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Abstract

Background: MicroRNAs (miRNAs) are ~22-nt small non-coding RNAs that regulate the
expression of specific target genes in many eukaryotes. In higher plants, miRNAs are involved in
developmental processes and stress responses. Sexual reproduction in flowering plants relies on
pollen, the male gametophyte, to deliver sperm cells to fertilize the egg cell hidden in the embryo
sac. Studies indicated that post-transcriptional processes are important for regulating gene
expression during pollen function. However, we still have very limited knowledge on the involved
gene regulatory mechanisms. Especially, the function of miRNAs in pollen remains unknown.

Results: Using miRCURY LNA array technology, we have profiled the expression of 70 known
miRNAs (representing 121 miRBase IDs) in Arabidopsis mature pollen, and compared the
expression of these miRNAs in pollen and young inflorescence. Thirty-seven probes on the array
were identified using RNAs isolated from mature pollen, 26 of which showed significant differences
in expression between mature pollen and inflorescence. Real-time PCR based on TagMan miRNA
assays confirmed the expression of 22 miRNAs in mature pollen, and identified 8 additional
miRNAs that were expressed at low level in mature pollen. However, the expression of | | miRNA
that were identified on the array could not be confirmed by the Tagman miRNA assays. Analyses
of transcriptome data for some miRNA target genes indicated that miRNAs are functional in pollen.

Conclusion: In summary, our results showed that some known miRNAs were expressed in
Arabidopsis mature pollen, with most of them being low abundant. The results can be utilized in
future research to study post-transcriptional gene regulation in pollen function.

Background

MicroRNAs (miRNAs) are ~22-nt noncoding RNAs proc-
essed from their precursors by RNase III enzyme Dicer,
which digests the hairpin structure in the precursor into
miRNA:miRNA* duplexes. One strand in the duplex
becomes mature miRNA that is incorporated with protein
factors to form RNA-induced silencing complexes (RISCs)
[1]. MiRNAs subsequently guide the RISCs to target
mRNA molecules, where they silence the expression of the

cognate genes by mRNA cleavage via the endoribonucle-
ase activity of Argonaute (AGO) protein or by translation
repression [2,3].

Cloning and bioinformatics approaches have identified
many miRNAs in different eukaryotic species [4,5]. Large
scale sequencing approaches have been employed to
explore small RNAs at the genome level [6]. Up to date,
there are 9539 miRNA entries in the miRBase (Release
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13.0, March 2009) http://microrna.sanger.ac.uk/, which

includes 187 miRNAs identified and confirmed in Arabi-
dopsis [7]. Arabidopsis miRNAs function as regulators in
a diverse range of processes including root, leaf and flower
development, stress response, pathogen responses and
mineral nutrient homeostasis [8-12].

Pollen plays the male role during sexual reproduction in
higher plants, therefore, how pollen develops and func-
tions has been intensively studied (reviewed in [13-15]).
The pollen grain, also referred to as the male gameto-
phyte, is a three-celled organism that is developed in the
anther from pollen mother cells (PMC) through meiosis
and two rounds of mitosis. Each PMC undergoes meiosis
to form four microspores in a tetrad that is enclosed in a
thick callose wall. The microspores are freed from the
thick wall by the action of callase, an enzyme secreted
from the tapetum layer of the anther, and become free
uninucleate microspores. Development of microspores
into pollen requires two mitotic divisions. The first mito-
sis is asymmetric and produces bicellular pollen that con-
sists of a large vegetative cell and a small generative cell.
The generative cell in bicellular pollen undergoes the sec-
ond mitosis to form the two sperm cells. The timing of the
second mitosis varies in different plant families. In Arabi-
dopsis, the second mitosis occurs within the anther and
produces a tricellular pollen grain. In most plant species,
mature pollen is released from the anther in a partially
dehydrated state. When it lands on the stigma, the pollen
grain hydrates and the pollen tube grows out from the
vegetative cell. The pollen tube extends through the trans-
mitting tract of the style by tip growth and delivers the two
sperm cells to the embryo sac to achieve double fertiliza-
tion [14]

The function of pollen during germination, tube elonga-
tion and interaction with the female component relies on
the proper regulation of gene expression. It is believed
that the transcripts required for these processes have been
produced and stored in mature pollen, and protein syn-
thesis rather than transcription is the key factor control-
ling the production of the required products [16,17].
Transcriptome studies have identified thousands of genes
expressed in different developmental stages of the male
gametophyte [17,18]. Proteomic analysis has also been
conducted to identify the functional products in mature
pollen [19]. However, our knowledge on the regulatory
link between the transcripts and protein products is very
limited. We have no information on whether important
regulators like miRNAs play any role in pollen function.
To fill this knowledge gap, we have conducted a large scale
analysis of miRNA expression in Arabidopsis mature pol-
len using miRNA array and real-time PCR techniques. Our
results indicated that ~60% of known Arabidopsis miR-
NAs are expressed in mature pollen, and most of them are
present at lower levels when compared with those in
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young inflorescence tissue. Our results also point out the
sensitivity and reproducibility of the two different tech-
niques. Based on our data, we question the effectiveness
of using the array technology for analyzing miRNA expres-
sion.

Results and discussion

Genes in RNA silencing pathway are expressed in mature
pollen

Our lack of knowledge of miRNA functioning in mature
pollen may be explained by inactivation of the RNA
silencing pathway or by functional redundancy. A pollen
transcriptome study by Pina et. al. (2005) suggested the
first possibility in Arabidopsis mature pollen. They have
shown that 15 genes in the RNA silencing pathway,
including members of DCL (Dicer-like), AGO, RNA-
dependent RNA polymerases (RDR) families, were absent in
mature pollen [18]. To examine this possibility, reverse
transcriptase PCR (RT-PCR) was used to inspect the
expression of all members of the DCL, AGO, RDR and
Double-stranded RNA binding protein (DRB) genes (Figure
1). The results indicated that most of the genes in RNA
silencing pathways were expressed in mature pollen, espe-
cially genes required for miRNA biogenesis and function
such as DCL1, AGO1 and DRBI1/HYL1. One possible
explanation for the discrepancy in these results could be
due to the different methods used to isolate pollen. Pina
et. al. [18] used Fluorescence-Activated Cell Sorting
(FACS) to isolate pollen grains to eliminate tissue con-
tamination, whereas samples used in this study was iso-
lated using a modified hand vacuum device [20]. To rule
out the possibility of RNA impurity due to tissue contam-
ination, ACTIN7 was used as a negative control in RT-
PCR. ACTIN? is strongly expressed in vegetative tissues,
but not expressed in pollen [21]. No product was detected
for ACTIN7 in our RNA samples using the same number
of cycles in PCR reactions as for other genes (see Addi-
tional file 1), indicating that the observed positive results
were not due to the tissue contamination. Results from
RT-PCR in this study and microarray data from two tran-
scriptome studies were further compared (see Additional
files 2). We conclude that the differences between these
results were mainly due to the limitation of the microarray
technology. Problems associated with sensitivity and
reproducibility have been reported for microarray analy-
ses, even for the ones conducted with manufactured
Affymetrix Gene Chips [22]. A comparison on the expres-
sion of these 15 genes between mature pollen and young
seedlings indicated that they have distinctive expression
patterns. Interestingly, most of these genes are relatively
more abundant in vegetative tissue than in pollen, except
AGOS5 and AGO9 (see Additional file 3). AGO5 is the only
member of the plant-specific MEL1 subfamily in Arabi-
dopsis. MEL1 is required for reproduction in rice [23],
however, AGO5 knock-out has no obvious phenotype in
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Figure |

Expression of RNA silencing pathway genes in Arabi-
dopsis mature pollen. ACT/(ACTINI) was used as a posi-
tive control to ensure the quality of RNA and cDNA. PCR
products amplified from cDNA are indicated by asterisks.
Sequences for the cDNAs were confirmed by cloning and
sequencing. PCR products at higher molecular weight in each
sample were amplified from genomic DNA. DCL: Dicer-like;
AGO, Argonaut; RDR, RNA-dependent RNA polymerases; DRB,
Double-stranded RNA binding protein. AGO3, RDR| and DRB2
were not detected.

Arabidopsis [24], indicating functional redundancy
among AGO family members in mature pollen.

MicroRNA array revealed that most known miRNAs are
down-regulated in mature pollen

The expression of RNA silencing pathway genes in mature
pollen indicates that this pathway may play a role in reg-
ulating gene expression during pollen development and
function. Studies have indicated that transcripts required
for mature pollen functions are produced and stored in
pollen, and it is post-transcriptional processes, such as
translation, that controls the expression of the functional
products [17]. Because of the roles of miRNAs in post-
transcriptional gene regulation, it is plausible to assume
that miRNAs have important roles in pollen function. To
address this question, we decided to examine the expres-
sion of all known miRNAs in Arabidopsis mature pollen
using microarray technology. The Exiqon miRCURY™
LNA array Version 8.1 http://www.exiqgon.com[25] was
used in this study. The array contains probes for 70 miR-
NAs from Arabidopsis, representing 121 miRNAs IDs rep-
resented in the miRBase http://microrna.sanger.ac.uk/.
We wanted to examine the miRNAs that are expressed in
mature pollen, and also compare the expression level in
mature pollen to that in young inflorescence that contains
the inflorescence meristem and unopened flower buds
from stage 1 to 12 [26]. Total RNA was isolated from these
two tissue types from pooled samples, and the RNA sam-
ples were delivered to Exiqon where RNA quality control
and the array experiment were performed. There were
total four RNA samples representing two independent
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RNA preparations for each tissue that was harvested from
different batched of plants. RNAs from all samples were
pooled together as the control which was labelled with
Hy5 fluorescence dye, and each individual sample was
labelled with Hy3. Each array was hybridized with the
control sample and an individual sample, and the signal
intensity from both channels was analyzed to identify
expressed miRNAs and compare their expression level.
Among 70 Arabidopsis probes presented on the array, 37
had detectable expression in mature pollen, among which
26 probes have shown significant difference in expression
in the two tissue types (Figure 2). Interestingly, most of
the expressed miRNAs were less abundant in pollen than
in young inflorescence, and only a few of them showed
roughly the same expression level in both tissues. We
speculate that the reason we could not identify a miRNA
that is up-regulated in mature pollen could be due to the
fact that all known miRNAs were identified and con-
firmed in sporophytic tissues. It is possible that we have
not found miRNAs that are specific or abundant in mature
pollen.

To validate the miRCURY array data, we compared our
results with the inflorescence expression data stored in
ASRP database http://asrp.cgrb.oregonstate.edu/[27]. The
data in ASRP database was obtained from ¢cDNA library
made with RNAs from inflorescence with stage 1 to 12
flowers, which is comparable to our inflorescence sample.
Although we can't directly draw a linear correlation
between these two sets of data due to the difference in
detection methods, we can validate the array experiment
based on the presence/absence of expression data. Fifty-
six out of the 70 probes on the array have expression data
in the ASRP database, and 9 of them were not detected in
inflorescence samples by the array experiment, which con-
sisted of more than 12% of the miRNAs represented by
the array (Table 1). Since all of the 9 miRNAs were low in
abundance, we think that the miRCURY array may not be
sensitive enough to detect their expression.

To further confirm our findings, we examined the expres-
sion of 27 miRNAs by using RT-PCR technique. The 27
miRNAs included 24 miRNAs that were shown to be
down-regulated in mature pollen, 2 that had shown no
significant difference in expression level in two different
tissue types (miR156a,b,c,d,e,f and miR160a,b,c), and 2
that were not detected by the array in inflorescence sam-
ples but have expression data in ASRP database
(miR164a,b, miR396). Based on the RT-PCR analyses, 5
miRNAs were expressed in inflorescence but not detecta-
ble in mature pollen (miR159a; miR167a,b; miR167¢;
miR169d,e,f,g miR171b,c), 3 of the miRNAs (miR159b;
miR159¢; miR319a,b,c) were barely detectable in both tis-
sue types. The expression of the remaining miRNAs was
detected in pollen and inflorescence. Among them, 7 had
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Figure 2

Heat map and unsupervised hierarchical clustering of
26 differentially expressed miRNAs. The heat map dia-
gram shows the result of the two-way hierarchical clustering
of genes and samples. Each row represents a miRNA and
each column represents a sample. The miRNA clustering
tree is shown on the left, and the sample clustering tree
appears at the top. The colour scale shown at the bottom
illustrates the relative expression level of a miRNA across all
samples: red represents an expression level above mean, blue
represents expression lower than the mean. The clustering is
performed on log,(Hy3/Hy5) ratio which passed the filtering
criteria on variation across samples; standard deviation >
0.50. miR172b* was not followed up in other experiments.
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roughly the same expression level in both tissue types
(miR156a,b,c,d,e,f; miR160a,b,c; miR161; miR162a,b;
miR390a,b; miR391), while the others were expressed at
much lower levels in mature pollen (Figure 3). Since RT-
PCR is not really quantitative, we can't conclude whether
the difference observed in two tissue types matched what
we have obtained from the miRCURY array. However, the
discrepancies observed from the two approaches raise our
concerns regarding the accuracy, sensitivity and reproduc-
ibility of the array experiment. For instance, the array
failed to detect the expression of miR164a,b and miR396,
whose expression in inflorescence was confirmed by both
ASRP database and RT-PCR. Several miRNAs (miR159a;
miR159b; miR167a,b; miR167¢; miR169d,e,f,g) were not
detected in mature pollen by RT-PCR, however, they were
considered to be expressed based on the array results.

Overall, the miRNA expression profiling by the miRCURY
array has provided some valuable information. However,
the additional efforts required to validate the results make
this approach less attractive for quantifying the expression
of miRNAs. The microarray experiment used in a tran-
scriptome study can easily justify its cost and the sensitiv-
ity issues because it is designed for thousands of genes.
However, microarray for miRNAs may not be so worth-
while, considering the number of genes analyzed, the
cost, and the outcome.

Quantitative analysis of miRNA expression using TagMan
assay

The array experiment revealed several important facts
regarding miRNA expressed in mature pollen, however,
the results were not very satisfactory. Data from two inflo-
rescence samples had shown large variation (Figure 2),
and the high cost of the experiment has limited us to
include more biological replicates in the experiment. In
addition, microarray experiments in general are not as
sensitive in detecting low abundant genes compared to
PCR based assay, and it tends to generate false positive or
false negative results. To complete this study, we decided
to examine the expression level of miRNAs in our samples
by using real time-PCR based on TagMan MicroRNA assay
(Applied Biosystems, Foster City, CA). TagMan miRNA
assay is based on stem-loop RT-PCR detection method,
and the TagMan probe in each assay was designed for a
specific miRNA. The assay has been tested to be specific
for mature miRNA [28]. Using assays for 65 miRNAs, we
confirmed the expression of 22 miRNAs in mature pollen,
and identified 8 additional miRNAs (miR156h;
miR164a,b; miR164c; miR170; miR319¢; miR396a,
miR399b,c; miR403) that were expressed at low levels in
mature pollen. However, the expression of 11 miRNAs
that were detected in mature pollen on the array was not
confirmed by the Tagman miRNA assays (Table 1). We
also cross examined the Tagman assay results with the
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Table I: Comparison of miRNA expression using MiRCURY array and TagMan miRNA assay

MIiRCURY Arrayt Tagman MiRNA Assay¥*

log,(sample/pool) MP C; Inf C; AS Slotkin et. al€
Name Inf | Inf2 MPI MP2 mean mean AAC; RPS§ Inf MP
|56a-f -0.44 0.27 0.23 0.19 29.85 29.77 -0.9 2 2591 51961
I56g -0.33 0.34 0.16 0.09 35.08 34 0.09* 0 131 678
156h 35.49 31.6 2.89 0 1525 611
157a-d -0.32 0.92 -1.35 -1.04 3442 31.18 226 I 1792 671
158a 0.07 0.77 2221 -2.12 32.87 27.9 3.95 8 16305 2307
158b 0.15 0.79 -1.82 -1.82 32.89 30.5 1.39 0 13757 2037
159a -0.33 1.03 -3.17 -3.04 NA 25.2 67 197957 5540
159b -0.31 1.04 -3.31 -3.01 NA 243 10 189644 5319
159¢ -0.17 1.07 -2.87 -2.84 35.85 29.7 4.49 0 35850 1247
160a-c -0.04 0.39 -0.31 -0.39 30.71 28.95 0.74 17 833 351
16l -0.03 1.04 -1.29 -1.36 33.65 29.7 291 71 8245 4737
162a,b 0.05 0.73 -1.13 -1.2 3535 28.9 5.82 7 123 35
163 0.39 051 -3.27 -2.83 36.98 305 5.29 3 5665 126
164a,b NA NA NA NA 36.39 25.6 8.53 21 10771 382
164c NA NA NA NA 37.04 26.1 10.03 I 10005 349
165a,b 0.31 0.58 0 0.06 I I 15
166a-g -0.24 I.11 -3.04 -3.25 31.93 249 6.4 6 472 33
167a,b -0.64 0.96 -2.4 -2.29 35.95 25.6 9.48 218 33681 1154
167c -0.34 0.94 -1.41 -1.55 NA 26.1 I 250 14
167d -0.09 0.85 -0.76 -0.96 NA 34 4 852 19
168a,b 0.37 0.36 -0.7 -1.18 3249 28.6 3.56 16 19462 5038
169a 0.07 0.83 -0.91 -0.94 NA 338 | 399 7
169b,c NA NA NA NA NA 325 0 380 7
169d-g -0.01 0.52 -0.74 -0.98 NA 30.01 2 234 9
170 NA NA NA NA 329 29.3 2.95 7 5207 137

Page 5 of 10

(page number not for citation purposes)



BMC Plant Biology 2009, 9:87

http://www.biomedcentral.com/1471-2229/9/87

Table I: Comparison of miRNA expression using MiRCURY array and TagMan miRNA assay (Continued)

171a 0 0.79 2.7 -2.67 37.0 26.5 9.81 247 39570 922
171b,c 0.14 0.51 -1.6 -1.52 36.28 26.8 8.40 5 4149 9l
172a,b 0.08 0.79 -1.47 -1.55 32.69 28.9 3.14 73 8220 8147
172¢,d NA 0.26 -0.36 -0.33 32.47 284 3.47 | 7576 8353
172e 0.04 0.75 -1.42 -1.48 328l 28.9 3.17 6 5245 2320
173 -0.38 0.39 -1.99 -1.93 34.93 29.6 4.71 | 625 501
319a,b 0.07 033 -0.93 -0.97 36.18 27.44 8.26 5 14514 713
319¢c 36.97 30.11 6.38 2 13795 653
390a,b 0.14 0.66 -1.39 -1.33 33.15 24.86 7.79 2 8743 695
391 0.15 0.42 -0.6 -0.54 3 14 19
394a,b NA 0.42 -0.93 -0.96 35.84 28.97 6.43 | 21 |
395a,d,e -0.04 0.11 -0.49 -0.47 NA 3491 0 139 2
395b,cf -0.09 0.22 0.01 -0.07 NA 31.94 0 137 2
396a NA 0.72 NA -0.76 34.87 29.34 491 6 352 19
396b 0.06 1.18 -0.92 -1.39 NA 27.5 4 371 21
399b,c -0.21 0.09 -0.31 NA 35.84 32.12 291 0 485 106
403 NA NA NA NA 36.61 30.9 4.92 | 696 275
414 0.18 0.11 -0.42 -0.66 NA 0 0
419 0.17 0.31 -0.47 -0.32 NA NA NA 0 0
447a,b -0.13 0.11 -0.04 -0.15 0 286 49
447c -0.26 -0.1 0.22 0.23 NA NA 0 0 0

All miRNA names have been abbreviated. If a probe represents a miRNA family with more than three members, the name is shortened to save
space. For example, miR156a-f represents miR156a, b, c, d, e, f. MiRNAs that were not present either on the array or the Tagman assay were in
bold. £, the MiRCURY array data were shown as Log,(sample/pool). ¥, The C value represents means from all the replicates. T-test was performed
to evaluate the AAC; value for difference that is statically significant (with p < 0.05). The only one that did not pass the test was marked by an
asterisk. §, the value in the table represents the normalized read (reads/million) for each miRNA in inflorescence (Col-0) as stored in ASRP
database. €, the value represents the un-normalized sequencing reads from the small RNA libraries published by Slotkin et. al. [29]. The whole
inflorescence library has 4,158,848 sequences, while the mature pollen library has 1,034,665 sequences. The table only listed miRNAs that were
found in at least one of the sources. Inf, inflorescence; MP, mature pollen. NA, the miRNA was either not detected or unavailable.

results from ASRP database and RT-PCR experiment (Fig-
ure 3 and Table 1) to validate the assay. The Tagman assay
was successful in detecting the expression of all miRNAs
with ASRP inflorescence expression data. In addition, the
assay identified 8 additional miRNAs that were low abun-
dant in inflorescence sample. When compared with the
RT-PCR results, expression patterns of most miRNAs
examined using these two approaches were for the most

part consistent with the exception of miR169a and
miR169Db, c. These two miRNAs were detected by RT-PCR,
however, Tagman assay did not detect their expression in
mature pollen. Further analysis of the gel picture indi-
cated that there were two products amplified with the
primers for miR169a and miR169b, c. Only the larger size
product was detected in mature pollen. Since the primers
used in RT-PCR reactions only differed by one base pair,
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Figure 3

Expression of 27 miRNA:s in inflorescence and mature pollen by RT-PCR. The adaptor sequence is 46 bp long.
Depending on the length of the miRNA and the number of nucleotides added during the polyadenylation step, the PCR prod-

ucts range from 70 to 90 bp. I, inflorescence; P, mature pollen.

we speculated that the larger product was due to non-spe-
cific amplification.

Slotkin et. al. have recently sequenced small RNA libraries
made from whole inflorescence and mature pollen [29].
To validate the expression profile generated in this study,
we also compared our analyses with their sequencing data
http://hispaniola.cshl.edu/slotkin2009a/. All the miRNAs
detected by real-time PCR have been found in the
sequencing database. However, there were nine miRNAs
(miR159a; miR159b; miR167c; miR167d; miR1693;
miR169d,ef,g miR395a,d,e; miR395b,c,f; miR396b) that
were found in the sequencing data, but not detected by
real-time PCR (Table 1). Seven out of these 9 miRNAs had
very low sequencing frequency, and their expression can-
not be confidently confirmed until the sequencing data
has been normalized. However, the other two miRNAs
(miR159a and miR159b) have been sequenced more than
5,000 times in mature pollen. Since the expression of
these two miRNAs was not detected by either real-time
PCR or regular RT-PCR (Table 1 and Figure 3), further
analysis of the sequencing data would be required to solve
the discrepancy. We also cannot directly compare the dif-
ference in expression level between inflorescence and pol-
len samples in our analyses with that based on the

sequenced libraries. Because the small RNA library for
inflorescence was made with whole inflorescence that
included open flowers, whereas our inflorescence sample
only included stage 1-12 flowers. In addition, these
sequencing reads have not been normalized, which pre-
vented us from comparing the relative abundance of each
miRNA between two samples. Nevertheless, the sequenc-
ing results have suggested that most of the miRNAs are
expressed at lower level in mature pollen, which is consist-
ent with our findings.

MicroRNA expression was correlated with their target
gene expression in pollen

Since we were able to detect the expression of RNA silenc-
ing pathway genes and some miRNAs in mature pollen,
we wanted to know whether these miRNAs regulate the
expression of their target genes. We have chosen three
miRNA  families (miR156a,b,c,d,e,f; miR160a,b,c
miR161) that are relatively abundant in mature pollen
based on our analyses. We first identified the target genes
of these miRNAs on ASRP database http://asrp.cgrb.ore
gonstate.edu/, then analyzed their expression in imma-
ture male gametophyte, mature pollen and sperm cells
based on the available transcriptome data [17,18,30]. If
these miRNAs indeed are functional, we expect to see
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reduced expression of their target genes in the correspond-
ing tissue. By comparing the target gene expression in dif-
ferent stages of male gametophyte and sperm cells, we
indeed found an anti-correlation in the expression of each
miRNA and its target genes in most of the cases (see Addi-
tional file 4). The only two exceptions were: At1g53160
(SPL4), a target of miR156 family, and At3g16710, a target
of miR161. The expression of SPL4 in mature pollen was
not consistent based on the two transcriptome studies
[17,18], therefore, we have ruled it out from the analysis.
At3g16710 is one of the 441pentatricopeptide (PPR)
repeat-containing proteins found in Arabidopsis that are
important for RNA processing and translation inside
organelles [31]. The transcriptome data indicated that
At3g16710 was only present in mature pollen grains. We
speculate that this gene could be sperm specific, therefore,
its expression may not be affected as much by miRNAs
located in the vegetative cells.

In addition to our analyses based on transcriptome data,
a recent study by Grant-Downton et. al. [32] has con-
firmed the function of miRNAs in mature pollen by iden-
tifying the cleavage products generated from targets of
miR160 and miR172. Based on these experiments, we
concluded that miRNAs have important regulatory roles
in controlling gene expression in mature pollen.

Conclusion

Using miRCURY LNA array technology and TagMan
miRNA assays, we have identified a total 45 miRNAs that
are expressed in Arabidopsis mature pollen, among which
22 have been confirmed with both technologies. Interest-
ingly, most of the miRNAs are very low abundant in
mature pollen, with just a few exceptions. Based on the
real-time PCR results, the expression of miR156g was
about the same in these two tissue types, and the expres-
sion of miR160a, b, ¢ in pollen was less than two-fold
lower than that in inflorescence. The only miRNA that has
higher expression in pollen was miR156a, b, ¢, d, e, f. Our
analyses of the transcriptome data for some miRNA target
genes and the results from Grant-Downton et. al. [32]
have supported the function of miRNAs in mature pollen.
However, genetic study based on mutants carrying muta-
tions in genes in the RNA silencing pathway or MIR genes
have revealed very little about their function in mature
pollen. This could be explained by functional redundancy
or the difficulty in isolating gametophytic mutants. In
summary, this study has used different technologies to
examine miRNA expression in mature pollen, and gener-
ated valuable data that can be used to evaluate the roles of
miRNAs in pollen function.

The direct comparison of the two techniques commonly
used in quantifying miRNA expression suggests that users
should take precaution when using microarray technol-
ogy to examine miRNA expression, since the experimental
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cost may not be very well justified by the outcome. The
microarray technology is high throughput and suitable for
expression profiling of thousands of genes. However,
using array to analyze miRNA expression may not be cost-
effective because the number of miRNA genes needed to
be analyzed is not very high and the technology still has
to deal with the inconsistencies for low abundant miR-
NAs.

Methods

Plant materials

Arabidopsis plants (Col-0) were grown in the growth
chamber at 22°C with long day conditions (16 hr light/8
hr dark). Mature pollen was harvested using a modified
hand-held vacuum [20], and young inflorescence was har-
vested directly from the plant. Plant materials were
quickly frozen in liquid nitrogen once harvested, and
stored in -80°C freezer until the next step.

RNA preparation

Total RNA was isolated from each sample using the TRIzol
reagent (Invitrogen, Carlsbad, CA) following the manu-
facturer's instruction. RNA samples for the array experi-
ment were cleaned using the RNeasy kit (Qiagen,
Hamburg, Germany) with slight modification to preserve
miRNAs. Basically, 350 pl Buffer RLT and 3.5 volume of
100% ethanol were added to 50 ul of RNA sample, and
the mixture was added onto an RNeasy Mini spin column.
After centrifugation, the column was washed twice with
500 pl buffer RPE, and the RNA was eluted with 30 pl
RNase-free water. Samples were concentrated to at least 1
pg/ul, and delivered to Exiqon on dry ice for the miR-
CURY array experiment. Exiqon performed the array
experiments and analyzed the data. For TagMan miRNA
assay, RNA samples were cleaned with TURBO DNase
(Applied Biosystems, Foster City, CA).

Reverse Transcriptase-PCR

For the RT-PCR experiment, 1 pg of total RNA from each
sample was converted to cDNA in a 20 pl reaction con-
taining 1 pl Supercript II reverse transcriptase (Invitrogen,
Carlsbad, CA), 1 ul RNasin (Promega, Madison, WI), 2 ul
DTT (100 mM), 1 pl Oligo dT primer (20 uM), and 4 pl
5x reaction buffer. One microliter of cDNA sample was
used in subsequent PCR reactions using gene-specific
primers with the following cycle conditions: 94°C, 30 sec-
ond; 57°C, 30 second; 72°C, 1 minute for 30 cycles. See
Additional file 5 for all primers used in the experiment.

RT-PCR for miRNAs was performed using QuantiMir RT
kit (System Biosciences, Mountain View, CA) following
the manufacturer's instruction. Briefly, 1 ug of RNA from
each sample was polyadenylated, and then converted to
c¢DNAs with a unique adaptor in the presence of reverse
transcriptase, and the cDNAs were amplified with specific
miRNA primer in combination with the universal adaptor
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to examine the expression of a particular miRNA. Primers
and product sizes were listed in Additional file 5. Some of
the PCR products were cloned and sequenced to confirm
that a specific miRNA was amplified.

Taqman MiRNA Assay

To make cDNA for each Tagman miRNA assay, 5 ng or 10
ng of total RNA was incubated with 0.15 ul dANTPs (100
mM), 1.5 ul 10x reaction buffer, 0.19 ul RNase inhibitor,
1 pl Reverse transcriptase, and 3 pl gene-specific primer in
a 15-pl reaction. The real-time PCR for each assay was set
up as a 20 pl reaction including 10 pl Tagman 2x Univer-
sal PCR master mix, 1 pul 20x Tagman Assays that includes
gene-specific primers and Tagman probe, and 1.5 pl of
cDNA. 5S rRNA was used as the endogenous control for
comparative C; analyses. Primers and Tagman probe for
the 5S rRNA were designed using Primer Express Software
(Version 3.0) (Applied Biosystems, Foster City, CA). 5S
rRNA Forward: 5'-CGATGAAGAACG TAGCGAAATG-3';
55 rRNA Reverse: 5'-CTCGATGGTITCACGGGATTC-3;
Tagman Probe: 5-TACITGGTGTGAATTGC-3'. TURBO
DNase-treated RNA samples were converted to cDNA
using High-capacity cDNA reverse transcriptase kit
(Applied Biosystems, Foster City, CA) for amplifying 5S
rRNA. A standard curve was used to check the efficiency of
the primers and probe. Tagman assay for 5S RNA was set
up as a 20 pl reaction containing 10 pul Tagman 2x Univer-
sal PCR master mix (Applied Biosystems, Foster City, CA),
1 pl of each primers (900 nM), 1 pl Tagman probe (250
nM), and 1.5 pl cDNA sample. All real-time PCR reactions
were performed in a StepOne real-time PCR machine
(Applied Biosystems, Foster City, CA) with following
cycling conditions: 95°C for 10 minutes to activate the
enzyme; then repeat 95°C for 15 seconds and 60°C for 1
minute for 40 cycles.

Real-time PCR reaction setup and data analyses

There were three RNA samples for each tissue type. Two of
the mature pollen samples were the ones used in the miR-
CURY array, while the third one was isolated from a dif-
ferent batch of plants. For inflorescence samples, one was
the Inf2 sample used in miRCURY array, and the other
two samples were prepared from new plant materials
grown under the same conditions. For Tagman miRNA
assay, each RNA sample was reverse transcribed as
described above and the assay for each miRNA target was
set up in triplicate reactions. Each 48-well reaction plate
contained reactions for the endogenous control (58
rRNA) and an individual miRNA target for all six biologi-
cal samples. Non-template controls were also set up as
triplicates. Results were exported to calculate mean Cy,
which was then used to calculate AC; value for each
miRNA target based on the formula: AC; = C(target
miRNA) - C(5S tRNA). AAC; for each miRNA target was
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calculated using the formula AAC; = AC; (pollen) -AC;
(inflorescence). AC; (pollen) and AC; (inflorescence) for
each miRNA target were used to run a two-sample t-test
with Prism (v. 5.0, GraphPad Software, Inc., La Jolla, CA)
to detect statistically significant difference in expression
between pollen and inflorescence samples. The ones with
p < 0.05 were considered as statistically significant.
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Additional material

Additional file 1

Expression of ACTIN7 in inflorescence and mature pollen by RT-PCR.
The amplification from cDNA was indicated by the arrowhead. M, DNA
standard; 1, inflorescence; P, mature pollen.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2229-9-87-S1.pdf]

Additional file 2

Expression of RNA silencing pathway genes in Arabidopsis mature pol-
len. 1Both microarray studies were done using the Affymetrix ATH1
Genome Array. 2Data from Honys & Twell [17] were normalized. 3Data
from Pina et.al. [18] are represented in two columns: the left column was
the raw signal intensity, the right column was the present (P)/absent (A)
call after data normalization. 4RT-PCR results were represented as follow:
++, strongly expressed; +, expressed; -, non-detectable. *Data for AGO8
was not reported in Pina et. al. [18]. RDR3 and RDR4 are not repre-
sented on the ATH1 chip.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2229-9-87-52.pdf]

Additional file 3

Expression of RNA silencing pathway genes in Arabidopsis 12-day-old
seedlings by RT-PCR. ACT7(ACTIN7) was used as a positive control to
ensure the quality of RNA and cDNA. PCR products amplified from
c¢DNA are indicated by asterisks. PCR products at higher molecular
weight in each sample were amplified from genomic DNA. DCL: Dicer-
like; AGO, Argonaut; RDR, RNA-dependent RNA polymerases;
DRB, Double-stranded RNA binding protein.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2229-9-87-S3.pdf]
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Additional file 4

Target gene expression in young male gametophyte, mature pollen and
sperm cells. All microarray studies were done using the Affymetrix ATH1
Genome Array. 'Data from Honys & Twell [17] were normalized. 243
Data from Pina et.al. [18] and Borges et. al. [30] were represented in two
columns: the left column was the raw signal intensity, the right column
was the present (P)/absent (A) call after data normalization. NA, the
expression of the gene was not available. The table only included target
genes that have expression data in at least one sample. UNM, uninucleate
microspore; BCP, bi-cellular microspore; TCP, tri-cellular microspore;

MP, mature pollen.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2229-9-87-S4.xls|

Additional file 5

Primers used in RT-PCR experiments.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2229-9-87-S5.pdf]
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