of
and AB062878 [14], AB262661 (Takeuchi T, 2006), AB119007 and AB164415
DQ307387 and DQ345449 [39], DQ457416 [43], EU305555 [44], EU594338 [3
[24]. The suffixes of GenBank accession numbers indicated the different typ
fragment could be specifically amplified in the lines with
the Glu-A3a allele, whereas no any amplification products
were obtained from the lines with other Glu-A3 alleles,
including CS-n without the Glu-A3 locus. These results
confirmed that the developed AS-PCR marker could be
21 LMW-GS genes. 21 LMW-GS genes named AB062876, AB062877
[40], AY453158 and AY453159 [41], AY585355 [42], DQ307389,
4], EU189087 and EU189088 [33], FJ549928, FJ549932 and FJ549934
es of the genes. Glu-A3a gene was circled by frame.



Figure 6 Identification of heterologous expressed protein of Glu-A3a in E. coli by SDS-PAGE (a) and 2-DE (b). (a) The SDS-PAGE of the
heterologous express protein of Glu-A3a. M is the protein marker (94 kD, 60 kD, 45 kD, 27 kD, 18 kD), CS is the gluten of CS, Glu-A3a is the
heterologous express protein, PET-30a is the vector, CS-n is the gluten of it. The Glu-A3a expressed protein was indicated by red arrow. (b) The
2-DE picture of the heterologous express protein and the vector PET-30a, the difference was marked by red circle.
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used as an effective tool for rapidly screening the Glu-A3a
allele in wheat quality improvement strategies through
molecular marker-assisted selection.

Discussion
In the present study, we performed a comprehensive
survey on the molecular characteristics of Glu-A3a from
a Glu-A3a-deletion line (CS-n), using proteomic and
molecular biological methods. Here, we focus our dis-
cussion on the allelic variations at Glu-A3 loci, the struc-
ture and expression features of Glu-A3a, and molecular
marker discovery and its potential application in wheat
quality improvement.
Allelic variations at Glu-3 loci and their effects on gluten
quality
LMW-GS account for approximately 60% of glutenin
proteins in mature seeds and play important roles in the
formation of glutenin macropolymer and gluten quality
[1,45], particularly for dough extensibility and strength
[3-6,17]. LMW-GS genes belong to a multiple gene fam-
ily and are found in multiple copies in Triticum aesti-
vum; the copy number in hexaploid bread wheat was
estimated to vary from 10 ? 15 [46] to 35 ? 40 [27,47]. A
recent study based on BAC library screening and proteo-
mics analysis showed that Glu-A3, Glu-B3, and Glu-D3
in the Chinese bread wheat cultivar Xiaoyan 54 contain



Figure 7 Expression patterns of Glu-A3a gene and its encoding protein. (a) Expression patterns of Glu-A3a gene during grain development
(5, 11, 14, 17, 20, 23, 26, 29 DPA) of CS and CS-n by qRT-PCR. (b) The SDS-PAGE of the subunit Glu-A3a of 5, 11, 17, 23, 29 DPA. The Glu-A3a
encoded subunit in CS was arrowed.
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4, 3, and 7 genes, respectively [16]. In addition, by using
the LMW-GS gene marker system, at least 15 LMW-GS
genes were identified in Aroona NILs [17].
Glu-A3 and Glu-B3 alleles are known to play a major

role in determining differences in processing qualities
among the three Glu-3 loci, while Glu-D3 alleles play
minor roles in determining quality variation in bread
wheat [17]. In particular, the Glu-A3 locus was consid-
ered to have the biggest contribution to quality among
all LMW-GS loci, in which Glu-A3f was found to have a
strong positive effect on end-use quality [48]. In Australian
wheat cultivars, LMW-GS provided better predictions of
Rmax than HMW-GS [45]. The effects of different Glu-
3 alleles on Rmax showed the following ranking: Glu-
A3b >Glu-A3d >Glu-A3e >Glu-A3c, Glu-B3i >Glu-B3b =
Glu-B3a >Glu-B3e =Glu-B3f =Glu-B3g =Glu-B3h >Glu-
B3c, and Glu-D3e >Glu-D3b >Glu-D3a >Glu-D3c >Glu-
D3d [17]. However, no studies of the effect of the Glu-A3a
allele on gluten quality have been reported so far. In the
present work, we found that the deletion of Glu-A3a
significantly reduced dough strength and breadmaking
quality, including most of the mixing and bread quality
parameters (Tables 2 and 3). This indicates that Glu-A3a
plays important roles in conferring high gluten quality to
wheat.

Molecular basis of the relationship between Glu-A3a and
gluten quality
The molecular structures of LMW-GS proteins play im-
portant roles in determining the dough strength and glu-
ten quality; in particular, the distribution of cysteine
residues could lead to functional protein differences [6].
The first and the seventh cysteines form the inter-
molecular disulfide bond, while the remaining cysteines
form three intra-molecular disulfide bonds [11,30,31].
Thus, the number and position of cysteines are import-
ant to the formation of the secondary protein structure
and, consequently, dough quality. The presence of a long
repetitive domain is also considered to have a positive
influence on wheat flour quality [30,49]. A repeated



Figure 8 Development and validation of SNP-based molecular marker for Glu-A3a. (a). SDS-PAGE of glutenin subunits: RIL (1? 13), CS,
CB037A, CS-1Sl/1B (14) and Chinese Spring S genome addition line (15). b. PCR amplification from bread wheat cultivars with different Glu-A3
allele compositions, RIL (1? 13), CS-1Sl/1B (14), Chinese Spring S genome addition line (15), CS (16) and Aroona-A3a (17). 18? 25 are Aroona-A3b
(Glu-A3b), Aroona (Glu-A3c), Aroona-A3d (Glu-A3d), Aroona-A3e (Glu-A3e), Aroona-A3f (Glu-A3f), Glenlea (Glu-A3g), CB037A and CS-n, respectively.
M is marker (5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 750 bp and 500 bp).
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sequence domain could be helpful in increasing the vis-
cosity and elasticity of the dough through increasing the
inter-molecular interactions among the large number of
glutamine side chains, which are both good hydrogen
bond donors and acceptors [49-51]. According to Masci
et al. [30], all the predicted α-helices in the 42 K LMW-
GS seem to be located near the intra-molecular disulfide
bonds. They also speculated that helix-helix interactions
are involved in guiding the formation of the intra-
molecular disulfide bonds. Therefore, a higher α-helix
content may contribute to better quality of the dough
[52]. The β-strands are generally considered to endow
the protein with high elasticity and to improve the
capability to resist distortion [38].
LMW-i type subunits contain eight highly conserved

cysteine residues in the C-terminal domain (Table 5),
which differ from the LMW-m and LMW-s subunits
that have a cysteine residue in the N-terminus or in the
repetitive domain [39]. Therefore, the secondary struc-
tures of LMW-i subunits are expected to be quite differ-
ent from those of the LMW-m and LMW-s subunits.
Previous work on LMW-GS AY542896 and AY263369 in-
dicated that they have positive effects on quality properties
[13,37]. In the present study, comparative analysis with
the secondary structures of AY542896 and AY263369
showed that the Glu-A3a-encoded subunit had more α-
helices (Table 4). The secondary structure is the founda-
tion for a highly complex spatial conformation and is
composed of structural motifs, including α-helices, β-
strands, and random coils. The higher α-helix number in
the Glu-A3a-encoded subunit could guide the formation
of the intra-molecular disulfide bonds and contribute to
superior dough strength and breadmaking quality.
The sizes of most of the cloned LMW-GS genes range

from 900 to 1000 bp, and the gene LMW-TD22 with
1167 bp is the longest complete gene among the cloned
LMW-i genes analyzed to date [29]. The presence of a
long repetitive domain is considered to have a positive
influence on wheat flour quality because it can form
more β-turns in the structure, thereby conferring elasti-
city to the protein molecule [30,52]. The molecular
structure of the deduced LMW-TD22 subunit indicated
a long repetitive domain of 21 repeat motifs (consensus
sequence P1 ? 2FP/SQ2 ? 6). In the present study, the Glu-
A3a-encoded subunit was also found to have a long
repeated sequence domain and a high proportion of
glutamine residues (about 46%), which could improve
the conformation of superior gluten structure and
breadmaking quality.

Glu-A3a expression and LMW-GS synthesis
It is well known that the expression levels as well as
accumulation patterns of storage proteins are closely
associated with gluten quality properties [53-55]. For
example, the over-expressed HMW-GS 1Bx7OE has posi-
tive effects on dough strength [53,56]. In addition, the
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accumulation rates vary between different groups of pro-
teins, suggesting differential regulation of protein biosyn-
thesis and different quality performance. In particular, the
wheat biotype with superior HMW-GS 5 + 10 subunits ac-
cumulated larger polymers more quickly than the biotype
with poor allelic subunits 2 + 12 [54].
The B-subunits of LMW-GS are the most abundant and

have the greatest impact on wheat processing qualities [6].
In this work, RP-UPLC analysis revealed a higher expres-
sion level and greater proportion of Glu-A3a-encoded B-
subunits, accounting for more than 22% of the total
LMW-GS in CS (Figure 1c), indicating its major contribu-
tion to LMW-GS synthesis and its important roles in
determining dough quality. A recent study also found that
higher numbers of active LMW-GS genes at the Glu-A3
and Glu-D3 loci in Xiaoyan 54 tended to produce greater
ZSVs, an important indicator of breadmaking quality [16].
Similarly, the decrease in the number of active LMW-GS
genes in CS-n due to deletion of the Glu-A3 locus likely
contributed to the significant reduction in dough strength
and breadmaking quality (Tables 2 and 3).
Wheat glutenin proteins generally display an up-regulated

expression pattern during grain development (Figure 7a).
Coordinated accumulation of transcripts from HMW-GS
and LMW-GS genes, as well as α-, γ-, and ω-gliadin genes,
occurs early in grain development [54,57]. LMW-GS,
HMW-GS, and ω-gliadins can be detected by gel electro-
phoresis as early as 7 DPA [54], and 10? 18 DPA represents
the key stage of storage protein synthesis [58]. In the
present study, Glu-A3a transcripts demonstrated an up-
down expression pattern during grain development, and
the highest expression level occurred at 14 DPA (Figure 7a),
similar to a previous report [59]. SDS-PAGE analysis
revealed that the Glu-A3a-encoded B-subunit displayed an
up-regulated expression pattern and showed rapid synthesis
and accumulation at 11? 17 DPA (Figure 7b), which is also
generally in agreement with a previous report [55]. Thus,
the Glu-A3a-encoded B-subunit has a higher accumulation
rate during grain development similar to HMW-GS 5 + 10
[54], which could improve the conformation of the regular
gluten structure. Some important genes related to storage
protein folding and synthesis, such as protein disulfide
isomerase (PDI) and binding protein (BiP) genes, generally
have higher expression levels at the early grain develop-
mental stages. For instance, the PDI genes PDIL1-1 and
PDIL2-1, which are involved in disulfide bond formation,
displayed a peak expression level in the early stages (about
10? 15 DPA) of grain development [58]. The higher accu-
mulation rate of the Glu-A3a-encoded B-subunit was
accompanied by higher expression levels of the genes
involved in storage protein synthesis and assembly during
early grain development, suggesting that this subunit
could improve the conformation of gluten macropolymers
(GMP) and result in superior dough quality.
Potential application of Glu-A3a in wheat quality
improvement through molecular marker-assisted
selection
Characterization of the allelic variations of LMW-GS is
important for improvement of wheat-processing quality.
Some allelic variations of LMW-GS have greater positive
effects on dough properties than others [3,45,60].
Marker-assisted selection is an effective supplement to
conventional breeding practices. For LMW-GS, because
of the low resolution of traditional SDS-PAGE and the
tedious operation procedures involved in 2-DE, develop-
ment of different markers is important for the study and
application of target subunits.
Recently, with increasing numbers of LMW-GS alleles

being cloned and sequenced from common wheat, dif-
ferent molecular markers have been developed to rapidly
screen and select desirable Glu-3 alleles. Zhang et al.
[41] developed a set of markers that can be used to
discriminate the alleles Glu-A3a, b, c, d, e, f, and g. Long
et al. [61] classified 69 LMW-GS genes registered in
GenBank into nine groups and established nine group-
specific primer sets to identify each group. Ikeda et al.
[62] developed 12 specific PCR markers to distinguish
12 groups of LMW-GS genes in the wheat cultivar
Norin 61. Ten allele-specific STS markers for Glu-D3
were developed by Zhao et al. [43,63,64]. Wang et al.
[35] designed 10 allele-specific PCR markers for the
Glu-B3 locus based on SNPs present in the sequences of
different allelic variants. Wang et al. [24] reported an
allele-specific marker for Glu-A3b, which was not
reported by Zhang et al. [41].
In the present study, we developed a new allele-specific

PCR marker that can effectively discriminate Glu-A3a
from other Glu-A3 alleles, which was validated using dif-
ferent cultivars, including RILs and NILs (Figure 8b). This
Glu-A3a allele-specific marker can be used in marker-
assisted breeding strategies aimed at the improvement of
wheat quality. With help of this marker, it will be very
convenient and effective for breeders to select this super-
ior gene in early hybrid generations of a wheat quality pro-
gram. However, this marker can only identify one specific
gene in different generations and materials one time. The
multiplex PCR systems showed to be more rapid and eco-
nomic in identifying different desirable genes [24]. Thus,
to improve the selection efficiency, it is needed to further
develop multiplex PCR markers that can rapidly identify
different desirable genes, including Glu-A3a and other
quality-related genes.

Conclusions
In the present study, we carried out the first molecular
characterization and functional analysis of the properties
of the Glu-A3a allele by using a Glu-A3 deletion line of
the CS wheat variety (CS-n). The deletion of Glu-A3a
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had no clear effects on plant morphological and yield
traits, but significantly reduced gluten strength and bread-
making quality. Molecular characterization revealed that
Glu-A3a contains 1134 bp encoding one LMW-i type B-
subunit that had longer repetitive domains, an increased
number of α-helices, and showed a higher expression level
and accumulation rate during grain development. These
features could explain its major role in the formation of
dough strength and breadmaking quality and indicate its
potential value for wheat quality improvement. A specific
AS-PCR marker for the Glu-A3a allele was developed and
validated using different bread wheat cultivars, NILs, and
RILs, which could be used as an effective molecular
marker for gluten quality improvement through marker-
assisted selection.
Method
Plant materials
Chinese Spring (Triticum aestivum L., 2n = 6x = 42,
AABBDD) and its Glu-A3a deletion line (CS-n) devel-
oped in our laboratory were used in this study. Aroona-
A3a (Glu-A3a) and its six NILs: Aroona-A3b (Glu-A3b),
Aroona (Glu-A3c), Aroona-A3d (Glu-A3d), Aroona-A3e
(Glu-A3e), Aroona-A3f (Glu-A3f ), and Glenlea (Glu-
A3g) were used for identifying Glu-A3 alleles, which
were kindly provided by Dr. Xianchun Xia, Institute for
Crop Science, Chinese Academy of Agricultural Science
(CAAS). Bread wheat cultivars CB037A, Chinese Spring
substitution line CS-1Sl/1B [58], Chinese Spring 1Sl

genome addition line, and four recombination inbred
lines (RILs) produced by crossing between CB037A and
Chinese Spring substitution line CS-1Sl/1B were used
for identifying Glu-A3a deletion in CS-n, and developing
and validating AS-PCR marker for Glu-A3a. All mate-
rials used in this study were listed in Additional file 10:
Table S3.
Identification of seed proteins
Protein extraction, A-PAGE, SDS-PAGE and RP-UPLC
According to the solubility in a series of solvents, grain
albumins, globulins, gliadins and glutenins were extracted
according to the established methods [65,66].
A-PAGE
A-PAGE was conducted based on the method of Yan
et al. [66,67].
SDS-PAGE
SDA-PAGE was performed with Bio-Rad PROTEAN II
XL equipment based on the previously described
method [68] with 12% gel and electrophoresed at 15 mA
for 2 h.
RP-UPLC
RP-UPLC was used to separate HNW-GS and LMW-GS
based on the recent reports [56,69]. The samples were
performed on an Agilent 1100 using a Zorbax 300SB-
C18 column (300 A? pore size and 5 mm particle size).

MALDI-TOF-MS
MALDI-TOF-MS was used to detect the accurate
molecular weight (MW) of LMW-GS according to the
previous reported method [39,70]. Shimadzu corporation
AXIMA-CFRTM Plus MS apparatus (Japan) and the
matrix of sinapinic acid (SA, a-cyano-4-hydroxycinnamic
acid) were used.

2-DE (IEF X SDS-PAGE)
Grain glutenins and heterologously expressed LMW-GS
were separated and identified by 2-DE (IEF ? SDS-
PAGE). The first dimension was performed by an
EttanTM IPG-phor II TM system (GE Healthcare, USA)
using 18 cm strips (pH 6 ? 11). The IEF rehydration solu-
tion was 7 M urea, 2 M thiourea and 4% CHAPS. The
rehydrate condition was 30 V at 20?C for 12 h while the
IEF condition was 300 V for 1 h, 500 V for 1 h, 1000 V
for 1 h, 3000 V for 1 h, and 8000 V to 80,000 V for 10 h.
The second dimension was performed on a 12% acryl-
amide gradient. After electrophoresis, the 2-DE gels were
stained with colloidal Coomassie Brilliant blue (CBB)
(R-250/G-250 = 4:1) and analyzed by using ImageMaster?
2-D platinum software version 5.0 (Amersham Bioscience,
Swiss Institute of Bioinformatics, Geneva, Switzerland,
2003) based on Lv et al. [71] with minor modifications.
Three biological replicates were performed.

LC-MS/MS
The grain native and heterologous expressed LMW-GS
separated by SDS-PAGE and 2-DE were further identi-
fied by LC-MS/MS. The expected LMW-GS band on
the SDS-PAGE gel and 2-DE spots were excised and
digested with trypsin according to Jin et al. [72]. The
digested protein (0.5 ml) was subject to MS analysis in a
Waters SYNAPT High Definition Mass Spectromet ry ?
(HDMS) mass spectrometer. The software Bioworks-
Browser 3.3 was used to analyze the LC-MS/MS data.

Gluten quality testing
Both CS and its CS-n were planted in Beijing experi-
mental station of Chinese Academy of Agricultural
Sciences during 2013 ? 2014 growing season. The field
design was three replications and each blot was 20 m2.
Gluten quality parameters were tested according to Sun
et al. [73] at Academy of State Administration of Grain.
Flour moisture and ash contents (% dry basis) were
determined according to the American Association of
Cereal Chemists Approved Methods (2000) 44-15A and
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08 ? 02, respectively. Protein content (%N 5.7, 14% mois-
ture basis) was determined by nitrogen combustion ana-
lysis with a LECO (Model FP analyzer, St. Jopeph, MI)
calibrated against EDTA.
Farinograph parameters were obtained by using 10 g

Brabender Farinograh-E based on American Association
of Cereal Chemists Approved Method (2000) 54 ? 21.
Image analysis of crumb grain of bread was performed

with a C-Cell, image analysing software and equipment
(Calibre Control International Ltd.). Slice brightness and
cell contrast were used to describe the brightness of
slices. Number of cells, wall thickness, cell diameter, cell
volume, coarse cell volume and average cell elongation
were used to measure the cell properties. The sliced
samples for textural analysis were prepared in the same
way as those for the C-Cell.

DNA extraction and PCR amplification
Total genomic DNA from dry seeds was extracted accord-
ing to McDonald et al. [74] and An et al. [39] with minor
modifications. A pair of AS-PCR primers (A3-F and A3-R)
was designed to amplify the coding regions of LMW glute-
nin gene based on the previously cloned sequences [13,24].
The primer sequences were A3-F: 5? -GCCTTTCTTGT
TTACGGCTG-3?, A3-R: 5? -TCAGATTG ACATCCACAC
AAT-3? (synthesized by Sangong Inc., China). PCR amplifi-
cations were performed in 50 μl reaction volumes contain-
ing 2.5 U La Taq polymerase (TaKaRa), 100 ng of templet
DNA, 25 ml of 2 ? GC buffer I (MgCl 2

+ plus), 0.4 mM
dNTP, 0.5 μM of each primer, and double distilled H2O
added to 50 μl. The reactions were carried out in a PTC-
100 (MJ Research, Watertown, MA, USA) thermocycler
using the following protocol: 94?C for 2 min, followed by
35 cycles of 94?C for 45 s, 58?C for 70 s and 72?C for 2 min,
finally extended at 72?C for 10 min.

Molecular cloning, DNA sequencing and sequences
alignment
PCR products were separated on 1.2% agarose gels in
Tris ? acetic acid ? EDTA buffer and expected fragments
were purified from the gels using a Quick DNA extrac-
tion kit (Tiangen, Beijng, China). Subsequently, purified
products were ligated into a PMD18? T Easy vector
(TaKaRa, Dalian, China) and transformed into cells of E.
coli strain DH5α according to Li et al. [75]. DNA se-
quencing was performed with three clones by Sino Geno
Max, Beijing, China. Multiple sequence alignment of
LMW glutenin nucleotide and protein sequences were
completed by Bioedit 7.0.1.1.

SNPs and InDels identification and secondary structure
prediction
Identification of SNPs and InDels present in LMW glutenin
genes were based on multiple alignments and performed
using Bioedit 7.0. Prediction of secondary structure of
deduced amino acid sequences was carried out by
PSIPRED server (http://bioinf.cs.ucl.ac.uk/psipred/) [34].

Phylogenetic analysis
MEGA 5 was used to construct a phylogenetic tree with
the complete coding regions. Neighbor joining with
Kimura two parameter correction methods and boot-
strapping of 1,000 replicates were selected as working
parameters [34,39,76-78].

Expression of the cloned LMW-GS gene in E. coli
The gene cloned was re-amplified to remove the signal
peptides by designing a new pair of primers CS-F (5? -
GGGCATATGATTTCACAGCAACAA-3 ? ) and CS-R
(5? -CTCGAGTCAGTAGACACCAACTCCGATG-3 ? ),
NdeI and XhoI sites (underlined) were incorporated into
the 5? ends of the CS-F and CS-R, respectively. After
purification, the PCR products were ligated into the
expression vector pET-30a (Novagen), and transformed
into E.coli BL21 (DE3) plysS cells. And then we extract
and separate the expressed protein from the E.coli, after
that, we carried out them by SDS ? PAGE according to Li
et al. [75].

mRNA extraction, cDNA synthesis and qRT-PCR
Developmental seeds from three spikes were combined
together to extract total RNA from endosperm of CS and
CS-n, and cDNA synthesis, qRT-PCR were according to
Wang et al. [56]. The primers were: LMW-i-F: TGAA-
GACCTTCCTCGTCTTTG, LMW-i-R: CTGTGAAATT
TGCGCAACG. Gene-specific primers were designed
using Primer 5.0 and their specificities were checked by
the melting curves of the RT-PCR products. Each qRT-
PCR reaction was performed in 20 μl volumes containing
10 μl 2 ? SYBR? Premix Ex Taq ? (TaKaRa), 2 μl 50-fold di-
luted cDNA, 0.4 μl of each gene-specific primer and 7.2 μl
ddH2O. PCR conditions were as follows: 95?C for 3 min,
45 cycles of 15 s at 95?C, 57?C for 20s and 72?C for 20s.
Three replicates were used for each sample. Reactions
were conducted in a CFX96 Real-Time PCR Detection
System (Bio-Rad). All data were analyzed with CFX
Manager Software (Bio-Rad).

Determination of Glu-A3a deletion in CS by STS-PCR
marker
To identify the deletion of Glu-A3a in CS-n, we did the
STS-PCR marker of the seven NILs, CS-1Sl/1B, S genome
addition line, CB037A, CS, CS-n. We used the marker
name of glu-A3a to do PCR as what Wang et al. [24] did
before. The primer sets are LA1F: AAACAGAATTAT-
TAAAGCCGG, and SA1R: GGTTGTTGTTGTTGCAG
CA. Their PCR cycling conditions were 94?C for 4 min,

http://bioinf.cs.ucl.ac.uk/psipred/
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followed by 35 cycles of 94?C for 35 s, 55?C for 45 s, 72?C
for 40 s, and a final extension at 72?C for 8 min.

Development and validation of allele-specific PCR markers
for Glu-A3a
To identify the Glu-A3a gene in different genotypes, based
on the SNPs we detected in Glu-A3a, we designed the
primer named Glu-A3a F: GCAAAGAAGGAAAAGAG
GTGG, R: GGTTGTTGTTGTTGCTGCA as the primer
to discriminate the gene Glu-A3a from others in CS and
CS-n, this also validated in four RILs (CB037A and 1Sl/1B),
CS-1Sl/1B, 1Sl genome addition line, 7 NILs of Aroona and
48 varieties. PCR cycling conditions were 94?C for 4 min,
followed by 35 cycles of 94?C for 35 s, 60?C for 30 s, 72?C
for 30 s, and a final extension at 72?C for 8 min.

Additional files

Additional file 1: Figure S1. Plant, Spikelet and seeds morphology of
CS and CS-n. A: Plant morphology of CS and CS-n. B1 and B2 are Spikelet
morphology of CS and CS-n, respectively. C1 and C2 are the seeds of CS
and CS-n, separately.

Additional file 2: Figure S2. Kernel morphology of different
developmental times of CS and CS-n. The seeds are 5, 8, 11, 14, 17, 20,
23, 26, 29 DPAs from CS and CS-n respectively. The characterization of
them is similar.

Additional file 3: Table S1. Comparison of data statistics about the
two varieties (CS and CS-n). We statistics plant height, Ear length, stronger
spikelet number, kernels per spike, grain weight per spike, Tiller number
and thousand kernel weight (TKW) of CS, CS-n.

Additional file 4: Figure S3. The comparison of the albumins,
globulins and prolamins in CS and CS-n. 1 and 2 are the albumins of
CS-n and CS, respectively. 3 is the globulins of CS-n, 4 is the globulins of
CS. 5 and 6 are the prolamins of CS-n and CS, separately. The difference
between them was marked by a black arrow.

Additional file 5: Figure S4. Identification of Glu-A3a in LMW-GS
deletion lines of CS and CS-n by MALDI-TOF? MS. The LMW-GS Glu-A3a is
marked by a black arrow.

Additional file 6: Figure S5. Agarose gel electrophoresis separation of
amplified products from genomic DNA of CS. With the AS-PCR primer, a
single band was cloned in CS. Lane1 and Lane2: PCR amplified products
and Lane3: 1 kb DNA marker.

Additional file 7: Figure S6. Sequence alignment of STS-PCR marker
products of CS, Glu-A3a and its CDS. Glu-A3a is the full sequence, and the
Glu-A3a CDS is the coding area. Marker is the band we cloned with the
marker named glu-A3a from CS.

Additional file 8: Table S2. Comparison of the mature protein
sequences of different LMW-i glutenin subunits. The number and
positions of cysteine in different LMW-i glutenin subunits are different
and relative conservative.

Additional file 9: Figure S7. qRT-PCR optimization design: double
standard curve and dissolution curve of the gene Glu-A3a. The red
standard curve represented Glu-A3a gene and the other blue standard
curve represented the reference gene. The dissolution curves of different
genes were indicated.

Additional file 10: Table S3. Validation of the Glu-A3a allele-specific
markers with different wheat varieties, a set of NILs and 4 RILs. The source
and the allele that contained were listed in this file.
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