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Abstract
Background: Although the effects of P deficiency on tea (Camellia sinensis (L.) O. Kuntze) growth,
P uptake and utilization as well as leaf gas exchange and Chl a fluorescence have been investigated,
very little is known about the effects of P deficiency on photosynthetic electron transport,
photosynthetic enzymes and carbohydrates of tea leaves. In this study, own-rooted 10-month-old
tea trees were supplied three times weekly for 17 weeks with 500 mL of nutrient solution at a P
concentration of 0, 40, 80, 160, 400 or 1000 μM. This objective of this study was to determine how
P deficiency affects CO2 assimilation, Rubisco, carbohydrates and photosynthetic electron
transport in tea leaves to understand the mechanism by which P deficiency leads to a decrease in
CO2 assimilation.

Results: Both root and shoot dry weight increased as P supply increased from 0 to 160 μM, then
remained unchanged. P-deficient leaves from 0 to 80 μM P-treated trees showed decreased CO2
assimilation and stomatal conductance, but increased intercellular CO2 concentration. Both initial
and total Rubisco activity, contents of Chl and total soluble protein in P-deficient leaves decreased
to a lesser extent than CO2 assimilation. Contents of sucrose and starch were decreased in P-
deficient leaves, whereas contents of glucose and fructose did not change significantly except for a
significant increase in the lowest P leaves. OJIP transients from P-deficient leaves displayed a rise at
the O-step and a depression at the P-step, accompanied by two new steps at about 150 μs (L-step)
and at about 300 μs (K-step). RC/CSo, TRo/ABS (or Fv/Fm), ETo/ABS, REo/ABS, maximum amplitude
of IP phase, PIabs and PItot, abs were decreased in P-deficient leaves, while VJ, VI and dissipated energy
were increased.

Conclusion: P deficiency decreased photosynthetic electron transport capacity by impairing the
whole electron transport chain from the PSII donor side up to the PSI, thus decreasing ATP content
which limits RuBP regeneration, and hence, the rate of CO2 assimilation. Energy dissipation is
enhanced to protect P-deficient leaves from photo-oxidative damage in high light.
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Background
Phosphorus (P) is one of essential macronutrients
required for the normal growth and development of
higher plants. Plant roots acquire P as phosphate (Pi), pri-
marily in the form of H2PO4

-, from the soil solution [1].
Although total Pi is abundant in many soils, the available
Pi in the soil solution is commonly 1 – 2 μM due to its
binding to soil mineral surfaces and fixation into organic
forms [2]. Hence, P is one of the unavailable and inacces-
sible macronutrients in the soil [1] and is often the most
limiting mineral nutrient in almost all soils [2]. Among
the fertility constraints to crop production in China, low
Pi availability is the primary limiting factor [3]. Pi availa-
bility is particularly limiting on the highly weathered acid
soils of the tropics and subtropics, in which free iron and
aluminum oxides bind native and applied Pi into forms
unavailable to plants [2,3]. Therefore, Pi availability is
often a major limiting factor for crop production in acid
soils [2].

P deficiency affects photosynthesis in many plant species,
including tea (Camellia sinensis (L.) O. Kuntze) [4], sat-
suma mandarin (Citrus unshiu Marc.) [5,6], pigeon pea
(Cajanus cajan L. Millsp.) [7], soybean (Glycine max (L.)
Merr.) [8], white clover (Trifolium repens L.) [9], sugar beet
(Beta vulgaris L.) [10], tomato (Lycopersicon esculentum
Mill.) [11], bean (Phaseolus vulgaris L.) [12], maize (Zea
mays L.), sunflower (Helianthus annuus L.) [13]. In pigeon
pea (cv. UPAS 120) [7] and tea [4], stomatal closure was
at least partly responsible for the decreased photosyn-
thetic rate under P deficiency, because the intercellular
CO2 concentration was decreased. However, the lower
CO2 assimilation in P-deficient leaves of soybean [14] and
bean [12] was primarily caused by non-stomatal factors as
the lower assimilation rate coincided with an increase of
the intercellular CO2 concentration and the internal to
ambient CO2 concentration ratio, respectively. Decreases
in the activity and amount of Rubisco due to P deficiency
have been reported for spinach (Spinacia oleracea L.)
[15,16], sunflower [13], maize [17] and soybean [14,18].
However, experiments with sugar beet [10,19] and maize
[13] showed that the effects of P deficiency on photosyn-
thetic rate acted through RuBP regeneration rather than
Rubisco activity. Jacob and Lawlor [20] concluded that the
decreased CO2 assimilation in P-deficient sunflower and
maize leaves was a consequence of a smaller ATP content
and lower energy charge which limited the production of
RuBP. A feedback inhibition of photosynthesis has been
suggested as a cause of decreased CO2 assimilation at low
P supply [21,22]. However, for tomato plants a decrease
in starch accumulation and an increase in oxygen sensitiv-
ity of CO2 fixation with decreasing P supply suggest that
feedback limitation is decreased under P deficiency
[11,23]. P deficiency may also limit photosynthetic rate
by altering leaf Chl and protein contents [24,25]. How-

ever, the decreased photosynthetic rate under P deficiency
was not accompanied by decreased contents of Chl and
protein per unit leaf area [10,15].

All oxygenic photosynthetic materials investigated so far
using direct, time-resolved fluorescence measurement
show the polyphasic rise with the basic steps of O-J-I-P
[26-28]. The OJIP transient has been found to be a sensi-
tive indicator of photosynthetic electron transport proc-
esses [29]. The kinetics of the OJIP are considered to be
determined by changes in the redox state of QA [28,30],
but at the same time, the OJIP transient reflects the reduc-
tion of the photosynthetic electron transport chain [31].
The OJ phase represents the reduction of the acceptor side
of PSII [29,31]. The JI phase parallels the reduction of the
PQ-pool [29,32] and the IP phase represents the fractional
reduction of the acceptor side of PSI or the last step in the
reduction of the acceptor side of PSII and the amplitude
of the IP phase may be a rough indicator of PSI content
[31,33]. Reports concerning the effects of P deficiency on
photosynthetic electron transport activity are some con-
flicting. Abadia et al. [34] reported that low P had no
major effect on the structure and function of the photo-
synthetic electron transport system or on photosynthetic
quantum yield of sugar beet leaves. Jacob and Lawor [20]
concluded that in vivo photosynthetic electron transport
did not limit photosynthetic capacity in P-deficient sun-
flower and maize leaves. However, P-deficient citrus
exhibited a 6% decrease in Fv/Fm and a 49.5% decrease in
electron transport rate [5]. Recently, Ripley et al. [35]
reported that P deficiency decreased TRo/ABS (Fv/Fm), ETo/
ABS of sorghum (Sorghum bicolor (L.) Moench) leaves, but
had no significant effect on electron transport flux per RC
(ETo/RC). Thus, it is not well known how P deficiency
affects photosynthetic electron transport in plants.

Tea is an evergreen shrub native to China and is cultivated
in humid and sub-humid of tropical, sub-tropical, and
temperate regions of the world mainly on acid soils [4]. P
deficiency is frequently observed in tea plantations
[36,37]. For this reason, P fertilizers are being used annu-
ally in tea plantations in order to raise tea productivity
and improve tea quality [4]. Although Salehi and Haji-
boland [4] investigated the effects of P deficiency on tea
growth, P uptake and utilization as well as leaf gas
exchange and Chl a fluorescence, very little is known
about the effects of P deficiency on photosynthetic elec-
tron transport, photosynthetic enzymes and carbohy-
drates of tea leaves. The objective of this study was to
determine how P deficiency affects CO2 assimilation,
Rubisco, non-structural carbohydrates and photosyn-
thetic electron transport in tea leaves to understand the
mechanism by which P deficiency leads to a decrease in
CO2 assimilation.
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Results
Leaf P content and plant growth characteristics
As P supply decreased, leaf P content decreased curviline-
arly (Fig. 1A). Both root and shoot dry weight increased as
P supply increased from 0 to 160 μM, then remained
unchanged (Fig. 1B and 1C). The ratio of root/shoot dry
weight in the 0 to 80 μM P-treated trees was higher than
in the 160 μM to 1000 μM P-treated ones (Fig. 1D).

Specific leaf weight, Chl, Car, total soluble protein and N
Specific leaf weight did not change significantly as leaf P
content decreased from 369.3 mg m-2 to 97.5 mg m-2, then
dropped significantly in the lowest P leaves (Fig. 2A). Leaf
Chl (Fig. 2B), Car (Fig. 2C) and total soluble protein (Fig.
2D) contents did not change significantly as leaf P
decreased from 369.3 mg m-2 to 146.0 mg m-2, then
decreased with further decreasing leaf P content. Leaf N
content remained little changed with decreasing leaf P
content, except for a decrease in the lowest P leaves (Fig.
2D). The ratio of Chl a/b remained unchanged over the
range of leaf P content examined (Fig. 2B). The ratio of
Car/Chl remained relatively constant as leaf P content
decreased, except for an increase in the lowest P leaves
(Fig. 2C).

Leaf gas exchange and Rubisco
Both CO2 assimilation (Fig. 3A) and stomatal conduct-
ance (Fig. 3B) increased as leaf P content increased from
39.4 mg m-2 to 219.9 mg m-2, then remained relatively sta-
ble with further increasing leaf P content, whereas inter-
cellular CO2 concentration decreased as leaf P content
increased from 39.4 mg m-2 to 146.0 mg m-2, then did not
change significantly with further increasing leaf P content
(Fig. 3C).

On an area basis, both initial and total Rubisco activity
kept relatively constant as leaf P content decreased from
369.3 mg m-2 to 219.9 mg m-2, then decreased with fur-
ther decreasing leaf P content, whereas both initial and
total activity expressed on a protein basis did not change
significantly over the range of leaf P content examined,
except for a slight decrease in initial activity in the lowest
P leaves (Fig. 4A and 4B). Rubisco activation state
remained unchanged as leaf P content decreased from
369.3 mg m-2 to 97.5 mg m-2, and then dropped in the
lowest P leaves (Fig. 4C).

Leaf nonstructural carbohydrates
On an area basis, contents of glucose and fructose did not
change significantly over the range of leaf P content exam-
ined except for a significant increase in the lowest P leaves
(Fig. 5A and 5B). Contents of sucrose and starch remained
little changed as leaf P content decreased from 369.3 mg
m-2 to 219.9 mg m-2, then decreased with further decreas-
ing leaf P content (Fig. 5C and 5D). When expressed on a

Effects of phosphorus (P) supply on leaf P content (A), root dry weight (B), shoot dry weight (C) and root/shoot dry weight ratio (D) of tea treesFigure 1
Effects of phosphorus (P) supply on leaf P content 
(A), root dry weight (B), shoot dry weight (C) and 
root/shoot dry weight ratio (D) of tea trees. Each point 
is mean ± standard error (n = 5 or 6). Regression equations: 
(A) y = 361.3948 – 308.8565 e-0.0039x (r2 = 0.9690, P = 0.0055). 
Different letters above or below standard error bars indicate 
significant difference at P < 0.05.
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dry weight basis, sucrose content did not change signifi-
cantly as leaf P content decreased from 369.3 mg m-2 to
146.0 mg m-2 except for a decrease in the 39.4 mg m-2 and
97.5 mg m-2 P leaves (Fig. 5G), whereas the other results
expressed on a dry weight basis were similar to those
expressed on an area basis (Fig. 5E, 5F and 5H).

Leaf OJIP transients and related parameters
All OJIP transients showed a typical polyphasic rise with
the basic steps of O-J-I-P. OJIP transients of leaves from 0
and 40 μM P-treated trees showed a rise at the O-step and
a large depression at the P-step (Fig. 6A).

Fig. 6B and 6E shows the kinetics of relative variable fluo-
rescence at any time Vt = (Ft - Fo)/(Fm - Fo) and the differ-
ences of normalized P-treated transients minus 1000 μM
P-treated transient (ΔVt). The differences revealed three
obvious bands: increase in the K-step (300 μs), in the 2 to
4 ms range J-step and in the 30 to 100 ms range I-step. The
positive K-, J- and I-steps were very pronounced in the
leaves from 0 and 40 μM P-treated trees. Fig. 6C and 6F

Specific leaf weight (A), Chl content and Chl a/b ratio (B), carotenoid (Car) content and Car/Chl ratio (C), total soluble protein and N contents (D) in relation to P content in tea leavesFigure 2
Specific leaf weight (A), Chl content and Chl a/b ratio 
(B), carotenoid (Car) content and Car/Chl ratio (C), 
total soluble protein and N contents (D) in relation 
to P content in tea leaves. Each point is mean ± standard 
error for the leaf P content (horizontal, n = 6) and the 
dependent variable (vertical, n = 5 or 6). Different letters 
above or below standard error bars indicate significant differ-
ence at P < 0.05.
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depicts the relative variable fluorescence between Fo and
F300 μs (WK) and the differences of normalized P-treated
transients minus 1000 μM P-treated transient (ΔWK). The
differences showed a clear L-step. OJIP transients from 0
to 80 μM P-treated trees had decreased maximum ampli-
tude of IP phase and rise time, and the end-levels were
lowered by P deficiency (Fig. 6D).

Fig. 7 depicts the behavior patterns of 17 fluorescence
parameters. For each parameter the values were normal-
ized on that of the sample treated with 1000 μM P. Gen-
erally speaking, leaves from 0 to 80 μM P-treated plants
had decreased ETo/TRo, REo/ETo, TRo/ABS, ETo/ABS, REo/
ABS (Fig. 7A), TRo/CSo, RC/CSo, ETo/CSo, REo/CSo (Fig.
7B), REo/RC, ECo/RC, maximum amplitude of IP phase,

PIabs and PItot, abs (Fig. 7C), but increased DIo/RC, DIo/CSo
and DIo/ABS (φDo) (Fig. 7D).

Leaf maximum amplitude of IP phase, PIabs and PItot, abs in 
relation to CO2 assimilation
Leaf CO2 increased linearly or curvilinearly with increas-
ing maximum amplitude of IP phase (Fig. 8A), PIabs (Fig.
8B) and PItot, abs (Fig. 8C), respectively.

Discussion
Our results showed that 0, 40 and 80 μM P treatments
decreased root and shoot dry weight (Fig. 1B and 1C), and
foliar P content for the three treatments was lower than
the sufficiency range of 1.9 to 2.5 mg g-1 DW [38]. In addi-
tion, nearly all physiological and biochemical activities
reached their maximum in the leaves of about 220 mg m-

2 from 160 μM P-treated trees (Figs. 2, 3, 4, 5, 6, 7). Based
on these results, trees treated with 0, 40 or 80 μM P are
considered P deficient. P deficiency resulted in an increase
in the ratio of root/shoot dry weight (Fig. 1D), as previ-
ously observed in different plant species growing under

Initial ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity (A), total Rubisco activity (B), and Rubisco activation state (C) in relation to P content in tea leavesFigure 4
Initial ribulose-1,5-bisphosphate carboxylase/oxygen-
ase (Rubisco) activity (A), total Rubisco activity (B), 
and Rubisco activation state (C) in relation to P con-
tent in tea leaves. Each point is mean ± standard error for 
the leaf P content (horizontal, n = 6) and the dependent vari-
able (vertical, n = 5). Different letters above or below stand-
ard error bars indicate significant difference at P < 0.05.
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< 0.05.
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different growth conditions [10,39-42]. The increase of
the root/shoot dry weight ratio in response to P deficiency
may be associated with stronger sink competition of the
roots for P and photosynthates [7,40,43-45].

Despite decreased CO2 assimilation, P deficiency causes
increased starch content and decreased sucrose content in
leaves of several plant species including soybean [44,46],
tobacco (Nicotiana tabacum L.) [22], spinach, barley (Hor-
deum vulgare L.) [47] and Brachiaria hybrid [48]. Increased
partitioning of photosynthetically fixed carbon into the
starch at the expense of sucrose synthesis in leaves [22,44]
and decreased demand from growth [22,46,49] have been
shown to contribute to increased starch accumulation in
P-deficient leaves. However, a simultaneous increase in
starch and sucrose contents in the leaves of P-deficient

soya (G. max (L.) Merr.) [47], bean [50] and sugar beet
[51] plants has been observed while chloroplastic and leaf
levels of sugar phosphates decreased markedly [19]. In
our study, P-deficient leaves had decreased sucrose (Fig.
5C and 5G) and starch (Fig. 5D and 5H) contents, as pre-
viously found for trifoliate orange (Poncirus trifoliata (L.)
Raf.), Swingle citrumelo (C. paradisi Macf. × P. trifoliata),
Carrizo citrange (C. sinensis (L.) Osb. × P. trifoliata) [52]
and rice (Oryza sativa L.) [48]. There appears to be consid-
erable variation in the responses of leaf carbohydrate
metabolism during P deficiency. Some of the variation
may result from different degree of P deficiency, time of
exposure to P deficiency, plant species, light intensities
used in different studies [8,22,23,47,52]. It is noteworthy
that specific leaf weight decreased in the lowest P leaves
(Fig. 2A). This contrasts with previous data obtained for
soybean [44] and sugar beet [10], whose leaves accumu-
lated starch under P deficiency [10,44]. Regressive analysis
showed that specific leaf weight decreased linearly with
decreasing leaf starch content expressed on a leaf area
basis (P = 0.0053, data not shown). Therefore, the
decrease in specific leaf weight under P deficiency may be

Effects of P supply on the average Chl a fluorescence (OJIP) transients (average of 7 – 15 samples, A) and the different expressions of relative variable fluorescence: (B) between Fo and Fm: Vt = (Ft - Fo)/(Fm - Fo) and (E) the differences of the six samples to the reference sample treated with 1000 μM P (ΔVt), (C) between Fo and F300 μs: WK = (Ft - Fo)/(F300 μs - Fo) and (F) the differences of the six samples to the reference sample (ΔWK), (D) IP phase: (Ft - Fo)/(FI - Fo) - 1 = (Ft - FI)/(FI - Fo) [71] in dark-adapted tea leavesFigure 6
Effects of P supply on the average Chl a fluorescence 
(OJIP) transients (average of 7 – 15 samples, A) and 
the different expressions of relative variable fluores-
cence: (B) between Fo and Fm: Vt = (Ft - Fo)/(Fm - Fo) 
and (E) the differences of the six samples to the ref-
erence sample treated with 1000 μM P (ΔVt), (C) 
between Fo and F300 μs: WK = (Ft - Fo)/(F300 μs - Fo) and 
(F) the differences of the six samples to the reference 
sample (ΔWK), (D) IP phase: (Ft - Fo)/(FI - Fo) - 1 = (Ft 
- FI)/(FI - Fo) [71] in dark-adapted tea leaves.
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in relation to P content in tea leaves. All the values 
were expressed relative to the sample treated with 1000 μM 
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- 1 [71].
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explained, at least in part, by the decrease in starch con-
tent.

The higher intercellular CO2 concentration in P-deficient
leaves indicates that the low CO2 assimilation under P
deficiency (Fig. 3A and 3C) is primarily caused by non-
stomatal factors, as earlier reported for soybean [14] and
bean [12]. However, Salehi and Hajiboland [4] proposed
that lower stomatal conductance was the main cause for
the decreased CO2 assimilation rate in P-deficient tea
leaves as the decrease in assimilation rate was accompa-

nied by a decrease in the intercellular CO2 concentration.
Similar result has been obtained for pigeon pea (cv. UPAS
120) [7].

It has been suggested that low sink demand limits photo-
synthesis under P deficiency [21,22]. In our study, how-
ever, the decrease of assimilation CO2 rate under P
deficiency was accompanied by a decrease in the starch
accumulation (Fig. 3A, 5D and 5H), as previously
reported for tomato grown in high light [23]. This indi-
cates that the production, rather that the utilization of
photosynthates, is limiting. Evidence shows that soluble
sugars, specifically hexoses, may repress photosynthetic
gene expression, particularly of the nuclear-encoded small
sub-unit of Rubisco, thus decreasing Rubisco content and
CO2 assimilation [53]. The lack of accumulation of
sucrose and hexoses in the leaves from 40 and 80 μM P-
treated trees (Fig. 5A–C and 5E–G) means that the feed-
back repression mechanism via accumulation of soluble
sugars does not play a major role in determining the activ-
ity of Rubisco and the rate of CO2 assimilation in these
leaves. However, this is not to deny that the decrease in
CO2 assimilation in the lowest P leaves can be due to the
accumulation of hexoses, because the levels of glucose +
fructose observed was higher than the reported threshold
level (4.5 mmol m-2) for hexose regulation of gene expres-
sion in tobacco [54]. The decrease in initial and total
Rubisco activity expressed on an area basis in response to
P deficiency was probably not the primary factor limiting
CO2 assimilation, because there was a greater decrease in
CO2 assimilation than in Rubisco activity (Fig. 3A, 4A and
4B). In our study, the observed lower initial and total
Rubisco activity expressed on an area basis in P-deficient
leaves could be associated with decreased total soluble
protein content (Fig. 2D), because both initial and total
activity expressed on a protein basis did not change signif-
icantly over the range of leaf P content examined, except
for a slight decrease in the initial activity in the lowest P
leaves (Fig. 4A and 4B). The decrease in CO2 assimilation
in P-deficient leaves cannot be attributed to a decrease in
Chl and protein contents, because the decrease in leaf Chl
(Fig. 2B) and total soluble protein (Fig. 2D) contents was
much less than CO2 assimilation (Fig. 3A). Similar results
have been reported for spinach [15], sugar beet [10], and
bean [12].

The presence of a positive L-step at ca. 150 μs in P-defi-
cient leaves (Fig. 6F) means that the OJIP transients from
P-deficient leaves are less sigmoidal than from P-sufficient
ones and that the PSII units are less grouped or less energy
is being exchanged between the independent PS II units.
Because the grouped conformation is more stable than the
ungrouped one, the decreased grouping implies that the
PSII units of P-deficient leaves have lost stability and
become more fragile. Similar results have been reported

Maximum amplitude of IP phase (A), PIabs (B) and PItot, abs (C) in relation to CO2 assimilation in tea leavesFigure 8
Maximum amplitude of IP phase (A), PIabs (B) and 
PItot, abs (C) in relation to CO2 assimilation in tea 
leaves. All the values were expressed relative to the sample 
treated with 1000 μM P set as 1. Regression equations: (A) y 
= 0.5070 + 0.5208 × (r2 = 0.9556, P = 0.0007); (B) y = -
11.9070 + 12.9149 x0.0503 (y2 = 0.9951, P = 0.0003); (C) y = -
0.1650 + 1.2127 × (y2 = 0.9839, P < 0.0001).
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for N-deficient cowpea (Vigna unguiculata L.) [28] and Al-
treated Citrus grandis (L.) Osbeck [55].

The decrease of Fv/Fm in P-deficient leaves was caused by
both a decrease in Fm and an increase in Fo (Fig. 6A and
7A), as previously found for tea [4], satsuma mandarin [5]
and sorghum [35]. The decrease in Fv/Fm under stress is
considered to reflect the photoinhibitory damage to PSII
complexes [56,57]. The higher Fo may be caused by both
the damage of OEC and the inactivation of some of the
PSII RCs [58,59], because P-deficient leaves had decreased
RC/CSo (Fig. 7B) and increased damage to OEC, or it may
be related to the accumulation of reduced QA [60],
because the physiological fractional reduction of QA to QA
-, as indicated by the increase in Mo (Fig. 6B and 6E),
increased in P-deficient leaves. Quenching of Fm in P-defi-
cient leaves may arise from the photoinhibitory quench-
ing (qI), because an increase in Fo with a quenched Fm was
observed in P-deficient leaves (Fig. 6A) [61] and from the
xanthophyll cycle-dependent thermal energy dissipation,
which was significantly higher in P-deficient satsuma
mandarin leaves than in P-sufficient ones [6].

The J-step, I-step and IP phase of OJIP transients are corre-
lated with the redox state of QA, the redox state of plasto-
quinone, and the redox state of end acceptors at PSI
electron acceptor side, respectively [27,28,30,32]. The
finding that P-deficient leaves had increased VJ and VI (Fig.
6B and 6E), but decreased maximum amplitude of IP
phase (Fig. 6D) suggests that acceptor side of PSII became
more reduced under P deficiency, but the acceptor side of
PSI become more oxidized. P deficiency-induced pho-
toinhibitory damage at PSII acceptor is also supported by
the fact that Fv (Fv = Fm - Fo) was decreased in P-deficient
leaves along with an increase in Fo (Fig. 6A), which is the
characteristic of photoinhibitory damage at PSII acceptor
side [62]. A positive K-step appeared at ca. 300 μs in the
OJIP transients in P-deficient leaves. This means that the
oxygen evolving complex (OEC) is damaged [63,64]. A
positive K-step has also been found in N-deficient cowpea
leaves [28].

Our result showed that P deficiency decreased the total
electron carriers per RC (ECo/RC; Fig. 7C), the yields (TRo/
ABS (Fv/Fm), ETo/TRo, REo/ETo, ETo/ABS, and REo/ABS;
Fig. 7A), the fluxes (REo/RC and REo/CSo; Fig. 7B and 7C)
and the fractional reduction of the PSI end electron accep-
tors, as indicated by the decreased maximum amplitude
of IP phase (Fig. 6D), and damaged all of the photochem-
ical and non-photochemical redox reactions, as indicated
by the decreases in PIabs and PItot, abs (Fig. 7D). This means
that leaves from P-deficient trees have a decreased capacity
for electron transport, thus limiting ATP synthesis and
RuBP regeneration. Lacking ATP has the consequence that
Rubisco is not fully activated [65]. This might partly

explain why P-deficient leaves had lower Rubisco activity
and activation state (Fig. 4). Regressive analysis showed
that CO2 assimilation decreased linearly or curvilinearly
with decreasing maximum amplitude of IP phase (Fig.
8A), PIabs (Fig. 8B) and PItot, abs (Fig. 8C), respectively.
Therefore, we conclude that the decreased photosynthetic
electron transport capacity, in conjunction with the lack
of ATP which limit RuBP regeneration are probably the
main factors contributing to decreased CO2 assimilation
under P deficiency.

Because P-deficient leaves only utilized a small fraction of
the absorbed light energy in photosynthetic electron
transport, as indicated by the decreases in ECo/RC, ETo/
ABS and REo/ABS (Fig. 7A and 7C), compared with the P-
sufficient ones, more excess excitation energy existed in P-
deficient than in P-sufficient leaves in high light. Corre-
spondingly, energy dissipation, as indicated by DIo/CSo,
DIo/RC, and DIo/ABS (φDo), increased in P-deficient leaves
(Fig. 7D). In addition to this, the excess absorbed light in
turn can lead to the production of 1O2 and reduced active
oxygen species, causing damage to photosynthetic appara-
tus and cell structure [35,66]. Indeed, photoinhibitory
damage to both donor side and acceptor side has been
demonstrated to increase the production of reactive oxy-
gen species [61,67].

Conclusion
P deficiency decreased photosynthetic electron transport
capacity by impairing the whole electron transport chain
from the PSII donor side up to the PSI, thus decreasing
ATP content which limits RuBP regeneration, and hence,
the rate of CO2 assimilation. In addition to decrease light
absorption by lowering Chl content, energy dissipation is
enhanced to protect P-deficient leaves from photo-oxida-
tive damage in high light.

Methods
Plant culture and P treatments
This study was conducted outdoors from March to
November 2007 at Fujian Agriculture and Forestry Uni-
versity, Fuzhou. Own-rooted 10-mouth-old uniform tea
(Camellia sinensis (L.) O. Kuntze cv. Huangguanyin) trees
were transplanted into 6 L plastic pots containing sand.
Each pot contained two trees, and was supplied twice
weekly with 500 mL of 1/2 strength nutrient solution.
Full-strength nutrient solution contained 1 mM
(NH4)2SO4, 0.8 mM K2SO4, 1 mM KNO3, 2 mM
Ca(NO3)2, 1 mM NH4H2PO4, 0.05 mM CaCl2, 0.6 mM
MgSO4, 46 μM H3BO3, 9 μM MnSO4, 9 μM ZnSO4, 2 μM
CuSO4, 2.6 μM Na2MoO4, and 30 μM Fe-EDTA. Six weeks
after transplanting, the treatment was applied for 17
weeks: until the end of the experiment, each pot was sup-
plied three times weekly with 500 mL of nutrient solution
at a P concentration of 0, 40, 80, 160, 400 or 1000 μM
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from NH4H2PO4 at pH of 5.5. N concentration was main-
tained at a constant by the addition of (NH4)2SO4. At the
end of the experiment, the fully-expanded (about seven
weeks old) leaves from different replicates and treatments
were used for all the measurements. Leaf discs (0.61 cm2

in size) were collected at noon under full sun and imme-
diately frozen in liquid N2. Samples were stored at -80°C
until they were used for the determination of Chl, carote-
noids (Car), Rubisco, carbohydrates, and protein. Special
care was taken to ensure that all samples were transferred
directly from liquid N2 to freezer of -80°C, at no time were
any samples exposed to room temperature.

Measurements of root and shoot dry weight, and specific 
leaf weight
At the end of the experiment, six trees per treatment from
different pots were harvested. The trees were divided into
roots and shoots. The plant materials were then dried at
80°C for 48 h and the dry weight measured. Specific leaf
weight was calculated as the ratio of leaf dry weight to leaf
area.

Determination of leaf Chl, Car, total soluble protein, and 
total P
Chl, Chl a, Chl b and Car were assayed according to Lich-
tenthaler [68]. Total soluble protein was determined

Table 1: Summary of parameters, formulae and their description using data extracted from chlorophyll a fluorescence (OJIP) 
transient.

Fluorescence parameters Description

Fluorescence parameters Description
Ft Fluorescence intensity at time t after onset of actinic illumination
F50 μsor F20 μs Minimum reliable recorded fluorescence at 50 μs with the PEA- or 20 μs 

with Handy-PEA-fluorimeter
F100 μs and F300 μs Fluorescence intensity at 100 and 300 μs, respectively
FJ and FI Fluorescence intensity at the J-step (2 ms) and the I-step (30 ms), 

respectively
FP (= Fm) Maximum recorded (= maximum possible) fluorescence at P-step
Area Total complementary area between fluorescence induction curve and F = Fm
Derived parameters
Selected OJIP parameters
F0 ≅ F50 μsor F0 ≅ F20 μs Minimum fluorescence, when all PSII RCs are open
Fm = FP Maximum fluorescence, when all PSII RCs are closed
VJ = (F2 ms - Fo)/(Fm - Fo) Relative variable fluorescence at the J-step (2 ms)
VI = (F30 ms - Fo)/(Fm - Fo) Relative variable fluorescence at the I-step (30 ms)
Mo = 4 (F300 μs - Fo)/(Fm - Fo) Approximated initial slope (in ms-1) of the fluorescence transient V = f(t)
Sm = ECo/RC = Area/(Fm - Fo) Normalized total complementary area above the OJIP (reflecting multiple-

turnover QA reduction events) or total electron carriers per RC
Yields or flux ratios
φPo = TRo/ABS = 1-(Fo/Fm) = Fv/Fm Maximum quantum yield of primary photochemistry at t = 0
φEo = ETo/ABS = (Fv/Fm) × (1 - VJ) Quantum yield for electron transport at t = 0
ψEo = ETo/TRo = 1-VJ Probability (at time 0) that a trapped exciton moves an electron into the 

electron transport chain beyond QA
-

φDo = DIo/ABS = 1-φPo = Fo/Fm Quantum yield at t = 0 for energy dissipation
δRo = REo/ETo = (1 - VI)/( - VJ) Efficiency with which an electron can move from the reduced intersystem 

electron acceptors to the PSI end electron acceptors
φRo = REo/ABS = φPo × ψEo× δRo φ Quantum yield for the reduction of end acceptors of PSI per photon 

absorbed
Specific fluxes or activities expressed per reaction center (RC)
ETo/RC = (Mo/VJ) × ψEo = (Mo/VJ) × (1-VJ) Electron transport flux per RC at t = 0
DIo/RC = (ABS/RC) - (TRo/RC) Dissipated energy flux per RC at t = 0
REo/RC = (REo/ETo) × (ETo/RC) Reduction of end acceptors at PSI electron acceptor side per RC at t = 0

ETo/CSo = (ABS/CSo) × φEo Electron transport flux per CS at t = 0
TRo/CSo = (ABS/CSo) × φPo Trapped energy flux per CS at t = 0
DIo/CSo = (ABS/CSo) - (TRo/CSo) Dissipated energy flux per CS at t = 0
REo/CSo = (REo/ETo) × (ETo/CSo) Reduction of end acceptors at PSI electron acceptor side per CS at t = 0
Density of RCs
RC/CSo =φPo × (ABS/CSo) × (VJ/Mo) Amount of active PSII RCs per CS at t = 0
Performance index
PIabs = (RC/ABS) × (φPo/(1 - φPo)) × (ψo/(1 - ψo)) Performance index (PI) on absorption basis
PItot, abs = (RC/ABS) × (φPo/(1-φPo)) × (ψEo/(1 - ψEo)) × (δRo/(1 - δRo)) Total PI, measuring the performance up to the PSI end electron acceptors
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according to Bradford [69]. Total P was determined
according to Fredeen et al. [44].

Leaf gas exchange measurements
Measurements were made with a CI-301PS portable pho-
tosynthesis system (CID, WA, USA) at ambient CO2 con-
centration with a natural photosynthetic photon flux
density of 1500 ± 45 μmol m-2 s-1 between 10:30 and
12:00 on a clear day. During measurements, leaf temper-
ature and ambient vapor pressure were 28.0 ± 1.0°C and
1.8 ± 0.1 kPa, respectively.

Measurements of leaf OJIP transients
OJIP transient was measured by a Handy Plant Efficiency
Analyser (Handy PEA, Hansatech Instruments Limited,
Norfolk, UK) according to Strasser et al. [26]. The tran-
sient was induced by red light of about 3,400 μmol m-2 s-

1 provided by an array of three light-emitting diodes (peak
650 nm), which focused on the leaf surface to give
homogenous illumination over the exposed area of the
leaf. All the measurements were done with 3 h dark-
adapted plants at room temperature.

JIP test
OJIP transient was analyzed according to the JIP test.
From OJIP transient, the extracted parameters (Fm, F20 μs,
F50 μs, F100 μs, F300 μs, FJ, FI etc.) led to the calculation and
derivation of a range of new parameters according to per-
vious authors [27,28,55,70,71] (see Table 1).

Leaf Rubisco activity measurements
Rubisco was extracted according to Chen et al. [72].
Rubisco activity was assayed according to Cheng and
Fuchigami [73] with some modifications. For initial activ-
ity, 50 μL of sample extract was added to a cuvette con-
taining 900 μL of an assay solution, immediately followed
by adding 50 μL of 10 mM RuBP, then mixing well. The
change of absorbance at 340 nm was monitored for 40 s.
For total activity, 50 μL of 10 mM RuBP was added 15 min
later, after 50 μL of sample extract was combined with 900
μL of an assay solution to fully activate all the Rubisco.
The assay solution for both initial and total activity meas-
urements, whose final volume was 1 mL, contained 100
mM HEPES-KOH (pH 8.0), 25 mM KHCO3, 20 mM
MgCl2, 3.5 mM ATP, 5 mM phosphocretaine, 5 units
NAD-glyceraldehyde-3-phosphate dehydrogenase (NAD-
GAPDH, EC 1.2.1.12), 5 units 3-phosphoglyceric phos-
pokinase (PCK, EC 2.7.2.3), 17.5 units creatine phos-
phokinase (EC 2.7.3.2), 0.25 mM NADH, 0.5 mM RuBP,
and 50 μL sample extract. Rubisco activation state was cal-
culated as the ratio of initial activity to total activity.

Measurements of leaf nonstructural carbohydrates
Sucrose, fructose, glucose and starch were extracted 3
times with 80% (v/v) ethanol at 80°C and determined
according to Jones et al. [74].

Experimental design and statistical analysis
There were 20 pots trees per treatment in a completely
randomized design. Experiments were performed with 5–
15 replicates (one tree from different pots per replicate).
Differences among treatments were separated by the least
significant difference (LSD) test at P < 0.05 level.

Abbreviations
Chl: chlorophyll; CS: excited cross section; ETo/ABS:
quantum yield of electron transport at t = 0; N: nitrogen;
OJIP: Chl a fluorescence; P: phosphorus; PIabs: perform-
ance index; PItot, abs: total performance index; RC: reaction
center; RC/CSo: amount of active PSII RCs per CS at t = 0;
REo/ABS: quantum yield of electron transport from QA

- to
the PSI end electron acceptors; Rubisco: ribulose-1,5-
bisphosphate carboxylase/oxygenase; RuBP: ribulose-1,5-
bisphosphate; TRo/ABS or Fv/Fm: maximum quantum
yield of primary photochemistry at t = 0; VI: relative varia-
ble fluorescence at the I-step; VJ: relative variable fluores-
cence at the J-step.
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