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Abstract

were performed by using RNA-seq.

contribute to the improving of this tree.

Background: The paper mulberry (Broussonetia papyifera) is one of the multifunctional tree species in agroforestry
system and is also commonly utilized in traditional medicine in China and other Asian countries. To identify the
transcription factors (TFs) and comprehensively understand their regulatory roles in the growth of the paper
mulberry, a global transcriptomics TF prediction and the differential expression analysis among root, shoot and leaf

Results: Results indicate that there is 1,337 TFs encoded by the paper mulberry and they belong to the 55
well-characterized TF families. Based on the phylogenetic analysis, the TFs exist extensively in all organisms are more
conservative than those exclusively exist in plant and the paper mulberry has the closest relationship with the
mulberry. According to the results of differential expression analysis, there are 627 TFs which exhibit the differential
expression profiles in root, shoot and leaf. ARR-Bs, ARFs, NACs and bHLHs together with other root-specific and
highly expressed TFs might account for the developed lateral root and unconspicuous taproot in the paper
mulberry. Meanwhile, five TCPs highly expressed in shoot of the paper mulberry might negatively regulate the
expression of 12 LBDs in shoot. Besides, LBDs, which could directly or indirectly cooperate with ARFs, bHLHs and
NACs, seem to be the center knot involving in the regulation of the shoot development in the paper mulberry.

Conclusions: Our study provides the comprehensive transcriptomics identification of TFs in the paper mulberry
without genome reference. A large number of lateral organ growth regulation related TFs exhibiting the tissue
differential expression may entitle the paper mulberry the developed lateral roots, more branches and rapid
growth. It will increase our knowledge of the structure and composition of TFs in tree plant and it will substantially
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Background

The paper mulberry belongs to the family of Moraceae
and is naturally distributed in Eastern Asia and pacific
countries. The paper mulberry has shallow roots with
advanced lateral roots and without an obvious taproot.
It is one of the multifunctional tree species in agrofo-
restry systems [1], as well as being one of the traditional
forages [2] and Chinese medicines in many countries of
Asia [3]. Due to its fast growth and adaptability, the
paper mulberry is commonly used for the ecological
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afforestation and landscape in both sides of highway,
mined areas and on barren land [4]. It is the ideal tree
species for ecological and gardening purposes, and can
be widely used in papermaking, livestock, medicine and
other industries [5]. Genetic diversity revealed by SRAP
marker and cluster analysis show that there is a relation-
ship between the genetic variation and geographical dis-
tribution [6]. These results provide reference for making
genetic map and guide the breeding of the paper mul-
berry. However, because of lacking the knowledge of the
genetic background, the molecular mechanism about
strong adaptability and tolerance to biotic or abiotic
stress of the paper mulberry has not been studied, which
limits the exploitation of the paper mulberry.
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TFs play important roles in plant development and en-
vironmental adaptation by regulating the expression of
their target genes. TFs directly or indirectly involved in
the response to plant hormones which control plant
growth including cell division, elongation and differenti-
ation. The identification and functional study of TFs are
essential for the reconstruction of the transcriptional
regulatory network in the development and ecological
circumstances adaptation of plant. Many TF family
proteins, such as bHLH [7], ERF [8], Dof [9], MYB [10],
NAC [11] and WRKY [12], play regulatory roles in
plants growth and development.

Many TFs have been reported to play roles in the
vascular and xylem development [13]. Recent molecular
studies of various trees have revealed that the coor-
dinated gene expression during differentiation of these
cells in wood and the presence of several TFs, such as
ARF, HD-ZIP, MYB and NAC, which might govern the
complex networks of transcriptional regulation in tree
growth [14]. However, most studies about genome wide
analysis of TFs in plants concentrate in a few species,
such as Arabidopsis and kinds of crops. The universality
of the mechanism is not explicit, especially in tree
species. Because of low domestication, open-pollinated
native populations and high levels of genetic variation,
they are ideal organisms to unveil the molecular me-
chanism of population adaptive divergence in nature.

As nonclassical model plant, trees have gained much
attention in recent years for environment adaptation, evo-
lutionary and genomic studies. Overall study for each TF
family has also been launched. Via the comprehensive
analysis of NAC gene family in Populus, a total of 163
full-length NAC genes are identified, and they are
phylogenetically clustered into 18 distinct subfamilies.

Table 1 TF family in paper mulberry
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Furthermore, 25 NAC genes are of tissue-specific expres-
sion patterns [15]. A total of 11 WOX TFs both mRNA
and genomic DNA are isolated from Picea abies and fur-
ther study shows that all major radiations within the
WOX gene family taking place before the angiosperm-
gymnosperm split and that there has been a recent expan-
sion within the intermediate clade in the Pinaceae family
[16]. However, there are little reports about the regulated
network from the genome-scale under the control of TFs
in tree species [13,17], especially as for those trees without
genome information.

In our study, we performed a genome wide TF pre-
diction using the transcriptome data. Additionally, we
predicted the expressional pattern of the identified TF
genes using a large amount of RNA-seq data which have
just become available. A subset of TFs that are specific-
ally expressed in particular tissues, including root, shoot
and leaf, were thus identified. Our study provides a va-
luable resource of TF genes for further genetic and de-
velopmental studies in the paper mulberry.

Results

Identification and classification of TFs in the paper
mulberry

To ascertain the TF families in the paper mulberry, se-
quences obtained from 3 libraries as mentioned in the
materials and methods were assembled. After retrieving
annotation results for every unigene, 1,337 TFs were
identified and classified into 55 families (Table 1) based
on their DNA-binding domains and other conserved
motifs [18,19]. Of these TFs, 578 TFs belonged to 48
families with complete ORF (Table 2). The bHLH was
the biggest family with 151 members and 69 of which
have complete ORF. The following was WRKY (112),

TF family No. of TF TF family No. of TF TF family No. of TF TF family No. of TF
Alfin-like 16 CpP 8 HTH 13 S1Fa-like 1
AP2 25 DBB 5 LBD 26 SAP 2
ARF 26 Dof 28 LFY 2 SBP 21
ARR-B 33 E2F/DP LSD 1 SRS 1
B3 53 EIL 4 M-type 13 TALE 19
BBR-BPC 5 ERF 88 MYB 83 TCP 18
BES1 6 FAR1 50 MYB-related 33 Trihelix 13
bHLH 151 G2-like 29 NAC 79 VOZ 2
BTF3 1 GATA 24 NF-X1 2 Whirly 2
bzIP 35 GRAS 29 NF-YA 6 WOX 6
C2H2 64 GRF 16 NF-YB 5 WRKY 112
C3H 67 HD-ZIP 35 NF-YC 3 YABBY 3
CAMTA 4 HRT 1 Nin-like 6 ZF-HD 11
CO-like 19 HSF 21 RAV 2
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Table 2 TF families with complete ORF in paper mulberry

TF family No. of TF TF family No. of TF TF family No. of TF TF family No. of TF
Alfin-like 8 CO-like 9 GRF 4 RAV 1

AP2 8 Cpp 3 HD-ZIP 21 SBP 1

ARF 12 DBB 1 HSF 13 SRS 1

ARR-B 14 Dof 9 LBD 9 TALE 7

B3 17 E2F/DP 6 MADS-box 4 TCP 8
BBR-BPC 4 EIL 3 MYB 30 Trihelix 8

bHLH 69 ERF 44 MYB-related 9 VOZ 2

BTF3 1 FAMILY 1 NAC 21 Whirly 2

bzip 24 FAR1 24 NF-X1 2 WOX 3

C2H2 19 G2-like 21 NF-YA 3 WRKY 33

C3H 41 GATA 14 NF-YB 4 YABBY 3

CAMTA 4 GRAS 19 NF-YC 1 ZF-HD 3

ERF (88) and other families. According to comparison of
family size among the selected species, as shown in
Table 2, most of families have been detected in the paper
mulberry except for GeBP, HB-PHD, MIKC, and STAT
families.

Phylogenetic analysis of TFs in the paper mulberry
Genetic distances were calculated according to the align-
ment of the conserved domain of the three TFs families
chosen from 9 species including the paper mulberry and
the phylogenetic trees were constructed using MEGA 5.0
program (Figure 1). As shown in Figure 1A, all of the
CAMTAs from the selected species could be classified
into six groups. Four BpaCAMTAs were listed in the
group 1, 3, 4 and 6, respectively. All of the BpaCAMTAs
were clustered with that from Morus notabilis, following
as Cannabis sativa. There were two Whirly TFs in the
paper mulberry and they were divided into two groups as
that of other plants. One of them was clustered with that
of M. notabilis and the other was clustered with Citrullus
lanatus (Figure 1B). Two VOZs existed in the paper
mulberry like as most of other plants and they had the
highest identity with that of M. notabilis and C. sativa
(Figure 1C).

The expression profile of the TFs from the paper
mulberry

To identify the differentially expressed TFs between
different samples, the expression level of all TFs were
homogenized by using their RPKM values. Among the
1,337 TFs, the RPKM values of 1,104 TFs were distri-
buted from 1 to 770 (see Additional file 1: Table S4).
The unigene T6-23630 had the highest RPKM value 770
and belonged to the ERF family. Besides, there were 219
TFs which RPKM values were approximate to zero and
belonged to the bHLH, WRKY and other families. They

had a common characteristic of the short nucleotide
length which distributed from 202 to 309 bp.

According to the RPKM value of each TF, there were
935, 1036 and 842 TFs expressed in the root, shoot and
leaf, respectively (Figure 2A). A total of 771 TFs were
co-expressed in three tissues. Meanwhile, there were 36,
132 and 26 TFs were specifically expressed in root, shoot
and leaf, respectively.

Differentially expressed TFs from the paper mulberry

The TFs with a RPKM value of more than or equal to 2
were chosen for the differential expressed analysis and
The TFs with a ratio of RPKM between samples of more
than 2 (Fold change >2) and an FDR <0.01 were con-
sidered to have the significant changes in expression.
According to this rule, a total of 627 TFs were of the dif-
ferential expressed characteristic among root, shoot and
leaf (see Additional file 2: Figure S1 and Additional file
3: Table S5, Figure 2B) and belonged to AP2, CO-like,
LBD and other 47 families (Figure 3 and see Additional
file 2: Figure S1). There were 135, 296 and 196 TFs had
the highest expression level in root, shoot and leaf, re-
spectively (Figure 4A, B and C). Among of them, there
were 10, 51 and 17 TFs were uniquely expressed in the
root, shoot and leaf, respectively (Figure 2B). These ex-
pression patterns were validated by qPCR (Figure 5) and
the error bars showed the corresponding standard de-
viation when three independent experiments were car-
ried out. In addition, there were 332 TFs, belonged to 42
families, had complete ORFs among these tissue dif-
ferential expressed TFs (see Additional file 4: Table S6).

Discussion

The composition of TFs in the paper mulberry

TFs are usually classified into different families based on
their DNA-binding domains and other conserved motifs
[18,19]. As the model plants of dicots and monocots, the
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Figure 1 Evolutionary relationships revealed by phylogenetic analysis of CAMTA, Whirly and VOZ family. The evolutionary history was
inferred using the Neighbor-Joining method. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test
(1500 replicates) was shown next to the branches. The tree was drawn to scale, with branch lengths in the same units as those of the evolutionary
distances used to infer the phylogenetic tree. The evolutionary distances were computed using the p-distance method and were in the units of the
number of amino acid differences per site. The analysis involved 74 CAMTAs (A), 29 Whirlys (B) and 27 VOZs (C) amino acid sequences and their
correspondent accession numbers were list in Additional file 4: Table S6. All ambiguous positions were removed for each sequence pair. Evolutionary
analyses were conducted in MEGAS.

genomes of Arabidopsis and rice have been well dis-
cerned. The Arabidopsis genome encodes 2,296 TFs
which can be classified into 58 families and account for
6.2% of its estimated total number of genes [18,20].
There are 2,408 TFs (1,859 loci) are identified and clas-
sified into 56 families in Oryza sativa subsp. Japonica.
Furthermore, there are 4,288 TFs encoded by 2,455
genes accounting for about 6.4% of Poplar gene [18,21].
In our study, a total of 1,337 TFs identified from the
transcriptome data of the paper mulberry could be clas-
sified into 55 families and 578 TFs of them had complete
ORF. These TFs comprised of more than 3.5% of the
genes of this plant [22]. Although the genome of paper

mulberry has not been sequenced and its genes number
might be underestimated, this ratio was much closed to
that of other genome known plants, such as C. sativa,
Fragaria vesca and Vitis vinifera (Figure 6) and it is less
than that of Arabidopsis and rice. Besides, the TFs num-
ber of bHLH, AP2/ERF, MYB/MYB-related, NAC and
WRKY family in the paper mulberry was 151, 114, 116,
79 and 112, respectively. They mostly made up half of
the total TFs of the paper mulberry just as other plants
(Table 3).

However, GeBP, HB-PHD, MIKC, and STAT families
were not found in our transcriptome data (Table 3).
Meanwhile, the MIKC-type, specific to plants and
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Figure 2 Venn diagram of TFs expressed and differently expressed in root, shoot and leaf. A Venn diagram of TFs expressed in root, shoot
and leaf. B Venn diagram of differentially expressed TFs in root, shoot and leaf. TFs differentially expressed in root, shoot and leaf were identified.
To be considered differentially expressed, the transcript must have RPKM > 2 in at least one tissue, 2-fold or greater change between tissues,

and P < 0.05.

involved in floral organ identity determination, and
NZZ/SPL TFs, playing a central role in regulating anther
cell differentiation during the floral organ development,
were also not appeared in the transcriptome data. This
might mainly because that the fruit and flower were not
included in this study. There might some new TF mem-
bers would be presented when more transcriptome data
could be obtained.

The phylogenetic relationship of the TFs in the paper
mulberry
The mutation, expansion and functional diversification of
gene family reflect the evolution process of plants to adapt
to their differing external ecological circumstances. In our
study, we chose three TF families, namely CAMTA,
Whirly and VOZ, to illustrate the phylogenetic relation-
ship of the TFs in the paper mulberry.

Investigations of CAMTAs in various organisms suggest
a broad range of functions from sensory mechanisms to

embryo development and growth control [23]. The CAM-
TAs have been shown to play an important role in the
plant response to abiotic and biotic stresses [24]. Mean-
while, the CG-1, ANK and the IQ domain is very con-
servative from human to plant [23]. The phylogenetic
tree of CAMTAs in our study showed that all of the
BpaCAMTASs were clustered with that from M. notabilis,
following was C. sativa (Figure 1A). The CAMTAs from
A. trichopoda were located in the root position of group-
1, 4, 5 and 6. This results was in accordance with that
A. trichopoda was the single living species of the sister
lineage and the most recent common ancestor to all other
extant flowering plants [25]. In addition, the CAMTAs
have evolved a novel clade in group 2 in B. distachyon, O.
sativa and S. bicolor which confirmed that some gene
family in monocots had rapidly evolved to adapt to the en-
vironment after the monocot-dicot divergence.

Whirly TFs throughout the plant kingdom are pre-
dicted to share the ability to bind to single-stranded
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Figure 3 The differentially expressed TFs distributed in each family. According to the conserved domain, a total of 627 differentially
expressed TFs could be classified into 50 families and most of them concentrated in bHLH, MYB, WRKY, C2H2, NAC, C3H, B3 and Dof family.
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Figure 4 The cluster analysis of the differentially expressed TFs in root, shoot and leaf of the paper mulberry. A The TFs highly expressed
in shoot than that in leaf and root. B The TFs highly expressed in leaf than that in shoot and root. C The TFs highly expressed in root than that in leaf
and shoot. The pink line represented the expression trend of the cluster. The gray line represented the expression profile of every TF.

DNA and they regulate defense gene expression as well
as function in the chloroplast and in the nucleus [26].
Two Whirly TFs of the paper mulberry were divided
into two groups as that of other plants (Figure 1B). One
of them was clustered with that of M. notabilis. The
other was clustered with that of C. lanatus. This sug-
gested that the BpaWhirlyl was more conserved than
BpaWhirly2.

VOZ is the plants specific one-zinc-finger type DNA-
binding protein and is highly conserved in land plant evo-
lution [27]. BpaVOZ1 was clustered with CsaVOZ1 while
BpaVOZ2 was clustered with MnoVOZ1 (Figure 1C). This
result showed that BpaVOZ1 had the higher identity
with CsaVOZ1 other than MnoVOZ2 and implied that
BpaVOZ1 and CsaVOZ1 have produced some similar mu-
tation both in C. sativa and the paper mulberry.

C. sativa which has once been considered as one species
of Moraceae in the Engler system [28] belongs to the
Cannabaceae while C. lanatus belongs to the Cucurbitales
(APG III Classification system). Even so, some TFs identi-
fied from the paper mulberry still had the higher identity
with the TFs of them. These phylogenetic analyses sug-
gested that the TFs existing in various organisms and play-
ing the significant roles, such as CAMTAs, also were
conserved in the paper mulberry. Meanwhile, the TFs
which are specific to plants, for example VOZ and Whirly
experienced a lower selection pressure, had more of the
variation in the paper mulberry.

TFs involved in the tissue growth of the paper mulberry

A TF that expresses exclusively in a special tissue may
play a central role in regulating tissue development [29].
Expression patterns contain important information to
infer the functions of TFs. Transcriptome-wide identifi-
cation of tissue-specific TFs across tissues can help to
understand of the molecular mechanisms of tissue devel-
opment. The plantlet of the paper mulberry was in seed-
ling stage with vigorously vegetative growth and without
reproductive growth. So the key TFs involved in the

regulation of root, shoot and leaf development could be
identified by detecting the expression profile and scree-
ning the tissue-specific expression.

Root growth

The paper mulberry has developed horizontal, strong lat-
eral and densely tangled fibrous root which can effectively
absorb the water and nutrients existing in the topsoil to
accommodate the poor soil and harsh environmental
conditions. According to our results, a total of 135 TFs
belonged to 40 families specifically higher expressed in the
root than that in shoot and leaf. It included ARR-B (8),
bHLH (15), CO-like (6), G2-like (2), GATA (3), and MYB
(8) and so on (see Additional file 2: Figure S1, Additional
file 3: Table S5 and Figures 4 and 7).

Investigations on the growth and development of plant
roots mainly lie in the top of the regulation of root ap-
ical meristem, lateral roots and root hairs growth and
development. ARFs promote lateral root growth via an
auxin-responsive regulatory network [30] while NACI
down-regulate auxin signals for Arabidopsis lateral root
development [31]. Auxin targets elongating epidermal
cells during the gravitropic response and also regulates
cell division in the meristem and stem cell niche [32].
Two ARFs and 6 NACs highly expressed in the root (see
Additional file 3: Table S5) might be the candidate gene
that control the growth of lateral root and root tip in the
paper mulberry. In addition, COL3 as a positive regula-
tor of photomorphogenesis can promote lateral root de-
velopment independently of COPI and also function as
a day length-sensitive regulator of shoot branching [33].
Six CO-likes highly expressed in the root and four of
them showed the root-specific expression, which was
thought to promote the lateral root development of the
paper mulberry.

Genetic analyses suggest that AtMYC2 belongs to bHLH
family and is a common TF involving in light, ABA, and
JA signaling pathways. It acts as a negative regulator of
blue light-mediated photomorphogenic growth and blue
and far-red-light-regulated gene expression, meanwhile it
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Figure 5 The expression profile of ten selected TFs validated
by gPCR. The left axis represents the results of transcriptomics analysis
while the right axis represents relative expression detected by gPCR,
and the error bars represented the standard deviation (S.D.) values for
three independent experiments, performed in triplicate.
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Figure 6 The total number of TFs in the selected species. The
TF numbers of Arabidopsis thaliana, Cannabis sativa, Fragaria vesca,
Oryza sativa subsp. Japonica and Vitis vinifera were obtained from Plant

Transcription Factor Database (http://planttfdb.cbi.pku.edu.cn/indexphp).

functions as a positive regulator of lateral root formation
[34]. MYC3, another bHLH TF, directly interactes with
JAZs via its N-terminal region and regulate JA responses.
The transgenic plants with overexpression of MYC3 ex-
hibit hypersensitivity in JA-inhibitory root elongation and
seedling development [35]. A bHLH TF, RSL4 is sufficient
to promote postmitotic cell growth in Arabidopsis root-
hair cells. Loss of RSL4 function resulted in the develop-
ment of very short root hairs. In contrast, constitutive
RSL4 expression programs constitutive growth and results
in the formation of very long root hairs. Hair-cell growth
signals, such as auxin and low phosphate availability,
modulate hair cell extension by regulating RSL4 transcript
and its protein levels [36]. A total of 15 highly expressed
bHLHs in the root implied their function in the lateral
root formation as well as the root hairs development via
the perception of auxin and other circumstance signals in
the paper mulberry.

Cross-talk exists among phytohormones signaling path-
ways. For example, root meristem size and root growth
are mediated mainly by the interplay between cytokinin
and auxin. Cytokinin activates ARR-B TFs which promote
the expression of SHY2 and affects auxin signaling path-
way [37]. ARR10 and ARRI2 have been proved that they
are involved in the AHK-dependent signaling pathway
that negatively regulates the protoxylem specification in
root vascular tissues [38]. Twelve ARR-Bs highly expressed
in the root and 8 of them showed the root-specific ex-
pression (see Additional file 3: Table S5) in the paper
mulberry. Thus we proposed that those ARR-B TFs redun-
dantly played pivotal roles in response to cytokinin and
interacted with the auxin signaling pathway in root growth
of the paper mulberry.

Ethylene regulates cell division in quiescent center and
auxin biosynthesis in columella cells, which is likely to be
involved in root meristem maintenance. In the ethylene
signaling pathway, the activated EIN2 promotes the
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Table 3 The comparison of family size among the selected species

TF Oryza Arabidopsis Vitis Fragaria Cannabis Paper TF Oryza Arabidopsis Vitis Fragaria Cannabis Paper
family sativa thaliana vinifera vesca sativa mulberry family sativa thaliana vinifera vesca sativa mulberry
AP2 22 30 19 17 16 25 LBD 39 50 44 36 26 26
ARF 48 37 17 17 13 26 LFY 2 1 1 4 1 2
ARR-B 1 21 12 7 5 33 LSD 12 12 3 3 3 1
B3 65 77 29 77 60 53 MIKC 61 76 36 37 28 -
BBR-BPC 7 17 5 3 3 5 M-type 35 70 18 48 6 13
BES1 6 14 6 6 8 6 MYB 130 168 138 110 81 83
bHLH 211 225 115 112 99 151 MYB-related 106 97 57 65 70 33
bzIP 140 127 47 52 54 35 NAC 170 138 71 127 75 79
C2H2 135 116 64 83 62 64 NF-X1 2 2 3 2 4 2
C3H 74 66 43 38 48 67 NF-YA 25 21 7 6 6 6
CAMTA 7 10 4 7 6 4 NF-YB 16 27 17 14 12 5
CO-like 21 22 6 7 10 19 NF-YC 19 21 8 9 8 3
CPP 20 9 [§ 6 3 8 Nin-like 15 17 8 10 4 6
DBB 13 14 7 6 5 5 NZZ/SPL - 1 1 1 -
Dof 37 47 22 23 27 28 RAV 4 7 1 5 2 2
E2F/DP 10 16 7 7 11 9 S1Fa-like 2 4 2 1 1 1
EIL 1 6 2 6 5 4 SAP - 1 1 1 2
ERF 163 139 80 92 59 88 SBP 29 30 19 14 18 21
FAR1 133 26 18 82 36 50 SRS 6 16 5 5 7 1
G2-like 62 64 40 37 31 29 STAT 1 4 1 1 2 -
GATA 32 41 19 19 21 24 TALE 45 33 21 18 17 19
GeBP 13 23 1 6 5 - TCP 23 33 15 18 17 18
GRAS 69 37 43 51 54 29 Trihelix 40 34 26 31 33 13
GRF 19 9 8 10 10 16 VOZ 2 3 2 2 2 2
HB-other 17 " 7 M 14 - Whirly 2 4 2 1 3 2
HB-PHD 1 3 2 2 1 - WOX 17 18 11 14 7 6
HD-ZIP 61 58 33 28 34 35 WRKY 128 90 59 58 49 112
HRT-like 1 2 1 3 2 1 YABBY 15 8 7 5 7 3
HSF 38 25 19 15 26 21 ZF-HD 15 18 10 9 8 [

Note: “-" means no TF presented in this family.
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activation of EIN3 and EIN3-like (EIL) TFs, which induces
the expression of ERF which is another TF implicated in
the activation of a subset of ethylene response genes [32].
Thus, 4 EILs expressed in the root might induce the ex-
pression of ERFs which expression level was higher than

leaf or shoot, and then activated a series of downstream
genes to regulate the root meristem maintenance.
Alfin-like TF is involved in the root growth and con-
trols the target genes which are crucial for the root hair
elongation [39]. Two Alfin-likes showed the highly
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expressed in the root, suggesting their function in the
root hair growth of the paper mulberry.

Although G2-like (GOLDEN2-LIKE) TFs are required
for chloroplast development and have been reported to
co-regulate and synchronize the expression of a suite of
nuclear photosynthetic genes and thus act to optimize
photosynthetic capacity in varying environmental and
developmental conditions, two G2-likes were root-
specifically expressed and other six G2-likes also showed
the higher expression characteristic, which implied that
those G2-likes involved in controlling of root growth
and suggested that their functional diverse in the regula-
tion of plant development.

Besides, many other TFs, such as GATAs, GRASs, HSFs,
NF-YBs, Trihelix and ZF-HD also showed the root-specific
expression or highly expressed in root than in leaf or
shoot, suggesting their complicated cross-talk in the regu-
lation of root growth in the paper mulberry.

Many root-specific expressed and highly expressed TFs
belonged to the ARR-B, ARF, NAC and bHLH family,
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which might play key roles in the lateral root development
under the interaction with kinds of plant hormones and
other TFs, though lest specifically expressed TFs were
identified in the root compared with shoot and leaf. This
might account for the developed lateral root and without
an obvious taproot in the paper mulberry (Figure 8).

Shoot development

The shoot of the paper mulberry is the tissue of elong-
ation growth and shoot apical meristem, lateral meri-
stem development. Being rich in branches, the shoot of
the paper mulberry grows quickly, especially during se-
condary growth. In our study, a total of 296 TFs
belonged to 42 families specifically higher expressed in
the shoot than that in root and leaf. It included bHLH
(26), Dof (15), ERF (26), LBD (12) and WOX (2) and so
on (see Additional file 3: Table S5 and Figure 6). These
TFs might govern the complex networks of transcrip-
tional regulation during the shoot development in the
paper mulberry.

4 ARFs

procambium
formation
promotion and/or maintenance of

ol proliferation activity in leaf
primordial

27 MYBs
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32 AP2/ERFs
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Figure 8 The proposed TFs involved in tissues development and growth of the paper mulberry. The arrow lines stand for the effect of
activation. The “T" lines stand for the effects of inhibition. The dotted lines stand for the unknown effects.
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Indeed, transcriptional profiling indicates that many
genes encoding TFs are expressed preferentially during
wood formation in various plant species and specific TFs
might regulate their expression in a coordinated fashion
[14]. Many TFs have been reported to play roles in vascu-
lar and xylem development, maintenance of procambium
in stem [40,41]. For example, a total of 439 TFs are diffe-
rentially expressed during shoot development in Populus,
including MYBs, NACs, and ERFs [13].

Diverse MYB TFs may participate in the development
of vascular tissues and the tension wood response.
PttMYB21a expression is much higher in secondary cell
wall formation zone of xylem and phloem fibers than in
other developmental zones. Transgenic expression lines
show the reduced growth and had fewer internodes com-
pared to the wild-type, suggesting that PttMYB21a might
function as a transcriptional repressor in shoot growth
[42]. Overexpression of PtrMYB3 or PtrMYB20 increases
deposition of cellulose, xylan and lignin in Arabidopsis.
Besides, expression of PtrMYB3 and PtrMYB20 is directly
activated by PtrWND2, a NAC TF which preferentially
expressed in developing wood [40]. Out of the expressed
69 MYBs in shoot of the paper mulberry, more than
47.8% showed the shoot growth associated expression pat-
terns. Similarly to MYBs, 18 NACs were higher expressed
in shoot (Figure 7). These data together suggest that the
enriched NAC and MYB TFs in the shoot implied their
function in regulating wood formation in the paper
mulberry.

Although WRKY TFs are mainly implicated in regulat-
ing defense signal [43], they have also been identified to
be highly expressed in Arabidopsis stem of secondary
growth and xylem tissue [44]. There were 21 WRKY
members that were highly expressed in the shoot of the
paper mulberry (Figure 6). The functional study of those
WRKYs would help to expand knowledge of the diversity
of WRKY developmental functions in this tree.

There were 32 AP2/ERFs which was the largest TF
family that highly expressed in the shoot of the paper
mulberry (see Additional file 5: Table S2). AP2/ERF
family members are known to be involved in integration
of jasmonic acid and ethylene signals in plant defense
[8,45,46], but also have members that affect cell ex-
pansion, proliferation and differentiation pathways in
Arabidopsis [47,48]. It has also been identified in aspen
as differentially expressed at phloem localized in secon-
dary tissue [49].

The role of Dof TFs, a group of plant-specific TFs, re-
cently emerged as part of the transcriptional regulatory
networks acting on the formation and functioning of the
vascular tissues. Some of the Dof TF genes (AtDof2.4,
AtDof5.8 and AtDof5.6/HCA2) are reported to be ex-
pressed specifically in cells at an early stage of vascular tis-
sue development [9]. Besides, AtDof TFs also potentially
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control the phloem sugar transport. Therefore, 3 Dof$
high expressed in the shoot implied their important and
diverse functions in the vascular tissue development of
the the paper mulberry shoot.

The TALE, HD-Zip, WOX and ZF-HD homeodomain
containing TFs have been associated with processes re-
lated to meristem function, organ polarity, and vascular
development in several species [13]. There were TALE
(4), HD-Zip (8), WOX (2) and ZF-HD (2) showed the
shoot-specific expression in the paper mulberry.

The maintenance of the pluripotent identity of the
cambium is crucial for the continuous meristem activity.
Current evidence indicates that a similar molecular
mechanism regulating shoot apical meristem (SAM) and
root apical meristem (RAM) is likely applicable in cam-
bial meristems. The WOX TFs function have been iden-
tified in SAM and RAM by a dynamic feedback loop
involving the CLAVATA3 (CLV3) peptide ligand and the
CLV1 receptor in SAM [50]. Two WOXs (T2-25818 and
T2-23235) exhibited shoot-specific expression, which
suggested their key roles in the maintenance of the
pluripotent of the cambial meristem during the shoot
development of the paper mulberry.

There were 12 LBDs highly expressed in shoot than that
in leaf and root. LBD family is plant-specific TF and has
been implicated in plant development. Two members of
the Arabidopsis LBD family, AS2-LIKE19 (ASL19)/LBD30
and ASL20/LBD18 were expressed in immature tracheary
elements (TEs), and the expression was dependent on
VND6 and VND?7, which are NAC TFs required for TE
differentiation. ASL20 appears to be involved in a positive
feedback loop for VND7 expression that regulates TE
differentiation-related gene [51]. Dominant-negative sup-
pression of PtalL BDI via translational fusion with the re-
pressor SRDX domain caused decreased diameter growth
and highly irregular phloem development. In wild-type
plants, LBDI was most highly expressed in the phloem
and cambial zone. These results suggested that a broader
regulatory role of LBD during secondary woody growth
in Poplar [52]. Four LBD genes downstream of ARFs,
LBDI16, LBD17, LBDI18 and LBD29, are rapidly and dra-
matically induced by callus-inducing medium, LBD as key
regulators in the callus induction process, thereby estab-
lishing a molecular link between auxin signaling and the
plant regeneration program [53].

In addition, bPHLH048 regulates the function of LOB
(namely LBD TF) at lateral organ boundaries [54]. How-
ever, TCP TFs play a pivotal role in the control of mor-
phogenesis of shoot organs by negatively regulating the
expression of boundary specific genes, including LBDs [55].
Five TCPs highly expressed in shoot of the paper mulberry,
which might negatively regulated the expression of LBDs in
shoot and this was consistent with that, except T7-29380,
the all of shoot-specific LBDs RPKM was relatively lower.
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Besides, ARF (4), bHLH (26) and NAC (18) were shoot-
specific expression, which might directly or indirectly in-
volve in the shoot development via the regulation of LBD
in the paper mulberry. It seemed that LBD TFs were the
center link in the regulation of shoot development in the
paper mulberry (Figure 8).

Leaf development and photosynthesis

Leaves are photosynthetic organs. Thus, the shapes and
sizes of leaves are very important factors influencing the
success of plants. In our study, a total of 196 TFs belonged
to 33 families were specifically higher expressed in the leaf
than shoot and root. It included bHLHs (26), C2H2 (15),
ERF (17) and TCP (5) and so on (see Additional file 3:
Table S5 and Figure 7). These TFs might have the impor-
tant regulated effect on the photosynthesis and leaf deve-
lopment in the paper mulberry.

Atgrf5 mutants exhibit narrow-leaf phenotypes due to
decreases in cell number. Conversely, cell proliferation in
leaf primordia is enhanced and leaves grow larger than
normal when AtGRFS5 is overexpressed. These results sug-
gest that AtGRF5 is required for the development of ap-
propriate leaf size and shape through the promotion and/
or maintenance of cell proliferation activity in leaf primor-
dial [56]. The SPT gene, encoding a bHLH TF, functions
as a repressor of leaf growth and acts independently from
another set of cell proliferation dependent organ size reg-
ulators, AN3 and AtGRF5 [7]. So, 4 ARFs and 26 bHLHs
might play the major roles in the development of appro-
priate leaf size and shape of the paper mulberry.

A loss-of function of the ANT gene, a member of the
AP2/ERF family, typically results in small leaves with
fewer cells of larger volume as compared with wild-type
cells. In contrast, ANT overexpression in petals causes an
increase in cell number without a change in cell size [57].
A total of 17 ERFs highly expressed in the leaf might play
different roles from the shoot-specific expressed members,
involving the leaf development of the paper mulberry.

BBX proteins are key factors in regulatory networks
controlling growth and developmental processes that
include seedling photomorphogenesis, photoperiodic
regulation of flowering, shade avoidance, and responses
to biotic and abiotic stresses [58]. Their functions are
not totally redundant, as judged by the fact that some
DBBs were apparently implicated in light signal trans-
duction in a negative manner, whereas others were im-
plicated in a positive manner with regard to light-
induced inhibition of elongation of hypocotyls [59]. For
instance, BBX25 and BBX24 function as transcriptional
co-repressors forming inactive heterodimers with HY5
(a bZIP TF) down regulating BBX22 expression for the
fine-tuning of light-mediated seedling development
[60]. Therefore, two leaf-specific expressed DBBs were
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considered to involve in the photomorphogenesis of the
paper mulberry.

AtDof control the procambium formation during leaf
development [9] and its homologous in the paper mul-
berry may function in the formation of procambium.
TCP3, a model of CIN-like TCPs of Arabidopsis, plays
important roles in the signaling pathways that generate
different leaf forms without having any lethal effects on
shoots by directly activating the expression of miR164,
AS1, IAA3/SHY2, and SAUR [61]. In addition, analysis of
tecp9 and tcp20 mutants exhibits an antagonistic function
of TCP9 and TCP20 proteins in the control of leaf
development via the jasmonate signaling pathway [62].
Recent study reveal that TIE1, as a major modulator of
TCP activities during leaf development, may interact
with both TCPs and TPL/TPRs to form transcriptional
repressor complexes to repress the expression of TCP
target genes, thus preventing the cells in young leaves
from undergoing differentiation. In mature leaves,
TIEI expression is decreased and the activities of TCP
proteins may not be inhibited by TIE1. Therefore, the
downstream genes of TCPs are activated to promote cell
differentiation. Overexpression of TIE1 leads to hypo-
nastic and serrated leaves, whereas disruption of TIEI
causes epinastic leaves [63]. So, 5 highly expressed TCPs
in the leaf might involve in the regulation of leaf forms
of the paper mulberry (Figure 8).

In several land plants, G2-like TFs are required for
chloroplast development. Double mutants of glkl and
glk2 Arabidopsis accumulate abnormal levels of chloro-
phyll precursors and constitutive GLK gene expression
leads to increased accumulation of transcripts for an-
tenna proteins and chlorophyll biosynthetic enzymes.
GLK genes help to co-regulate and synchronize the ex-
pression of a suite of nuclear photosynthetic genes and
thus act to optimize photosynthetic capacity in varying
environmental and developmental conditions [64].
Three G2-likes were leaf-specific expression and its
three paralogous were shoot-specific expression which
suggested their different functions during chloroplast
development in the leaf and shoot of the paper mul-
berry. However, there were also 5 G2-likes that exhibited
the root-specific expression, which implied their differ-
ent roles in the root growth of the paper mulberry and
the essentiality of further study.

Collectively, our results indicated that leaf-specific ex-
pression TFs were focus on the families which played sig-
nificant roles in the leaf development, such as AP2/EREBP,
bHLH, GRFs, TCPs, as well as the families functioned in
photomorphogenesis and photosynthesis, like DBBs,
G2-like and so on. Together with C2H2, MYB, NAC and
WRKY, all of these leaf-specific expressed TFs corporately
regulated the leaf development, photosynthesis and carbo-
hydrate metabolism in the paper mulberry (Figure 8).
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Conclusion

Our study is the comprehensive transcriptome-wide
identification of TFs in the paper mulberry without gen-
ome information as reference. More importantly, a large
numbers of TFs regulated the lateral organ growth are
tissue-specific expression, which may contribute for the
developed lateral roots, more branches and rapid growth
of the paper mulberry. Of course, the more specific
functional differentiation of those TFs need further
study. Transcriptomics-based identification of these TFs,
particularly the tissue-specific expression TFs genes,
provides important information for understanding the
development and transcriptional regulation of the paper
mulberry and leads to potential applications in the
development of genetically modified with the paper
mulberry.

Methods

Plant material and RNA extraction

Plantlets were cultured on MS culture media in an artificial
climatic chamber kept at 26°C and a 14/10 h photoperiod
(day/night). In this study, a mixed sampling strategy was
adopted to eliminate differences between individuals.

Total RNA was isolated with TRIzol® Reagent (Life tech-
nologies, Shanghai, China) from each sample according to
the manufacturer’s instruction. It was treated with RNase-
free DNase I (Takara, Dalian, China) to remove the
residual DNA. RNA quality and purity were assessed with
0OD260/230 ratio and RNA integrity number (RIN) by
using the NanoDrop 2000 (Thermo Fisher, Waltham,
USA) and the Agilent 2100 Bioanalyzer (Agilent Tech-
nologies, Santa Clara, USA), respectively.

Sequence retrieval, identification, classification and
expression analysis of TFs

Raw sequence data were generated by Illumina pipeline
and have been available in NCBI's Short Read Archive
(SRA) database (http://www.ncbinlm.nih.gov/Traces/sra/
sra.cgi) under accession number SRP029966. All of the
[umina reads generated from different cDNA libraries
were de novo assembled with Trinity program to form the
global transcriptome of the paper mulberry [22]. For the
functional annotation, unigenes were firstly aligned by
Blastx to protein databases nr (E < le-5), retrieving pro-
teins with the highest sequence similarity to the given uni-
genes along with their functional annotations. After
getting annotation result for every unigene, all of the TFs
of the paper mulberry were identified and classified into
different families based on their DNA-binding domains
and other conserved motif [18]. Based on the alignment
results of orthologous in the NCBI using the Blastx tool,
the TFs would be determined whether they contained the
complete ORF. In addition, all of the TF families’
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abbreviations presented in this paper were referenced to
Plant TFDB3.0 [18].

For gene expression analysis, the expression level of
each TF in each sample was calculated by quantifying
the number of Illumina reads that mapped to transcrip-
tome of the paper mulberry. The raw gene expression
counts were normalized using the RPKM method (Reads
per kb per million reads).

Phylogenetic analysis of TF families

TFs with the completed ORF of CAMTA, VOZ and
Whirly families were used to do phylogenetic analysis.
The TF family protein sequences of Amborella trichopoda,
Arabidopsis thaliana, Brachypodium distachyon, Can-
nabis sativa, Citrullus lanatus, Fragaria vesca, Linum
usitatissimum, Nelumbo nucifera, Oryza sativa subsp. Ja-
ponica, Prunus persica, Sorghum bicolor and Vitis vinifera
were downloaded from Plant Transcription Factor Data-
base (http://planttfdb.cbi.pku.edu.cn/index.php). The TFs
of Morus notabilis were searched from the Morus Ge-
nome Database (http://morus.swu.edu.cn/morusdb/). The
information of these TFs was listed in Additional file 6:
Table S1. Phylogenetic and molecular evolutionary ana-
lyses were conducted using MEGA (version 5.0) with
pairwise distance and Neighbor- Joining algorithm. The
evolutionary distances were computed using the p-dis-
tance method and were used to estimate the number of
amino acid substitutions per site. The reliability of each
tree was established by conducting 1500 bootstrap sam-
pling steps.

Identification of differentially expressed TFs

For screening of differentially expressed TFs, p value
corresponds to differentially expressed genes (DEGs)
was obtained via a general Chi squared test that was
performed by using IDEG6 (http://telethon.bio.unipd.it/
bioinfo/IDEG6/). The threshold of p value in multiple
tests was checked through manipulating the false discov-
ery rate (FDR) value. The TF with ratio of RPKM be-
tween samples of more than 2 (Fold change >2) and the
FDR<0.01 was taken as the significantly difference
expressed TF. The MeV (Multiexperiment Viewer, v4.9)
was used to make the heat map and expressing pattern
classification.

Validation by qPCR

Real time PCR was adopted to validate the DEGs identi-
fied in analysis of the RNA-seq data. Ten TFs were chosen
for verification (see Additional file 5: Table S2). RNA used
for validation was the same as that isolated for RNA-seq.
First-strand ¢cDNA for each sample was made from 1 pg
of total RNA using SuperScript II reverse transcriptase
(Takara, Dalian, China) following the manufacturer’s re-
commendations and diluted 3 times before use in PCR.
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Gene-specific primers based on the selected considerate
unigenes were subsequently designed using the Primer
premier 5.0 program and are list in Additional file 5:
Table S2. Real-Time PCR reaction condition and volume
was performed as described by in our former study [22].
Relative transcript levels for each sample were obtained
using the comparative cycle threshold method using the
cycle threshold value of the GAPDH gene for each sample
as a standard.

Additional files

Additional file 1: Table S4. The expression profile of all the TFs in
paper mulberry.

Additional file 2: Figure S1. The differentially expressed TFs distributed
in every family.

Additional file 3: Table S5. The expression profile of the TFs with
differential expression among root, shoot and leaf.

Additional file 4: Table S6. Differentially expressed TF families with
complete ORF in paper mulberry.

Additional file 5: Table S2. The primers designed for the selected TFs
and used for gPCR.

Additional file 6: Table S1. The accession number and the sequence
information of the TFs from the selected species. TFs of CAMTA, VOZ and
Whirly families of Amborella trichopoda, Arabidopsis thaliana,
Brachypodium distachyon, Cannabis sativa, Citrullus lanatus, Fragaria vesca,
Linum usitatissimum, Nelumbo nucifera, Oryza sativa subsp. Japonica,
Prunus persica, Sorghum bicolor and Vitis vinifera were downloaded from
Plant Transcription Factor Database (http://planttfdb.cbi.pku.edu.cn/index.
php). The TFs of Morus notabilis were searched from the Morus Genome
Database (http://morus.swu.edu.cn/morusdb/). All the TFs were re-named
for the convenience of phylogenetic analysis.
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