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Abstract

Background: The western flower thrips (Frankliniella occidentalis [Pergande]) is one of the most
important insect herbivores of cultivated plants. However, no pesticide provides complete control
of this species, and insecticide resistance has emerged around the world. We previously reported
the important role of jasmonate (JA) in the plant's immediate response to thrips feeding by using
an Arabidopsis leaf disc system. In this study, as the first step toward practical use of JA in thrips
control, we analyzed the effect of JA-regulated Arabidopsis defense at the whole plant level on thrips
behavior and life cycle at the population level over an extended period. We also studied the
effectiveness of JA-regulated plant defense on thrips damage in Chinese cabbage (Brassica rapa
subsp. pekinensis).

Results: Thrips oviposited more on Arabidopsis JA-insensitive coil-I mutants than on WT plants,
and the population density of the following thrips generation increased on coil-/ mutants.
Moreover, thrips preferred coil-] mutants more than WT plants. Application of JA to WT plants
before thrips attack decreased the thrips population. To analyze these important functions of JA in
a brassica crop plant, we analyzed the expression of marker genes for JA response in B. rapa. Thrips
feeding induced expression of these marker genes and significantly increased the JA content in B.
rapa. Application of JA to B. rapa enhanced plant resistance to thrips, restricted oviposition, and
reduced the population density of the following generation.

Conclusion: Our results indicate that the JA-regulated plant defense restricts thrips performance
and preference, and plays an important role in the resistance of Arabidopsis and B. rapa to thrips
damage.
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Background

Insect attack is one of the most important factors retarding
plant growth, decreasing crop productivity, and causing
other agricultural problems. A constitutive and inducible
plant defense response confers immunity to herbivorous
insects [1-3]. Analyses at the molecular, metabolic, and
physiological levels [2,4] have focused on responses to
lepidopteran larvae (caterpillars) and aphids. Many anal-
yses of plant responses to feeding by caterpillars have
been conducted [e.g., [5-7]]. Caterpillars harm plants by
chewing-type feeding, the best understood of several feed-
ing modes. Although caterpillar feeding and mechanical
wounding are physically similar, plants show obvious
specific responses to caterpillar feeding [8]. Some of these
responses are induced by insect gut and oviposition
[9,10]. The sucking-type feeding by aphids and whiteflies
is also well understood. However, in contrast to caterpillar
feeding, sucking-type feeding rarely causes mechanical
damage to the host plant. Rossi et al. [11] reported that
the nematode resistance (R) gene Mi-1 of tomato is
involved in resistance to the potato aphid. Mi-1 also con-
fers resistance to whiteflies [12]. Other major classes of
insect feeding are also known. Leafminers feed within
leaves and stems, forming tunnels (mining-type feeding),
and thrips and spider mites feed by piercing and sucking
[13,14].

The western flower thrips (Frankliniella occidentalis |Per-
gande]) is one of the most important insect herbivores.
This tiny insect tends to occupy narrow crevices within or
between plant parts. The emergence worldwide of insecti-
cide resistance among western flower thrips makes them
difficult to control [15]. The thrips can also act as a vector
of tospoviruses such as tomato spotted wilt virus [16,17].
Damage by western flower thrips is increasing in many
countries; in particular, injury in greenhouse production
is serious [18-20]. Thus, the development of new methods
to control thrips damage by using the molecular mecha-
nisms of plant responses is needed.

Jasmonate (JA) has an important function in plant
responses to caterpillars and aphids [2]. Reymond et al.
[21] reported that the JA-insensitive coil-1 mutant of Ara-
bidopsis is less resistant to cabbage butterfly (Pieris rapae).
Ellis et al. [22] reported that coil-1 mutants are less resist-
ant to aphids, but the constitutive JA-signaling mutant
cevl is more resistant. Our recent study focusing on Arabi-
dopsis response to thrips feeding also indicated the impor-
tant function of JA [23,24], and comparative
transcriptome analyses suggested a strong relationship
between JA treatment and thrips feeding [23]. Several
groups reported that JA-regulated gene expression is
induced by spider mites feeding [25,26], which have a
similar feeding mode to that of thrips. De Vos et al., using
Arabidopsis genome arrays [27], also reported the impor-
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tance of JA for feeding-inducible gene expression by thrips
and cabbage butterfly attack. Interestingly, they indicated
the existence of common genes in the response to both
feeding modes, and genes specific to each feeding mode.

Arabidopsis is a widely studied experimental plant for
which many useful genomic resources and much other
information are available. However, it is not suitable for
analyzing Arabidopsis responses to caterpillars, which can
quickly eat an entire plant. On the other hand, with the
tiny western flower thrips, it is possible to analyze Arabi-
dopsis responses to thrips attack over generations.

In this study, we focused on the effect of JA-regulated Ara-
bidopsis defense at the whole plant level on thrips behavior
and life cycle at the population level. We analyzed the
long-term effects of JA-regulated plant defense on thrips
oviposition, the population density of the following
thrips generation (larvae and pupae), and preference
between Arabidopsis WT and JA-insensitive coil-1 mutant
host plants. The results show important effects of the JA-
dependent plant defense on both thrips performance and
preference. In addition, application of JA to Arabidopsis
WT plants before thrips attack decreased the thrips popu-
lation. Expression analyses of marker genes for JA
response in Chinese cabbage (Brassica rapa subsp. pekinen-
sis) suggested the occurrence of a JA-dependent defense
against thrips attack in this plant, too. The JA content of B.
rapa was significantly increased after thrips feeding, and
application of JA to plants enhanced their resistance to
thrips.

Results

Importance of jasmonate-regulated Arabidopsis defense
in resistance to thrips attack

We recently reported the role of JA in the short-term
response of Arabidopsis to thrips feeding on leaf discs over
1 or 2 days [23,24]. To analyze its role in long-term
defense at the whole plant level, we compared the feeding
damage between whole WT plants and JA-insensitive coil-
1 mutants [28] inoculated with 20 thrips at 3 weeks. The
coil-1 mutants had been completely devoured by 4 weeks
after inoculation, whereas WT plants were flowering and
producing siliques (Fig. 1A). These results suggest the
importance of JA-regulated defense in the resistance of
Arabidopsis to thrips attack.

To understand why coil-1 mutants showed low resistance
to thrips attack, we first analyzed the number of thrips
eggs on the WT plants and coil-1 mutants to compare the
asexual oviposition performance of thrips. Arabidopsis
rosette leaves were cut into leaf discs with 8-mm diameter.
One adult female thrips was put on each disc and allowed
to feed and oviposit. Because the females lay in the epider-
mal or mesophyll cells [29], we stained the eggs with
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Figure |

Function of JA in plant resistance to thrips feeding.
Twenty adult females fed on 3-week-old WT plants (left) or
coil-1 mutants (right). Typical plants after 4 weeks of feeding
are shown.

trypan blue to count them. As we reported previously
[23], the area of feeding scars on coil-1 mutants was
greater than that on WT plants (data not shown). The
number of eggs on the coil-1 discs was double that on the
WT discs (Fig. 2A-C). The decreased resistance of these
coil-1 mutants could explain the increased oviposition
rate on these plants.

Effect of jasmonate-dependent Arabidopsis defense on
thrips population

Because the JA-regulated defense affected oviposition, we
analyzed its effect on the subsequent generation. We put
20 adult females on WT and coil-1 plants and counted
adults, larvae, and pupae after 2 weeks. We covered the
soil with fine zirconia beads 0.4 mm in diameter to find
thrips easily. Thrips fed much more on coil-1 mutants
than on WT plants (Fig. 3A, B). About 14 of the original
adult females remained on coil-1 mutants, but only about
2 remained on WT plants (Fig. 3C). Similarly, while more
than 190 larvae lived on the coil-1 mutants, only about 20
lived on the WT plants (Fig. 3D). We also found 5 times
as many pupae on coil-1 mutants than on WT plants (Fig.

http://www.biomedcentral.com/1471-2229/9/97

Number of eggs per leaf disc

Figure 2

Effect of JA-dependent plant resistance on thrips ovi-
position on leaf discs. One adult female fed per leaf disc of
3-week-old WT plants (A) or coil-I mutants (B) for 4 days.
Eggs oviposited on leaf discs were stained with trypan blue.
Photos show typical leaf discs after staining; some eggs are
shown by red arrowheads. (C) Number of eggs per leaf disc
(mean + SD) based on more than |10 independent determina-
tions. Asterisks indicate significant difference (Student's t-
test), ¥**p < 0.001.

3E). These results demonstrate that the JA-regulated
defense can determine thrips population size.

Next, we analyzed the effect of JA-regulated plant defense
on host plant preference of thrips. We placed 100 adult
females halfway between WT and coil-1 plants (Fig. 4A)
and counted the thrips on each plant after 2 days. The
coil-1 mutants had many more thrips than the WT plants
(Fig. 4A): > 70% versus about 5% (y2test, y2=175.879, df
=1, p < 0.001; Fig. 4B); the remaining thrips roamed the
surroundings. These results indicate that the JA-regulated
plant defense influences the host plant preference of
thrips.

We next analyzed the effect of JA treatment on Arabidopsis
resistance to thrips attack. JA-treated plants had half as
many eggs as untreated plants (Fig. 5A). The numbers of
adults and larvae showed a similar contrast (Fig. 5B, C).
Together with the results from the coil-1 mutants, these
results indicate that the JA-dependent defense response in
Arabidopsis plays an important role in resisting thrips.

Jasmonate-dependent plant resistance to thrips in B. rapa
To search for JA-dependent resistance to thrips in a
brassica crop, we analyzed the function of JA in B. rapa,
one of the most important brassica crops in the world,
especially in Asia. A search of the B. rapa EST database
(National Center for Biotechnology Information)
revealed putative counterparts of Arabidopsis JA-inducible
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Figure 3

Effect of the JA-dependent plant defense on thrips population. (A, B) Twenty adult females fed on 3-week-old WT
plants (A) or coil-I mutants (B) for 2 weeks. (C-E) Number of adults (C), larvae (D), and pupae (E) after 2 weeks; mean + SD
based on five independent determinations. Asterisks indicate significant differences (Student's t-test), **p < 0.005, ***p < 0.001.

marker genes. We analyzed the expression of marker genes
of the JA pathway corresponding to AtVSP2 and AtLOX2,
and genes corresponding to allene oxide synthase (AtAOS)
and allene oxide cyclase 2 (AtAOC2), both of which encode
enzymes that catalyze JA biosynthesis as shown by previ-
ous reports (Fig. 6E) [30,31]. Expression of the brassica
counterparts, BrVSP2, BrLOX2, BrAOS, and BrAOC2, was
induced by thrips feeding (Fig. 6A-D). In addition, the JA
content of B. rapa plants infested by thrips was signifi-
cantly higher than that of control plants (one-way
ANOVA, F = 13.938, df = 2, p < 0.01; Fig. 6F). These data
suggest the involvement of JA in the response to thrips
feeding in B. rapa also.

To confirm the functional role of JA in plant resistance to
thrips attack in B. rapa, we analyzed the effect of JA treat-
ment on thrips feeding. Injury from thrips attack was
lower in plants treated with JA than in untreated plants
(Fig. 7A-D), by a factor of about 15 (Fig. 7E). These results
indicate that the JA-dependent plant defense against
thrips is conserved in B. rapa.

We further analyzed JA's effect on thrips oviposition.
Rosette leaves of B. rapa were cut into leaf discs with 8-mm
diameter. One adult female thrips was put on each leaf
disc and allowed to feed and oviposit for 4 days. Applica-
tion of JA dose-dependently decreased the number of eggs
(one-way ANOVA, F = 10.367, df = 4, p < 0.001; Fig. 8A).
Finally, we analyzed the effect of JA on the next genera-
tion. JA treatment of plants restrained the thrips popula-
tion very effectively (Fig. 8B, C). These results clearly
indicate the important role of JA in resistance to thrips
attack in B. rapa also.

Discussion

The phytohormone JA regulates part of a plant's basal
defense system. Numerous studies have examined the
functions of JA in plant responses to pathogen attack,
mechanical wounding, UV irradiation, ozone exposure,
osmotic stress [32,33], and insect feeding [34,35]. The JAZ
(jasmonate ZIM-domain) family of repressors was identi-
fied in Arabidopsis as a negative regulator of JA signaling
[36-38]. JAZ interacts with COI1 protein, degrades, and so
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Effect of the JA-dependent plant defense on host
plant preference of thrips. (A) Three-week-old WT
plants (left) and coil-/ mutants (right) were grown at each
end of a pot. One hundred adult females were collected in a
I-mL tube and laid between the plants. Photo shows plants
after 2 days. (B) Number of adult thrips on each plant after 2
days. Mean % SD based on five independent determinations.
Asterisk indicates a significant difference between the two
plants, y2 test, ***p < 0.001. The remaining thrips roamed the
surroundings were excluded from the statistical analysis.

induces JA-responsive gene expression. Overexpression of
a modified form of JAZ1 significantly decreased plant
resistance to the beet armyworm (Spodoptera exigua) [39].
Resistance by coil-1 mutants to cabbage butterfly caterpil-
lar (Pieris rapae) was similarly decreased [21].

However, these analyses focused on plant responses to
lepidopteran larvae. Because caterpillars quickly devour
Arabidopsis plants and change to butterflies or moths,
which fly away, it is difficult to analyze the Arabidopsis
response and insect performance over generations on the
one Arabidopsis plant. For these reasons, we used thrips.
We found differences in symptoms between WT plants
and JA-insensitive coil-1 mutants: thrips had demolished
coil-1 mutants after 4 weeks, yet WT plants had flowers
and siliques (Fig. 1A). As it seemed unlikely that only 20
adult thrips could kill a plant in 4 weeks, we also studied
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the effect of a JA-dependent Arabidopsis defense on ovipo-
sition. The number of eggs on coil-1 was about double
that on the WT (Fig. 2A-C). As we described previously
[23], the area of feeding scars in coil-1 was much greater
than that on WT plants (data not shown). The greater
number of eggs on coil-1 might result from the better per-
formance of adult thrips. Alternatively, a difference in
plant metabolites between WT and coi1-1 might influence
oviposition. Annadana et al. [40] reported that cysteine
protease inhibitors restrict oviposition by western flower
thrips. Wounding and JA induce many genes encoding
cysteine protease inhibitors [41], including Arabidopsis
cystatin-1 (AtCYS1) [42]. Cysteine protease inhibitors
could explain the difference in thrips oviposition between
WT and coil-1 plants.

Next, we analyzed the effect of JA-regulated plant defense
on the population density of the following generation of
thrips. Surprisingly, the population increased around 10-
fold after 2 weeks on the coi1-1 mutants, but changed little
on the WT plants (Fig. 3A-E). Most of the thrips on coil-1
were larvae. We found some dead larvae on the WT plants
but none on coil-1 (data not shown). These results indi-
cate that the JA-dependent plant defense in WT plants
reduces the survival of thrips larvae. We found about 7
times as many adult thrips on coil-1 as on the WT, which
indicates that thrips can survive longer on coil-1. We
attribute the much greater population of thrips on coil-1
to this increased longevity and the greater egg production
on coil-1 mutants, and the higher mortality of larvae on
the WT plants. Analysis of the hatching rate of eggs could
also help explain the increased population on coil-1.
Barth et al. [43] reported that a double knock-out mutant
of Arabidopsis lacking two major genes for myrosinase
(tggl, tgg?), which degrades glucosinolates to toxins such
as isothiocyanates, showed decreased resistance to the
cabbage looper (Trichoplusia ni) and tobacco hornworm
(Manduca sexta). Sasaki-Sekimoto et al. [33] reported that
JA regulates glucosinolate biosynthesis. Recently, Shroff et
al. [44] showed that the preferential allocation of glucosi-
nolates to the periphery of leaves may play a key role in
the defense of leaves by creating a barrier to chewing her-
bivores, which frequently approach leaves from the edge.
Several other compounds protect plants against insect
pests. Konno et al. [45] reported that cysteine proteases
such as papain, ficin, and bromelain showed toxicity to
two notorious pests, cabbage armyworm (Mamestra brassi-
cae) and cotton leafworm (Spodoptera litura). They later
reported that sugar-mimic alkaloids were toxic to cabbage
armyworm [46]. Further analyses will help to explain
which kinds of compounds, regulated by JA, reduce thrips
performance.

The choice test showed that coil-1 mutants attracted 14
times as many thrips as did WT plants (Fig. 4A, B). As a
result, coil-1 mutants suffered more damage. Aharoni et
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Figure 5

Effect of JA-induced Arabidopsis defense response on thrips population. Twenty adult females fed on 3-week-old WT
plants. Either 50 1M JA or water (control) was applied 2 days before thrips were introduced. After 2 weeks, eggs (A), adults
(B), and larvae (C) were counted. Mean * SD based on five independent determinations. Asterisks indicate significant differ-

ences (Student's t-test), *p < 0.05, ***p < 0.001.

al. [47] reported that overexpression of a gene for a dual
linalool/nerolidol synthase (FaNES1) in Arabidopsis,
which produces those two terpenes, enhances avoidance
by green peach aphids (Myzus persicae). Interestingly,
these FaNES1-overexpressing plants also attracted carniv-
orous predatory mites (Phytoseiulus persimilis) [48]. JA-
deficient spr2 tomato plants emit less herbivory-induced
volatiles and attract more tobacco hornworm and tobacco
whitefly (Bemisia tabaci) for oviposition [49]. In addition
to the volatile components, many other plant metabolites
such as nutrient factors and toxic compounds are reported
as stimulants or deterrents of host plant preference [50].
These metabolic components may explain the higher pref-
erence of the thrips for coil-1 mutants or higher avoidance
of WT plants.

The western flower thrips is one of the most serious insect
herbivores in the world. It is also a virus vector. Because of

its thigmokinetic behavior and the emergence of insecti-
cide resistance, it is difficult to control with insecticides
[15]. Therefore, new control methods are urgently
needed. Application of JA to WT Arabidopsis plants before
thrips damage decreased the thrips population (Fig. 5A-
C). We previously reported that thrips feeding induced in
Arabidopsis expression of AtVSP2 and AtLOX2 (marker
genes of the JA pathway) and AtAOSI and AtAOC2
(encoding allene oxide synthase and allene oxide cyclase),
which catalyze JA biosynthesis in Arabidopsis [23]. Here,
the expression of their counterparts in B. rapa was also
induced by thrips feeding (Fig. 6A-D), as was the JA con-
tent (Fig. 6F), as reported previously in Arabidopsis [23].
These results indicate that the JA-dependent defense sys-
tem is conserved between Arabidopsis and B. rapa. Interest-
ingly, JA application also greatly decreased the amount of
feeding scars in B. rapa (Fig. 7A-E), and decreased egg pro-
duction and thrips population size (Fig. 8A-C). The effect
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Figure 6

Involvement of JA signaling in B. rapa response to thrips feeding. (A-D) Expression of marker genes for JA response
in B. rapa was induced by thrips feeding. BrVSP2 (A), BrLOX2 (B), BrAOS (C), and BrAOC2 (D) are brassica counterparts of Arabi-
dopsis marker genes of the JA pathway and JA biosynthesis. Twenty-five adult females fed on five 2-week-old plants per pot.
After 0, |, 2, and 5 days, total RNA was prepared from the plants with (+Feeding) or without (-Feeding) thrips, and first-strand
cDNA was synthesized for PCR analysis. The expression level of each gene was normalized to the expression of BrACT2 (con-
trol). Mean * SD based on three replications. (E) Proposed model of the biosynthesis of JA in Arabidopsis. (F) Effect of thrips
feeding on the biosynthesis of JA in B. rapa. Ten adult females fed on a 2-week-old plant (+Feeding). A control plant was kept
without thrips (-Feeding). At the beginning of the experiment (0 h) and after | day from the start of feeding, | g of plant tissue
was sampled for measurement of endogenous JA (JA + methyl JA). Means + SD of three independent measurements. Different
letters indicate statistically significant differences between treatments (Tukey-Kramer HSD test; p < 0.05).
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Figure 7

Effect of JA application on plant resistance to thrips. Twenty adult females fed on 2-week-old B. rapa plants for 10 days.
Water (control; A, C) or 50 uM JA (B, D) was applied | day before thrips were introduced. (E) Mean + SD of area of feeding
scars based on more than |10 independent determinations. Asterisk indicates significant difference (Student's t-test), *p <

0.005.

of JA application was much higher in B. rapa than in Ara-
bidopsis, but the biological significance of this difference is
unclear. Several groups have combined JA-mediated tran-
scriptome analyses with metabolomics data [33,51]. Fur-
ther comparative analyses between B. rapa and Arabidopsis
using these approaches are needed to explain the differ-
ences in plant resistance. The genome of B. rapa is being
sequenced http://brassica.bbsrc.ac.uk/. In the near future,
Brassica 'omics' analyses using genome information will
be available. Comparative expression analyses between B.
rapa and Arabidopsis suggested the existence of similar and
specific responses to pathogen infection in these species
[52].

Jasmonate application to Nicotiana sylvestris plants
decreased plant biomass [53]. Overexpression of AtJMT in
Arabidopsis plants, which leads to elevated JA level [54],
decreased the flower number and total seed weight signif-
icantly. Importantly, Thaler et al. showed that although

application of JA in tomato fields successively decreased
naturally occurring thrips, spray application at low con-
centration (0.5 mM) decreased neither plant biomass nor
fruit production [55]. However, the effect of low JA con-
centration on thrips control is lower than that of high JA
concentration (1.5 mM). JA application incurs costs for
plant fitness, and also activates plant defense, which must
be balanced for optimum production. The screening of
the specific compounds to regulate plant defense to insect
attack will be a promising approach.

Conclusion

In this study, as the first step toward practical use of JA in
thrips control, we analyzed the effect of JA-regulated Ara-
bidopsis defense at the whole plant level on thrips behavior
and life cycle at the population level. Our results indicate
that JA-regulated Arabidopsis defense restricts both thrips
performance and preference. Thrips performance was
evaluated from oviposition and the population density of

Page 8 of 12

(page number not for citation purposes)


http://brassica.bbsrc.ac.uk/

BMC Plant Biology 2009, 9:97

>

12

http://www.biomedcentral.com/1471-2229/9/97

104-- l -------
A

8- -- I

Number of eggs per leaf disc
T

[Jeontrol
- |[C]JA treatment [

a4d-- - T B ]

24 -- e 51

o [ |

0 10 100 1000 uM
B C
2.0 25
£ [ control £ '[ [ control
= [JJA treatment || & o5 --- AC]JA treatment
§1654------ } ————————————————— 5 J
o o
i g 15
g |1 S
®104---f 1 feeeeieiias 5
Y— y—
o] D T0ep===|  |occcccccccacaaa
& 2
E054---  |e-memememem-- £
S 5 bt---|  |e-eeememeeene--
= . =
I__l dedde
0 0 I

Figure 8

Effect of JA-induced B. rapa defense response on thrips population. (A) Water (control) or 10, 100, or 1000 uM JA
was applied to 2-week-old B. rapa plants | day before thrips were introduced. One adult female fed on each leaf disc for 4 days.
Eggs were stained with trypan blue. Mean + SD of eggs per leaf disc based on 10 independent determinations. Different letters
indicate statistically significant differences between treatments (Tukey-Kramer HSD test; p < 0.05). (B, C) Twenty adult females
fed on 2-week-old WT plants for 2 weeks. Water (control) or 50 uM JA was applied | day before thrips were introduced.
After 2 weeks, adults (B) and larvae (C) were counted. Mean * SD based on five independent determinations. Asterisks indi-
cate significant differences (Student's t-test), *p < 0.05, ***p < 0.001.

the following generation. The effect of JA-regulated
defense on thrips population density was considerable.
This was due to the effects on thrips longevity, egg produc-
tion, and mortality of larvae. Fully understanding the
plant defense against thrips attack will require determina-
tion of the actual plant metabolites that restrict thrips per-
formance and preference.

In B. rapa also, induction of expression of marker genes
for the JA pathway and increased JA content after thrips
damage support the occurrence of a JA-dependent defense
against thrips attack. JA application to B. rapa greatly
decreased feeding damage on account of decreased egg
production and thrips population density. The existence
of diverse targets of JA-regulated plant defense indicates
that JA concurrently regulates multiple responses involved
in plant resistance to thrips damage. JA-regulated plant

defense could be a good target for practical applications to
control thrips.

Methods

Plant materials and cultivation

Wild-type (ecotype Col-0) Arabidopsis plants and the JA
signaling and biosynthesis mutant coil-1 were grown in
soil as described previously [56]. Briefly, seeds were sown
on sterile soil in pots, moistened, and held at 4°C for 7
days in the dark to synchronize germination. The pots
were then transferred to 22°C with a long-day photope-
riod (16 h light/8 h dark). Plants at the four-leaf stage
were transferred individually to pots and grown to the
rosette stage. Chinese cabbage (B. rapa subsp. pekinensis
cv. Kyoto No. 3, Takii Seed Co. Ltd., Kyoto, Japan) plants
were grown similarly.
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Identification of coil-1 plants

Homozygous coil-1 plants were selected according to PCR
amplification of a sequence of the Arabidopsis COI1 gene
followed by digestion with Bsml (TOYOBO, Osaka,
Japan). Within the amplified PCR product, the Bsml
restriction site is present only in the coil-1 mutant. Prim-
ers were as follows: forward, 5'-GGAAACAGGAGCCCGA-
GATC-3'; reverse, 5'-TGGATGTTTCTCGGAGCAGC-3'.

Thrips attack

Laboratory colonies of Frankliniella occidentalis were main-
tained in a closed environmental chamber, as described
previously [57]. The assay used female adults 14-21 days
after emergence from the pupal stage. The adults were
starved for 2 to 3 h before feeding on test plants. Twenty
adult females were allowed to feed on each whole plant in
a cylindrical acryl chamber with air ventilation windows
covered with a fine mesh.

Jasmonate treatment

Pots holding 3-week-old Arabidopsis plants or 2-week-old
B. rapa plants grown in soil were transferred into a cylin-
drical acryl chamber containing 100 uM JA solution.
Other experiments to count the number of eggs on B. rapa
leaf discs used 10, 100, or 1000 uM JA solution. JA treat-
ment was carried out for 2 days before the beginning of
thrips attack.

Counting of thrips eggs

Leaf discs with 8-mm diameter were cut with a biopsy
punch (Kay Industries, Oyana, Japan). The discs were
floated on 1.5 mL of distilled water in wells of a white 1.5-
mL sample tube stand (Assist, Tokyo, Japan). A single
adult female that had been starved for 2 to 3 h was placed
on each leaf disc. The sample tube stand was covered with
ABI Prism Optical Adhesive Cover (Applied Biosystems,
Foster City, CA, USA), and a few tiny holes for air were
made with a 27-G fine injection needle. Thrips were
allowed to feed and oviposit for 4 days at 22°C. Eggs were
stained with trypan blue as described previously [58].

Counting of the thrips population

Three-week-old Arabidopsis plants or 10-day-old B. rapa
plants grown in soil covered with fine zirconia beads
(Nikkato Co., Osaka, Japan; 0.4 mm in diameter to make
it easy to find the thrips) were placed in a cylindrical acryl
chamber as above. Twenty adult females were put on each
plant. After 2 weeks, the adults, larvae, and pupae were
counted.

Choice assay

Three-week-old WT and coil-1 plants grown in soil cov-
ered with fine zirconia beads in a white pot (255 x 145 x
120 mm; Appleware, Osaka, Japan) were used for a choice
assay in a cylindrical acryl chamber as above. Each pot

http://www.biomedcentral.com/1471-2229/9/97

held four plants (two of each type) separated by 150 mm.
One hundred adult females were deposited halfway
between the plants and allowed to move freely. After 2
days, the thrips on each plant were counted.

Quantitative reverse transcription PCR

Twenty-five female adult thrips fed on five 2-week-old B.
rapa plants at the rosette stage for 1, 2, or 5 days in a closed
container with air vents. Experiments were repeated twice.
After feeding, the plants were frozen in liquid nitrogen.
Total RNA (2 pg) isolated with Trizol reagent (Invitrogen,
Carlsbad, CA, USA) and an RNeasy MinElute Cleanup Kit
(Qiagen, Valencia, CA, USA) was treated with RNase-free
DNase (Takara) to eliminate genomic DNA. First-strand
cDNA was synthesized with random oligo-hexamers and
Superscript III reverse transcriptase according to the man-
ufacturer's instructions (Invitrogen). Quantitative real-
time PCR was carried out with Power SYBR Green PCR
Master Mix (Applied Biosystems) using the first-strand
cDNA as a template on a sequence detector (ABI Prism
7900HT, Applied Biosystems). Expression of BrACT2 was
used for normalization. Nucleotide sequences of the gene-
specific primers were as follows: BrVSP2 (forward, 5'-
GACTCCAAAACGGTGTGCAAA-3; reverse, 5'-
AGGGTCTCGTCAAGGTCAAAGA-3'); BrLOX2 (5'-TCCC
CACTTCCGCTACACC-3"; 5'-AATACTTTCCGGGCCAGA
AAC-3'); BrAOS (5'-GATCTCCCCATCCGAACCAT-3"; 5'-
AACTCCTCGGGTTTTTGCITG-3'); BrAOC2 (5'-GCCG-
GTCTCTGTGTCTITGATC-3"; 5'-ACGGACAGGTGGCCAT-
AGTC-3'); and BrACT2 (5'-ACCCAAAGGCCAACAGAG
AG-3'; 5'-CTGGCGTAAAGGGAGAGAACA-3").

Jasmonate quantification

JA and its methyl ester were quantified as described previ-
ously [47], except that an HP6890 gas chromatograph fit-
ted to a quadrupole mass spectrometer (Hewlett-Packard,
Wilmington, DE, USA) was used. Approximately 1 g of
each B. rapa plant with or without thrips feeding was used
for quantification. Three independent samples were ana-
lyzed.

Measurement of the area of feeding scars

The area of thrips feeding scars on the surface of each B.
rapa leaf was measured using WinROOF software, version
5.8.1 (Mitani Corporation, Tokyo, Japan), on digitized
images taken under a VHX-200 digital microscope (Key-
ence, Osaka, Japan).

Statistics

The results of thrips oviposition, population density and
feeding activity were respectively subjected to Student's t-
test or analysis of variance (one-way ANOVA) followed by
Tukey-Kramer HSD test. The result from choice assay was
subjected to a y2 test; the null hypothesis was that thrips
exhibited a 50:50 distribution over WT and coil-1 plants.
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These analyses were performed the JMP software, ver. 5.1
(SAS Institute, Inc., Cary, NC, USA).

Accession numbers

The GenBank accession numbers for the genes mentioned
in this article are as follows: BrVSP2 (EX101964), BrLOX2
(EX100417), BrACT2 (EX137335), BrAOS (EX104579),
BrAOC2 (EX1254806).
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