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Abstract
Background: Limited DNA sequence and DNA marker resources have been developed for Iris
(Iridaceae), a monocot genus of 200–300 species in the Asparagales, several of which are
horticulturally important. We mined an I. brevicaulis-I. fulva EST database for simple sequence
repeats (SSRs) and developed ortholog-specific EST-SSR markers for genetic mapping and other
genotyping applications in Iris. Here, we describe the abundance and other characteristics of SSRs
identified in the transcript assembly (EST database) and the cross-species utility and polymorphisms
of I. brevicaulis-I. fulva EST-SSR markers among wild collected ecotypes and horticulturally
important cultivars.

Results: Collectively, 6,530 ESTs were produced from normalized leaf and root cDNA libraries of
I. brevicaulis (IB72) and I. fulva (IF174), and assembled into 4,917 unigenes (1,066 contigs and 3,851
singletons). We identified 1,447 SSRs in 1,162 unigenes and developed 526 EST-SSR markers, each
tracing a different unigene. Three-fourths of the EST-SSR markers (399/526) amplified alleles from
IB72 and IF174 and 84% (335/399) were polymorphic between IB25 and IF174, the parents of I.
brevicaulis × I. fulva mapping populations. Forty EST-SSR markers were screened for polymorphisms
among 39 ecotypes or cultivars of seven species – 100% amplified alleles from wild collected
ecotypes of Louisiana Iris (I.brevicaulis, I.fulva, I. nelsonii, and I. hexagona), whereas 42–52% amplified
alleles from cultivars of three horticulturally important species (I. pseudacorus, I. germanica, and I.
sibirica). Ecotypes and cultivars were genetically diverse – the number of alleles/locus ranged from
two to 18 and mean heterozygosity was 0.76.

Conclusion: Nearly 400 ortholog-specific EST-SSR markers were developed for comparative
genetic mapping and other genotyping applications in Iris, were highly polymorphic among ecotypes
and cultivars, and have broad utility for genotyping applications within the genus.
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Background
Iris, a genus of 200–300 species in the Iridaceae (Aspara-
gales), is one of the most widely admired and earliest cul-
tivated garden flowers, having appeared in ancient
Eygptian artifacts as early as 1950 B.C. [1]. The most
widely cultivated, hybridized, and horticulturally impor-
tant species are I.germanica (tall-bearded Iris), I.pseuda-
corus (yellow-flag Iris), and I.sibirica (Siberian Iris), each
with numerous commercially important cultivars. Iris spe-
cies are found in diverse habitats on every continent in the
Northern Hemisphere and have been important models
for the study of plant evolution, ecology, and hybrid spe-
ciation [2-8]. Chromosome numbers and ploidy are
highly variable among and within species in the genus,
ranging from 2n = 16 in I. attica to 2n = 108 in I. versicolor
[3,4]. Similarly, haploid genome lengths are generally
large and highly variable in the genus, ranging from 2,000
to 30,000 Mbp [9].

Minimal genomic resources have been developed for Iris,
a genus where forward genetic approaches have previ-
ously been applied to the study of life history and other
traits by genotyping generic DNA markers, e.g., random
amplified polymorphic DNA (RAPD) or retrotransposon
display (IRRE) markers, in segregating populations devel-
oped from interspecific hybrids [7,9-14]. While such
markers have facilitated linkage and quantitative trait
locus (QTL) mapping in Iris, the uncertain orthology of
RAPD and IRRE bands has precluded cross-referencing
loci across populations and species. Simple sequence
repeat (SSR), restriction fragment length polymorphism
(RFLP), and single nucleotide polymorphism (SNP)
markers are typically ortholog-specific and, consequently,
have been widely used as DNA landmarks for synteny
analysis and cross-referencing loci across populations [15-
17]. Thus far, a limited number of ortholog-specific DNA
marker have been described for Iris [18]. The primary goal
of the present study was to develop a sufficient number of
ortholog-specific DNA markers for genome-wide compar-
ative genetic mapping and other genotyping applications
in I. brevicaulis (x = 20), I. fulva (x = 20), and other species
in the genus by developing a small EST database and tar-
geting SSRs in ESTs.

SSRs are ubiquitous in transcribed sequences, typically
locus-specific and co-dominant, and often multi-allelic,
highly polymorphic, and transferrable among species
within genera [19-22]. EST databases have been a rich
source of SSRs for the development of ortholog-specific
EST-SSR markers for genotyping applications in numer-
ous species of flowering plants [21-28]. When our study
was initiated, a limited number of ESTs (201) had been
deposited in GenBank http://www.ncbi.nlm.nih.gov/
Genbank/ for a single species in the genus, I. hollandica
[29], and were insufficient for EST-SSR marker develop-

ment. We developed a small EST database from cDNA
sequences produced from normalized cDNA libraries of
two species of Louisiana Iris (I. brevicaulis and I. fulva),
partly to support the development of several hundred
EST-SSR markers for comparative mapping and other gen-
otyping applications in Louisiana Irises and partly to cre-
ate DNA sequence and ortholog-specific DNA markers
resources for the genus as a whole. Previous forward
genetic analyses in I. brevicaulis and I. fulva identified QTL
for several morphological, life history, and ecological
traits [12,13,30-32]. Because ortholog-specific DNA
markers were previously lacking for these genera, linkage
groups and QTL identified in earlier analyses could not be
cross-referenced and comparative genetic mapping was
infeasible. Here, we describe the I. brevicaulis-I. fulva EST
database and the development, cross-species utility, and
polymorphisms of I. brevicaulis-I. fulva EST-SSR markers
among wild collected ecotypes of four species of Louisi-
ana Iris (I. brevicaulis, I. fulva, I. hexagona, and I. nelsonii)
and horticulturally important cultivars of tall-bearded
(I.germanica), yellow-flag (I.pseudacorus), and Siberian
(I.sibirica) Iris.

Results and Discussion
Development of a Leaf and Root EST Database for Iris
Normalized leaf and root cDNA libraries were developed
from I.brevicaulis (IB72) and I.fulva (IF174) ecotypes (root
and leaf RNAs were pooled and a single cDNA library was
constructed for each species). Library quality was checked
by sequencing colony-PCR amplified inserts from 295
randomly selected cDNA clones split between the IB72
and IF174 libraries. Of the 295 clones, 251 (85.1%) har-
bored inserts 800 bp or longer, three lacked inserts
(1.1%), and 290 (98.3%) harbored unique inserts. Subse-
quently, 12,199 cDNA clones were single-passed
sequenced and yielded 6,530 ESTs surpassing quality
standards, 2,947 from the IB72 and 3,583 from the IF174
library. Less than 1% of the clones lacked cDNA inserts
(85/12,199). The vector- and quality-trimmed ESTs were
deposited in GenBank (Acc. No. EX949962–EX956238
and FD387191–FD387443), annotated by BLASTX analy-
ses against NCBI databases, assembled, and deposited in
a database http://www.genome.uga.edu/IrisDB devel-
oped by modifying a previously described EST processing
pipeline and database [33]. The mean length of vector-
and quality-trimmed ESTs was 578.0 bp.

cDNA normalization minimized redundancy in the Iris
EST database and yielded a wealth of unique cDNA
sequences (unigenes) for EST-SSR marker development
and other applications in Iris biology, breeding, and flori-
culture http://www.genome.uga.edu/IrisDB. The 6,530
ESTs assembled into 4,917 unigenes (3,851 singletons
and 1,066 contigs); hence, 75.3% of the ESTs were unique
and 78.3% of the unigenes were singletons. cDNAs were
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normalized using a protocol which has been applied in
numerous plant and animal species and minimized abun-
dant transcript resequencing [34-36]. cDNA populations
in leaves are dominated by abundant transcripts, e.g.,
chlorophyl A/B binding proteins and rubisco, neither of
which were abundant among transcripts isolated by
sequencing normalized leaf cDNA libraries. The deepest
contigs contained seven ESTs.

Unigenes ranged in length from 100 to 1,673 bp with a
mean length of 603.1 bp. Less than one-tenth of the uni-
genes (433/4,917) were sequenced through the polyA tail.
Mean GC contents, which were identical for I.brevicaulis
(45.4%) and I.fulva (45.3%), were slightly greater than
mean GC contents reported for onion (Allium cepa L.;
41.9%) and Arabidopsis (42.7%) transcripts [37,38]. Uni-
genes were annotated by BLASTX http://
www.ncbi.nlm.nih.gov/BLAST analyses against the NCBI
Non-Redundant Protein http://www.ncbi.nlm.nih.gov/
RefSeq/ and UniProtKB Swiss-Prot and TrEMBL http://
www.expasy.ch/sprot/ databases. Using a BLASTX thresh-
old of <E = 110, significant similarities were found and
putative functions were identified for 2,390 Iris unigenes
(48.6%). Thirty-two (0.6%) additional unigenes were
similar to genes of unknown function. Significant similar-
ities were not found for the other 2,495 Iris unigenes
(50.8%). The fraction of unigenes homologous to cDNAs
encoding known function genes was similar to onion, an
economically important species in the Asparagales [38].

The Louisiana Iris ESTs developed in the present study
have moderately increased DNA sequence resources for
Iris, which were previously minimal http://
www.ncbi.nlm.nih.gov/, and supplied ESTs for an impor-
tant basal species in the Asparagales, a family where DNA
sequence information has primarily been produced for
onion, asparagus (Asparagus officinalis L.), and model spe-
cies [38,39]. van Doorn et al. [29] previously described
201 I. hollandica ESTs from a tepal cDNA library. Other
than the latter, 607 nucleotide sequences for 104 species
of Iris had previously been deposited in public databases,
the bulk of which were for a limited number of DNA
sequence motifs commonly targeted in phylogenetic anal-
yses, e.g., matK. The Sanger ESTs described here were pro-
duced before the emergence of next-generation DNA
sequencing technologies, which have dramatically
increased DNA sequencing throughput and are facilitating
deeper and broader DNA sequencing than was previously
practical in species with limited DNA sequence resources
[40-42]. The Sanger ESTs we produced, while limited in
number, build the foundation for deeper transcriptome
sequencing in Iris using next-generation technologies.

Abundance, Characteristics, and Distribution of SSRs in 
Louisiana Iris ESTs
SSRs were highly frequent in the Louisiana Iris EST data-
base (Figures 1, 2; Additional File 1; http://
www.genome.uga.edu/IrisDB). We identified 1,447 per-
fect SSRs (n ≥ 5) in 1,162 unigenes. One-fourth of the
4,917 unigenes in the transcript assembly harbored at
least one SSR, a frequency which was much greater than
the frequency range (2–12%) in many other flowering
plants [20,21,24,43]. The mean SSR density was one per
2,048 bp, which was much higher than the density found
in onion (1/25 kb; [38]), another species in the Aspara-
gales, and Arabidopsis (1/14 kb; [44]). When the transcript
assembly was mined for perfect and imperfect repeats,
3,487 SSRs (n ≥ 5) were identified in 2,037 unigenes
(41.4%) with a mean density of approximately one SSR
per 850 bp; imperfect repeats are interrupted short tan-
dem repeats.

SSR repeat numbers ranged from 5 to 30 and lengths
ranged from 10 to 69 bp (Figure 1; Additional File 1). Of
the 1,447 perfect SSRs, 1,077 (72.9%) were 14 bp or
longer and 694 (48.0%) were 18 bp or longer. The mean
repeat number was 9 and the mean repeat length was 23
bp. Of the 1,447 perfect repeats, 807 were dinucleotides
(55.8%) and 569 were trinucleotides (39.3%). The most
common repeat motifs were AG/CT (50.1%), AAG/CTT
(18.9%), and AGG/CCT (7.6%) (Figure 2). Slightly more
than two-thirds of the SSRs were located in UTRs (61.4%
in 5'-UTRs, 8.3% in 3'-UTRs, and 30.3% in exons). Of
repeats identified in UTRs, 62.3% were dinucleotides and
31.4% were trinucleotides. Conversely, of repeats identi-
fied in CDSs, 17.4% were dinucleotides and 82.6% were
trinucleotides (Additional File 1). The low frequency of
SSRs identified in 3'-UTRs was primarily a function of 5'-

Distribution of repeat counts for simple sequence repeats (SSRs) identified in 1,162 unigenes in the I. brevicaulis-I. fulva EST databaseFigure 1
Distribution of repeat counts for simple sequence 
repeats (SSRs) identified in 1,162 unigenes in the I. 
brevicaulis-I. fulva EST database.
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end sequencing, which yielded significantly fewer 3' than
5'-UTR sequences (8.8% of the unigenes harbored polyA
tails).

The most common dinucleotide repeat motif was AG/CT,
which constituted 89.8% of the dinucleotide repeats iden-
tifed in Iris ESTs and has been the most common dinucle-
otide repeat identified in other plant EST databases
[20,21,24,43]. AG/CT repeats have been widely targeted
for EST-SSR marker development in plants because, in
addition to being highly abundant, they are often highly
polymorphic, more abundant in UTRs than CDSs, seldom
associated with transposons, and consistently amplify and
yield robust SSR markers [20,24]. The frequencies of tri-
nucleotide repeats in CDSs and dinucleotide repeats in
UTRs appear to be similar in wheat and Iris ([26]; Addi-
tional File 1).

Trinucleotide repeats are typically more abundant than
dinucleotide repeats in plants [21]; however, dinucleotide
repeats (56%) were more abundant than trinucleotide
repeats (39%) in Iris. Trinucleotide repeats (54–78%)
have been more abundant than dinucleotide repeats (17–
40%) in analyses of EST databases of several grass species
[22,27,43,45]. Of the EST-SSRs identified in wheat (Triti-
cum aestivuum L.), 70% were trinucleotides and 30% were
dinucleotides [27]. AAG/CTT and AGG/CCT (67.5%)
were the most abundant trinucleotide repeats in Iris,
whereas GCC/GGC appears to be the most abundant tri-
nucleotide repeat motif in other plants [19,20,24,45].
SSRs were more abundant in UTRs than CDSs in Iris,
whereas they are more abundant in CDSs than UTRs in
other plant species [21,24,43,46]. SSR abundance in 3'-

UTRs of Iris ESTs may have been underestimated in the
present study by 5' directional sequencing of cDNAs,
which artificially skews the distribution. SSRs appear to be
equally abudant in 5'- and 3'-UTRs in other plant species
[20,25]. If this pattern holds in Iris, the frequency of SSRs
in UTRs could be as great as 80%, which implies the fre-
quency of SSRs in Iris ESTs could be greater than reported
here (Additional File 1).

Louisiana Iris EST-SSR Marker Development, Screening, 
Allele Length Polymorphisms, and Cross-Species Utility
SSRs with n ≥ 6 repeats were selected from 526 unigenes
for primer design and marker development (SSR primer
sequences, allele lengths, repeat motifs, and other charac-
teristics of the SSR markers are supplied in Additional File
2). The SSR markers were initially screened for amplica-
tion and allele length polymorphisms among three Lous-
iana Iris ecotypes (IB25, IB72, and IF174). Of the 526 EST-
SSR markers, 399 (76%) amplified alleles from at least
one genotype (the null allele frequency was 2.7%),
whereas 127 (24%) either failed to amplify alleles or pro-
duced amplicons which were too long (> 700 bp) or com-
plex for genotyping. Of the 399 EST-SSR markers, 72
spanned introns longer than 200 bp and amplified alleles
longer than 700 bp and could not be genotyped (Addi-
tional File 2). Of the 327 SSR markers found to amplify
alleles within the prescribed genotyping length range
(100–700 bp), 283 (87%) were polymorphic among
IB25, IB72, and IF74. The number of polymorphic SSR
markers/cross ranged from 247 (76%) for IB25 × IB72 to
276 (84%) for IB72 × IF174 (Additional File 2). Hence,
most of the EST-SSR markers were polymorphic in I.brevi-
caulis × I.fulva mapping populations.

Forty I.brevicaulis-I.fulva EST-SSR markers were selected for
more in-depth screening and analysis, primarily to quan-
tify polymorphisms and assess transferability and utility
among a broader sample of ecotypes, cultivars, and spe-
cies. The 40 EST-SSR markers, which have been genetically
mapped in I.brevicaulis × I.fulva and are distributed across
the genome (unpublished data), were screened for ampli-
fication and allele length polymorphisms among 26 wild
collected ecotypes of four Lousiana Iris species (I. brevicau-
lis, I. fulva, I. hexagona, and I. nelsonii) and 13 cultivars of
tall-bearded (I.germanica), yellow-flag (I.pseudacorus), and
Siberian (I.sibirica) Iris (Tables 1, 2; Additional File 3).
Whilst 100% of the EST-SSR markers amplified alleles
from Louisiana Iris ecotypes, half or slightly less than half
amplified alleles from yellow-flag (52.5%), Siberian
(45.0%), and tall-bearded (42.5%) Iris cultivars. Of the
40 EST-SSR markers, only nine amplified alleles across the
39 ecotypes and cultivars (Figure 3; Additional File 4).
One to three alleles/marker were amplified from triploid
I.germanica, whereas one to two alleles/marker were
amplified from the diploid species (Additional File 4).

Distribution of dinucleotide and trinucleotide repeats identi-fied in 1,162 unigenes in the I. brevicaulis-I. fulva EST databaseFigure 2
Distribution of dinucleotide and trinucleotide 
repeats identified in 1,162 unigenes in the I. brevicau-
lis-I. fulva EST database.
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Genotypes for two multiplexes of four EST-SSR markers each screened for amplification and length polymorphisms on agarose among 39 ecotypes or cultivars of I. brevicaulis (IB), I. fulva (IF), I. nelsonii (IN), I. hexagona (IH), I. pseudacorus (IP), I. germanica (IG), and I. sibirica (IS)Figure 3
Genotypes for two multiplexes of four EST-SSR markers each screened for amplification and length polymor-
phisms on agarose among 39 ecotypes or cultivars of I. brevicaulis (IB), I. fulva (IF), I. nelsonii (IN), I. hexagona 
(IH), I. pseudacorus (IP), I. germanica (IG), and I. sibirica (IS). EST-SSR markers in the multiplexes were IM203, IM389, 
IM164, and IM395 or IM27, IM93, IM235, and IM200.
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The nine EST-SSR markers were highly polymorphic
among tall-bearded, yellow-flag, and Siberian Iris culti-
vars; heterozygosities ranged from 0.77 to 0.91 (Table 2).
Even though I. pseudacorus and I. sibirica belong to the
same section (Limniri) as Louisiana Iris [5], a significant
decrease in allele amplification was observed in these spe-
cies, and was comparable to the decrease observed in I.
germanica, a species from section Iris. Nevertheless, many
of the I.brevicaulis-I.fulva EST-SSR markers developed in
the present study amplify alleles from other species and
should have broad utility in the genus [1,5].

The 40 EST-SSR markers were highly polymorphic among
and consistently amplified alleles from Louisiana Iris eco-
types; the null allele frequency was 0.5% (Table 1; Figure
3; Additional File 4). The number of alleles/locus (n)
ranged from two to 18, the mean number of alleles/locus
(n) was 8.9, heterozygosities of individual SSR markers
ranged from 0.36 to 0.90, and the mean heterozygosity
(h) was 0.76. Eighty to 100% of the EST-SSR markers were
polymorphic, n ranged from 2.9 to 5.2, and h ranged from
0.41 to 0.65 among Louisiana Iris ecotypes (Table 1; Addi-
tional File 4). The number of species-specific alleles

Table 1: Linkage group (LG) assignment, number of alleles (n), and mean heterozygosity (h) estimated from genotypes of 40 EST-SSR 
markers among seven I. brevicaulis (nB and hB), six I. fulva (nF and hF), six I. hexagona (nH and hH), and seven I. nelsonii (nN and hN) 
ecotypes and among 26 Louisiana Iris ecotypes (nL and hL).

SSR
Marker

Motif SSR Location LG nB nF nH nN nL hB hF hH hN hL

IM27 (AAG)12 5' UTR 18 2 1 1 1 4 0.24 0.00 0.00 0.00 0.64
IM55 (GAA)9 CDS 1 6 7 4 1 10 0.76 0.83 0.68 0.00 0.82
IM61 (AGC)7 CDS 4 5 3 2 3 8 0.71 0.40 0.49 0.36 0.69
IM93 (ACC)8 CDS 9 6 2 2 2 6 0.76 0.38 0.28 0.13 0.72
IM95 (AAG)8 5' UTR 17 6 1 3 3 11 0.80 0.00 0.50 0.65 0.82
IM123 (TCT)10 CDS 3 7 4 2 5 8 0.83 0.65 0.50 0.61 0.81
IM144 (CAG)6 CDS 3 5 1 2 2 5 0.67 0.00 0.49 0.41 0.64
IM146 (ACG)6 CDS 5 4 2 2 4 6 0.72 0.15 0.38 0.53 0.77
IM152 (CTA)6 CDS 6 4 3 2 2 5 0.37 0.57 0.28 0.34 0.64
IM156 (GAG)7 CDS 4 4 3 2 1 6 0.62 0.29 0.15 0.00 0.36
IM164 (AGC)6 CDS 12 2 2 3 4 7 0.46 0.44 0.57 0.66 0.82
IM165 (CAG)6 3' UTR 5 3 1 3 2 5 0.64 0.00 0.57 0.24 0.72
IM196 (AAG)7 CDS 10 6 5 3 7 16 0.68 0.72 0.54 0.83 0.90
IM200 (GAA)23 CDS 1 9 4 2 3 10 0.87 0.51 0.28 0.44 0.77
IM203 (CTT)7 5' UTR 13 7 2 3 3 9 0.80 0.50 0.40 0.60 0.75
IM234 (GCA)7 CDS 2 3 1 4 5 8 0.50 0.00 0.71 0.67 0.70
IM235 (TGC)6 3' UTR 12 4 2 4 3 10 0.66 0.44 0.58 0.62 0.83
IM283 (CCT)8 CDS 21 2 2 2 1 4 0.13 0.15 0.15 0.00 0.55
IM299 (TA)6 3' UTR 19 4 4 3 4 7 0.66 0.51 0.57 0.73 0.80
IM303 (TCC)6 5' UTR 16 6 5 2 1 10 0.80 0.69 0.15 0.00 0.77
IM319 (GAG)7 5' UTR 5 9 1 3 3 11 0.87 0.00 0.29 0.52 0.82
IM327 (GA)12 5' UTR 20 6 7 4 4 13 0.78 0.79 0.60 0.70 0.88
IM341 (GAG)6 5' UTR 12 3 1 3 1 7 0.50 0.00 0.65 0.00 0.69
IM348 (AGG)7 CDS 2 7 3 8 4 11 0.70 0.49 0.85 0.46 0.77
IM364 (CTT)6 CDS 9 9 4 2 2 10 0.87 0.65 0.15 0.24 0.73
IM377 (ATT)6 5' UTR 7 3 2 1 2 7 0.26 0.44 0.00 0.41 0.78
IM378 (TTC)9 5' UTR 6 3 3 2 2 6 0.50 0.57 0.15 0.50 0.78
IM389 (CTT)8 CDS 14 8 3 1 4 9 0.84 0.29 0.00 0.66 0.70
IM391 (TTC)12 5' UTR 15 6 7 2 5 12 0.69 0.83 0.15 0.73 0.87
IM395 (TC)8 3' UTR 15 3 3 3 4 7 0.57 0.61 0.57 0.53 0.80
IM402 (CTT)10 5' UTR 13 7 2 2 3 9 0.82 0.49 0.15 0.60 0.78
IM426 (TCT)7 5' UTR 4 6 4 2 4 11 0.76 0.71 0.38 0.62 0.85
IM429 (AGA)8 5' UTR 14 3 3 3 2 8 0.44 0.40 0.40 0.34 0.75
IM442 (GA)7 5' UTR 16 2 1 1 2 2 0.34 0.00 0.00 0.46 0.47
IM450 (CAG)7 CDS 2 7 2 5 4 10 0.74 0.28 0.53 0.64 0.70
IM460 (GA)7 5' UTR 8 7 2 3 4 13 0.83 0.28 0.54 0.66 0.85
IM486 (AGC)7 CDS 11 3 5 4 7 12 0.57 0.72 0.68 0.80 0.89
IM501 (AG)13 5' UTR 7 6 3 5 4 14 0.76 0.40 0.72 0.61 0.88
IM503 (CT)12 5' UTR 10 7 6 5 7 18 0.82 0.82 0.68 0.76 0.89
IM526 (CAC)6 CDS 11 6 3 5 3 9 0.73 0.40 0.76 0.52 0.83
Mean 5.2 3.0 2.9 3.2 8.9 0.65 0.41 0.41 0.47 0.76
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ranged from 26 in I. nelsonii to 101 in I. brevicaulis. Dinu-
cleotide repeats were slightly more polymorphic than tri-
nucleotide repeats. The mean number of alleles was n =
10.6 for dinucleotide and 8.5 for trinucleotide repeats and
the mean heterozygosity was h = 0.80 for dinucleotide and
0.75 for trinucleotide repeats. SSRs in coding sequences (h
= 0.78) were only slightly less polymorphic than SSRs in
UTRs (h = 0.73) (Table 1; Additional File 1).

Genetic Diversity Among Wild Collected Ecotypes and 
Horticulturally Important Cultivars
Because only nine of the 40 I. brevicaulis-I.fulva EST-SSR
markers amplified alleles from horticultural cultivars of
I.germanica, I.pseudacorus, and I.sibirica, genetic distances
and dendrograms were separately estimated from geno-
types of the nine EST-SSR markers among accessions of all
seven species and of the 40 EST-SSR markers among eco-
types of the four Louisiana Iris species (Figure 4; Addi-
tional File 4). Genetic distances (G) ranged from 0.25 to
0.93 among Louisiana Iris ecotypes. The longest genetic
distances were interspecific (G = 0.93 between IB70 and
IF10, IH32 and IN33, and IB25 and IF17), whilst the
shortest genetic distances were intraspecific (G = 0.25
between IF14 and IF17 and IH10 and IH16). Ecotypes
assembled into species-specific clusters which were sepa-
rated by greater genetic distances than ecotypes within
species-specific clusters (Figure 4; Additional File 5).
Genetic diversity was significant and diffuse among eco-
types or cultivars within species. Only a few EST-SSR
markers were needed to identify (distinguish) ecotypes
and cultivars.

Conclusion
cDNA sequences, an EST database, and EST-SSR markers
were developed for comparative mapping, forward genet-
ics, and other genotyping applications in Iris. cDNA nor-
malization minimized transcript redundancy and small

scale EST sequencing (6,530) yielded 4,917 unigenes for
gene discovery and DNA marker development. Perfect
SSRs were identified in one-fourth of the unigenes (1,162/
4,917) and EST-SSR markers were developed for nearly
half of the latter (526/1,162). Three-fourths of the primers
designed and tested (399/526) amplified alleles from ref-
erence ecotypes of I. brevicaulis and I. fulva and yielded
robust EST-SSR markers. When 40 of the EST-SSR markers
were screened for amplification, genotyping utility, and
polymorphisms across species, 100% amplified alleles
from I. brevicaulis, I. fulva, I. hexagona, and I. nelsonii eco-
types, whereas 42–50% amplified alleles from I.ger-
manica, I.pseudacorus, and I.sibirica ecotypes and cultivars.
Hence, a large percentage of the I. brevicaulis-I. fulva EST-
SSR markers developed in the present study should
amplify alleles from other species and have broad utility
in the genus. Finally, significant allelic diversity was dis-
covered among Louisiana, yellow-flag, Siberian, and tall-
bearded ecotypes and cultivars; 90% of the EST-SSR mark-
ers were polymorphic and supply a wealth of ortholog-
specific DNA markers for biological and horticultural
research in Iris.

Methods
cDNA Library Construction
Normalized cDNA libraries were constructed from RNAs
isolated from leaves and roots of an I.brevicaulis ecotype
(IB72) and an I.fulva ecotype (IF174) using the Creator
SMART cDNA Library Construction Kit (Clontech, Moun-
tain View, CA). Total RNAs were isolated using Trizol
(Invitrogen, Carlsbad, CA). First-strand cDNAs were syn-
thesized using SuperScript™ III Reverse Transcriptase (Inv-
itrogen, Carlsbad, CA). Double-strand cDNAs were
normalized by duplex-specific nuclease (DSN) purified
from Kamchatka crab hepatopancreas using the Trimmer-
Direct cDNA Normalization Kit (Evrogen, Moscow, Rus-
sia). Normalized cDNAs were size-fractionated, and

Table 2: Number of alleles (n) and heterozygosities (h) estimated from genotypes of nine EST-SSR markers among 26 Louisiana Iris 
ecotypes (nL and hL), 13 yellow-flag, Siberian, and tall-bearded Iris cultivars (nC and hC), and across the 39 ecotypes and cultivars (nT and 
hT).

SSR
Marker

Motif SSR Location LG nL nC nT hL hC hT

IM61 (AGC)7 CDS 4 8 10 15 0.69 0.82 0.88
IM93 (ACC)8 CDS 9 6 6 8 0.72 0.77 0.79
IM123 (TCT)10 CDS 3 8 6 14 0.81 0.82 0.91
IM164 (AGC)6 CDS 12 7 7 13 0.82 0.79 0.88
IM196 (AAG)7 CDS 10 16 10 20 0.90 0.87 0.93
IM200 (GAA)23 CDS 1 10 8 18 0.77 0.83 0.90
IM327 (GA)12 5' UTR 20 13 15 27 0.88 0.91 0.94
IM348 (AGG)7 CDS 2 11 8 15 0.77 0.86 0.88
IM391 (TTC)12 5' UTR 15 12 9 17 0.87 0.87 0.93
Mean 10.1 8.8 16.3 0.80 0.84 0.89
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cDNAs > 400 bp were selected for cDNA library construc-
tion. Normalized and size selected cDNAs were digested
with Sfi I (Fermentas, Glen Burnie, MD), directionally
cloned into the vector pDNR-LIB, and electroporated into
competent cell DH10B (Clontech, Mountain View, CA).
To assess cDNA library quality and insert length distribu-
tion, inserts were amplified from 295 randomly selected
cDNA clones by colony PCR.

EST Database Development
Collectively, 12,199 I. brevicaulis and I. fulva cDNA clones
were 5'-end single-pass Sanger sequenced at the Washing-
ton University Genome Sequencing Center, St. Louis, MO
using M13 as the sequencing primer; roughly equal num-

bers of randomly selected clones were sequenced from the
two cDNA libraries. ESTs were processed, vector- and
quality-trimmed, assembled, and annotated using a cus-
tom bioinformatics pipeline and deposited and displayed
in Iris ESTdb http://www.genome.uga.edu/Iris, a rela-
tional EST database developed by modifying a previously
described database [33]. Low-quality bases were PHRED-
trimmed http://www.phrap.org/phredphrapconsed.html
using a Q < 16 quality score (Q) threshold. Vector
sequences were trimmed using Cross_Match http://
www.phrap.org/phredphrapconsed.html. cDNA
sequences were screened for E. coli, chloroplast, and mito-
chondrial DNAs utilizing the SSAHA package http://
www.sanger.ac.uk/Software/analysis/SSAHA/. Vector-

Dendrogram constructed from genetic distances estimated from genotypes of nine EST-SSR markers among seven I. brevicaulis (IB), six I. fulva (IF), six I. hexagona (IH), and seven I. nelsonii (IN) ecotypes and four I. pseudacorus (IP), five I. germanica (IG), and four I. sibirica (IS) cultivarsFigure 4
Dendrogram constructed from genetic distances estimated from genotypes of nine EST-SSR markers among 
seven I. brevicaulis (IB), six I. fulva (IF), six I. hexagona (IH), and seven I. nelsonii (IN) ecotypes and four I. pseu-
dacorus (IP), five I. germanica (IG), and four I. sibirica (IS) cultivars.
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and quality-trimmed ESTs longer than 100 bp were
assembled using MEGABLAST and CAP3 TGI Clustering
Tools http://compbio.dfci.harvard.edu/tgi/software/.
BLASTX http://www.ncbi.nlm.nih.gov/BLAST analyses
were performed against the NCBI Non-Redundant Protein
Database, UniprotSprot, and UniprotTrembl to identify
putative functions of and annotate unique transcripts
(unigenes).

EST-SSR Discovery, Marker Development, and Length 
Polymorphism Screening
Unigenes in the transcript assembly were screened for per-
fect repeat motifs using SSR-IT (http://www.gramene.org/
db/searches/ssrtool; [24]) and imperfect repeat motifs
using FastPCR http://www.biocenter.helsinki.fi/bi/Pro
grams/fastpcr.htm. SSRs with a minimum repeat count
(n) threshold of n ≥ 5 were selected for further analysis
and EST-SSR marker development (Additional File 1).
Flanking forward and reverse primers were designed for
SSRs in 526 unigenes using Primer 3 (http://
frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi;
Additional File 2). To facilitate multiplex genotyping on
an ABI3730 XL Capillary DNA Sequencer (Applied Biosys-
tems, Foster City, CA), SSR primers were designed by uni-
formly varying target amplicon lengths from 100 to 450
bp and end-labeling forward primers with one of three
fluorophores, 6FAM, HEX, or TAMRA (Additional File 2).
The 526 SSR markers were screened for amplification and
length polymorphisms among two I.brevicaulis ecotypes
(IB72 and IB25) and an I.fulva ecotype (IF174) on agarose
[47].

To assess cross-species amplification, transferability, and
allele length polymorphisms, 40 of the 526 I. brevicaulis-I.
fulva EST-SSR markers were screened among 26 ecotypes
sampled from four Louisiana Iris species (I.brevicaulis,
I.fulva, I. nelsonii, and I. hexagona), four yellow-flag Iris
cultivars (I.pseudacorus), four Siberian Iris cultivars (I.sibir-
ica), and five tall-bearded Iris cultivars (I.germanica)
(Additional File 3). Louisiana Iris ecotypes were collected
from Terrebonne Parish and St. Martinville Parish, Louisi-
ana and I.pseudacorus ecotypes were collected from Spring
Lake, San Marcos, TX. Tall-bearded and Siberian Iris culti-
vars were purchased from Schreiner Iris Gardens, Salem,
Oregon. The 40 EST-SSR markers were previously mapped
and distributed among 21 I.brevicaulis × I.fulva linkage
groups (unpublished data). Genomic DNA was isolated
from leaves of the 39 ecotypes or cultivars using a modi-
fied cetyltrimethylammonium bromide (CTAB) method
[48]. SSR markers were genotyped on an ABI 3700 XL
Capillary DNA Sequencer as previously described [47,49]
and SSR allele lengths were ascertained using GeneMap-
per (Applied Biosystems, Foster City, CA). Heterozygosi-
ties (H) of individual EST-SSR markers were estimated as
described by Ott [50]. Genetic distances (G) were esti-

mated using the proportion of shared alleles estimator in
Microsat, where G = (1 - p) and p is the proportion of
shared alleles http://hpgl.stanford.edu/projects/microsat/
. Neighbor-joining (NJ) trees were constructed using the
NEIGHBOR program in PHYLIP http://evolution.genet
ics.washington.edu/phylip.html and were drawn with
TreeView http://taxonomy.zoology.gla.ac.uk/rod/
treeview.html.

DNA Sequence Data
Single-pass Sanger cDNA sequences (ESTs) for 6,530 I.
brevicaulis and I. fulva clones have been deposited in Gen-
Bank (Acc. No. EX949962–EX956238 and FD387191–
FD387443).
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cultivars screened for SSR allele length polymorphisms.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2229-9-72-S3.xls]

Additional file 4
Allele length database for 40 EST-SSR markers among 39 ecotypes or 
cultivars of I. brevicaulis (IB), I. fulva (IF), I. nelsonii (IN), I. hex-
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