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Abstract

Background: Gluten proteins can induce celiac disease (CD) in genetically susceptible individuals.
In CD patients gluten-derived peptides are presented to the immune system, which leads to a
CD#4* T-cell mediated immune response and inflammation of the small intestine. However, not all
gluten proteins contain T-cell stimulatory epitopes. Gluten proteins are encoded by multigene loci
present on chromosomes | and 6 of the three different genomes of hexaploid bread wheat
(Triticum aestivum) (AABBDD).

Results: The effects of deleting individual gluten loci on both the level of T-cell stimulatory
epitopes in the gluten proteome and the technological properties of the flour were analyzed using
a set of deletion lines of Triticum aestivum cv. Chinese Spring. The reduction of T-cell stimulatory
epitopes was analyzed using monoclonal antibodies that recognize T-cell epitopes present in gluten
proteins. The deletion lines were technologically tested with respect to dough mixing properties
and dough rheology. The results show that removing the a-gliadin locus from the short arm of
chromosome 6 of the D-genome (6DS) resulted in a significant decrease in the presence of T-cell
stimulatory epitopes but also in a significant loss of technological properties. However, removing
the w-gliadin, y-gliadin, and LMW-GS loci from the short arm of chromosome | of the D-genome
(I1DS) removed T-cell stimulatory epitopes from the proteome while maintaining technological
properties.

Conclusion: The consequences of these data are discussed with regard to reducing the load of T-
cell stimulatory epitopes in wheat, and to contributing to the design of CD-safe wheat varieties.
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Background

Celiac disease (CD) is a disorder that is characterized by a
permanent intolerance to gluten proteins from wheat, rye,
and barley. Over 0.5% of the Western population suffers
from CD, which presents itself by chronic diarrhea,
fatigue, osteoporosis, lymphoma, and several other clini-
cal symptoms after prolonged gluten consumption. Until
now, the only treatment is a complete and life long elim-
ination of gluten from the daily diet [1]. In the small intes-
tine, several native gluten peptides can bind directly to
specific human leukocyte antigen (HLA)-DQ2 or DQ8
receptors on antigen presenting cells (APCs). However,
after deamidation by tissue transglutaminase (tTG), the
affinity of the peptides for these HLA-receptors is strongly
increased. The gluten peptides can be presented by APCs
to gluten-sensitive T-cell lymphocytes leading to the
release of cytokines, which will cause inflammation reac-
tions and result in damaged intestinal villi [2].

Gluten are major storage proteins and have many interest-
ing characteristics for food industrial applications, e.g. in
baking bread. Gluten proteins can be divided into three
main groups: high molecular weight glutenin subunits
(HMW-GS), low molecular weight glutenin subunits
(LMW-GS), and gliadins. The HMW-GS are divided in x-
type and y-type subunits [3]. The LMW-GS are divided
into B-, C-, and D-type subunits [4]. Gliadins are divided
into o/B-, v-, and w-gliadins [5]. Multiple T-cell activating
gluten peptides were mainly found in a-gliadins, but also
in y-gliadins and both LMW-GS and HMW-GS [1,2,6,7].
Especially peptides derived from a-gliadins are recognized
by T-cells from most CD patients, while T-cell responses
to y-gliadins and glutenins are less frequently found [2,7-
10].

Wheat varieties with very low amounts of T-cell stimula-
tory epitopes may be tolerated by many CD-patients
[9,11], while a diet based on wheat varieties reduced in T-
cell stimulatory epitopes may help in the prevention of
CD, as it has been observed that the amount and duration
to gluten exposure is associated with the initiation of CD
[12-14]. Breeding for bread wheat (Triticum aestivum) with
less T-cell stimulatory gluten may result, however, in vari-
eties with unwanted loss of technological properties,
because glutenins and gliadins together contribute largely
to dough quality. A correct mixture of both glutenins and
gliadins is essential to obtain optimal viscoelastic dough
[15], and the quantity and the size distribution of the glu-
ten proteins are important factors for polymerization
[16,17].

Gluten-encoding genes are located on the three homoeol-
ogous genomes of bread wheat: A, B, and D. A few (for
HMW-GS) to a hundred (for a-gliadins) gene copies are
present in hexaploid wheat. Sequences of individual gene
copies within the same gluten family, such as the a-glia-
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dins, are very similar and may contain multiple and differ-
ent T-cell stimulatory epitopes [18]. Gluten proteins are
encoded by 15 major loci. The HMW-GS are encoded by
loci on the long arm of group 1 chromosomes (Glu-A1, -
B1, and -D1) [19]. The LMW-GS are mainly encoded by
the Glu-3 loci on the short arms of group 1 chromosomes
(Glu-A3, -B3, and -D3) [20] and are tightly linked to the
loci encoding the y-gliadins and o-gliadins (Gli-A1,-B1,
and -D1 and Gli-A3, -B3, and -D3). Most a,/B-gliadins are
encoded by loci on the short arms of group 6 chromo-
somes (Gli-A2, B2, and D2) [21].

In this study, deletion lines of Triticum aestivum cv. Chi-
nese Spring (CS) were selected [22-24]. These deletion
lines are generally lacking one locus containing gluten
genes from one of the three homoeologous chromo-
somes. Here, we explore the feasibility to reduce T-cell
stimulatory epitopes in hexaploid bread wheat by screen-
ing with epitope-specific monoclonal antibodies [25-27],
while maintaining the technological properties.

Results

Protein database search

The NCBI protein database search was performed to ana-
lyze the number of proteins that contain the different
sequences recognized by mAb and T-cells. This search pro-
vided insight in how many proteins were expected to con-
tain the different sequences and which different
sequences were present within the proteins. The numbers
of protein sequences that contain the various sequences
involved in the onset of CD that are recognized by T-cells
and mAbs are shown in Table 1. It was observed that the
mAb and T-cell minimal sequences were specific for the
epitopes in each of the expected protein group, with the
exception of the mAb recognizing Glia-a9, whose mini-
mally recognized sequence was also present in a number
of y- and w-gliadin proteins. The sequence recognized by
the T-cells was not present within any other protein group
except for the o/B-gliadins. The minimal sequences recog-
nized by mAbs LMW-1 and LMW-2 were more frequently
found in the LMW-GS group than the sequence recog-
nized by the corresponding T-cells. The sequences recog-
nized by mAb and T-cells for HMW-glt was present in
nearly all HMW-GS protein sequences.

SDS-PAGE

To obtain the gluten protein patterns from the CS deletion
lines, gluten proteins were extracted and analyzed by SDS-
PAGE followed by silver staining. Major differences com-
pared to CS wild type are indicated by boxes in Figure 1.
Differences in gluten protein content compared to CS
wild type were mostly observed in the B-, C- type LMW-GS
and a/p-, y-gliadin region. Lines with deletions of the
short arms of chromosomes 1D were missing several glu-
ten protein bands in the o-gliadin/D-type LMW-GS
region. The double deletion line, 1BS-19/6DS-4 (Figure
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Table I: Results of database search for sequences recognized by mAbs and T-cells.

Protein groups

Epitope o/B-gliadins y-gliadins -gliadins/D-type LMW-GS LMW-GS HMW-GS
mAb Glia-a9 (QPFPQPQ) 68 67 3 - -
T-cell Glia-a9 (PFPQPQLPY) 44 - - -
mAb Glia-0.20 (RPQQPYP) 48 -
T-cell Glia-a20 (FRPQQPYPQ) 48 - -
mAb LMW-1 (PPFSQQ) 233 -
mAb LMW-2 (QSPF) 163 -
T-cell LMW-glt (PFSQQQQSPF) 21 -
mAb HMW-glt (QGQQGYYP) 67
T-cell HMW-glt (QGYYPTSPQ) 65
Number of sequences retrieved 84 93 6 263 67

The number in each cell represents the presence of the recognized sequence by mAb or T-cell within a protein group. '-' in a cell means that the

sequence was not present.

1), was missing the largest number of gluten protein
bands because of two deletions in gluten encoding
regions. Unexpected results were obtained for deletion
line 1BS-18, which is the line with the smallest deletion of
chromosome arm 1BS. This line is missing an extra band
compared to the other 1BS deletion lines having larger
deletions. This does not fit with reported results on dele-
tion lines [22,23]. Deletion line 6BS-4 (Figure 1) missed a
gluten protein band that is present in the other deletion
lines of chromosome 6B, even though deletion line 6BS-1
has been reported (WGGRGC; Figure 2C) to contain a larger
deletion than 6BS-4. Deletion line 6BS-4 also contains the
5BS-2 deletion, but, to our knowledge, no gluten protein
locus has ever been identified onto the short arm of chro-
mosome 5B. We do not have any explanation for these
discrepancies

-19/6DS-4
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Figure |

SDS-PAGE analysis of prolamin extracts from Chi-
nese Spring deletion lines. CS: Chinese Spring wild type.
Boxes indicate differences in protein bands.

Gli-1 deletions

CS deletion lines were analyzed for their contribution to
T-cell stimulatory epitopes by using various mAbs recog-
nizing different T-cell epitopes. In Figure 2A, immunoblot
results are presented using mAbs Glia-a9 and Glia-a.20 for
deletion lines of the short arm of chromosomes 1 (Gli-1)
and 6 (Gli-2). Major differences, compared to CS wild
type, are indicated with arrowheads. Deletion lines 1AS-3
and 1AS-1 were missing one gluten protein band by using
mAb Glia-a9 and no gluten protein bands by using mAb
Glia-020 (Figures 2A and 2B). This suggests that this miss-
ing gluten protein only contains the epitope sequence rec-
ognized by mAb Glia-a9 and the loci encoding these
gluten protein map to bin 1AS3-0.86-1.00 (the terminal
14% of chromosome arm 1AS) (Figure 2C). All five dele-
tion lines of the short arm of chromosome 1B (Figure 2A)
lacked one gluten protein band by using mAb Glia-0.9 and
no gluten protein band by using mAb Glia-020. The dou-
ble deletion line 1BS-19/6DS-4 (Figure 2A) was missing
two extra bands using mAb Glia-a9 and four by using
mAb Glia-020, which is caused by the 6DS-4 deletion.
Two gluten protein bands were recognized by both mAbs
Glia-09 and Glia-020. All 1BS deletion lines (Figure 2A)
lacked the same gluten protein band recognized by mAb
Glia-a9 and because of that the loci encoding correspond-
ing gluten protein map to bin 1BSsat18-0.50-1.00 (Figure
2C). All three deletion lines of the short arm of chromo-
some 1D (Figure 2A) lacked four gluten protein bands by
using mAb Glia-a9 and two gluten protein bands by using
mADb Glia-a20. These missing protein bands correspond
to the boxed (missing) proteins in Figure 1. One gluten
protein band did not completely disappear by using mAb
Glia-09. This is probably because of the presence of gluten
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Figure 2

Immunoblot analysis of Chinese Spring deletion lines of the short arm of chromosome | and 6. (A) Using mAb
Glia-a9. (B) Using mAb Glia-020. CS: Chinese Spring wild type. Arrowheads indicate absent protein bands. (C) Physical maps
of the short (S) arms of wheat chromosomes |A, IB, ID, 6A, 6B, and 6D from centromer to telomeric ends (Wheat Genetic
and Genomic Resources Centre, Kansas State University, USA). Arrows on the right of each chromosome indicate the dele-
tion lines with their breakpoint (indicated as fraction length from the centromer). The banding patterns within the chromo-

somes are according to Gill et al. [24]

proteins from different loci but having the same molecu-
lar weights, therefore becoming visible only as one gluten
protein band. The loci encoding the recognized gluten
proteins map to bin 1DS5-0.7-1.0 (the terminal 30% of
1DS) (Figure 2C). The two gluten protein bands recog-
nized by mAb Glia-a.20 were the same as recognized by
mADb Glia-a9.

Gli-2 deletions

When analyzing CS deletion lines that are lacking parts of
the short arm of chromosome 6, deletion line 6AS-1 (Fig-
ure 2A) lacked one gluten protein band in immunoblot-
ting using mAb Glia-a9 and two bands by using mAb

Glia-020. Deletion line 6BS-4 (Figure 2A) lacked one glu-
ten protein band by using mAb Glia-a9, but this was not
the case for the other two 6BS deletion lines, 6BS-1 and
6BS-5 (Figure 2A), which is not consistent with the
reported sizes of the deletions. In the 6BS deletion lines,
no changes were observed in gluten protein bands com-
pared with CS wild type by using mAb Glia-a20 (Figure
2B). These results suggest that the short arm of chromo-
some 6B encodes no gluten proteins containing T-cell
stimulatory epitopes recognized by both mAbs Glia-a9
and Glia-020, at least not mapping to bin 6BS-0.25-1.00
(terminal 75% of 6BS) (Figure 2C). Deletion line 6DS-2,
the line with the largest deletion (Figures 2A and 2B)
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lacked two gluten protein bands recognized by mAb Glia-
a9 and four bands by mAb Glia-020. One gluten protein
band has not completely disappeared probably because of
the presence of different gluten proteins having the same
molecular weight within one gluten protein band. The
same gluten protein bands are also absent in the double
deletion line 1BS-19/6DS-4 (Figure 2A). These missing
protein bands correspond to the boxed (missing) proteins
in Figure 1. Hence, the loci encoding these gluten proteins
map to bin 6DS4-0.79-0.99 (Figure 2C).

Glu-3 deletions

The immunoblot results using mAb LMW-2 for the dele-
tion lines of the short arm of chromosome 1 are shown in
Figure 3. One band was observed in all the deletion lines
and in CS wild type without significant differences.
Immunoblot results using mAb LMW-1 showed similar
patterns (results not shown).

Glu-1 deletions

Within the protein database, nearly all HMW-GS had
epitope sequences recognized by mAb HMW-glt. The
immunoblot results for the deletion lines of the long arm
of chromosome 1 using the mAb recognizing HMW-glt
are shown in Figure 4A. In CS wild type, all four HMW
glutenin subunits were detected. No contribution to
HMW-GS was observed for the long arm of chromosome
1A, as expected for a transcriptional silent locus. Two
HMW-GS, 1Bx7 and 1By8, were absent in deletion lines
1BL-1 and 1BL-6. This suggests that the locus encoding
HMW-GS 1Bx7 and 1By8 map to bin 1BL1-0.47-0.69
(Figure 4B). The two HMW-GS, 1Dx2 and 1Dy12, were
absent in deletion line 1DL-4. This suggests that the loci
encoding HMW-GS 1Dx2 and 1Dy12 map to bin 1DL4-
0.18-0.41 (Figure 4B).

Rheological parameters of Chinese Spring deletion lines

The lines with the largest deletions from chromosomes 1
and 6, according to our results, were used for technologi-
cal testing. Parameters among flours of different deletion

BS-19/6DS-4

304

Figure 3

Immunoblot analysis of Chinese Spring deletion lines
of the short arm of chromosome |, using mAb LMW-
2. CS: Chinese Spring wild type.
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Figure 4

Immunoblot analysis of Chinese Spring deletion lines
of the long arm of chromosome I. (A) Using mAb
HMW-glt. CS: Chinese Spring wild type. (B) Physical maps of
the long (L) arms of wheat chromosomes |A, IB, and ID
from centromer to telomeric ends (Wheat Genetic and
Genomic Resources Centre, Kansas State University, US).
Arrows on the right of each chromosome indicate the dele-
tion lines with their breakpoint (indicated as fraction length
from the centromer). The banding patterns within the chro-
mosomes are according to Gill et al [24].

lines are presented in Figure 5 and in the Additional file 1:
Rheological parameters.

Total protein content in flour (% w/w) of all deletion lines
was higher compared to CS wild type flour. Especially pro-
tein content in flour of line 6AS-1 was high (20.5%), fol-
lowed by protein content in flour of deletion line 1BS-19/
6DS-4 (18.6%).

The glutenin macro polymer (GMP) content expressed as
volume per mg protein was decreased in deletion line
1BL-1 and was nil in deletion line 1DL-4 (Figure 5 and
Additional file 1: Rheological parameters). GMP repre-
sents the highly aggregated glutenin protein network that
is the prime determinant of dough elastic properties. A
decrease in GMP is therefore expected to lead to a decrease
in dough strength [28-30]. Because of the low amount of
GMP present in flour of the deletion lines 1BL-1 and 1DL-
4, it was impossible to estimate glutenin particle sizes for
these lines. Flours of the two deletion lines, 1BS-10 and
6DS-2, showed a small decrease in GMP volume. For all
other deletion lines, the GMP volume was increased.

Glutenin particle size is a predictor of dough mixing prop-
erties [31]. Average glutenin particle size was increased in
flours of deletion line 1AL-1 and 6AS-1. In deletion lines
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Figure 5

Rheological parameters tested for Chinese Spring
deletion lines. All technological measurements were per-
formed in duplicate, except the relaxation test (T ) for dele-
tion lines IDL-4, 6AS-1, 6DS-2, and 6DS-4/1BS-19. Error
bars represent the standard error. 'NA' means not analyzed
for particle surface area (D5 ,) because the amount of GMP
was too low.

6DS-2, 6BS-1, 1BS-10, 1BS-19/6DS-4 and 1AS-1 the aver-
age particle size was decreased compared to CS wild type.

Dough made from flours of the two deletion lines 1BL-1
and 1DL-4, lacking HMW-GS, showed a significant
decrease in dough development time (DDT) (Figure 5 and

http://www.biomedcentral.com/1471-2229/9/41

Additional file 1: Rheological parameters). Dough made
from all other deletion lines showed increase in DDT,
especially the lines with deletions of the short arm of
chromosome 6 (6AS-1, 1BS-19/6DS-4, 6DS-2, and 6BS-1)
and 1AS-1. Deletions of the Gli-2 loci seem to have a sub-
stantial effect on increasing DDT.

Bandwidth at peak resistance (BWPR) is a measure of
dough stability. The BWPR was slightly decreased for dele-
tion line 1DL-4 and was increased for all other deletion
lines compared to CS wild type dough (Figure 5 and Addi-
tional file 1: Rheological parameters). The BWPR was
especially high for deletion lines 6AS-1 and 1BS-19/6DS-
4. It is relevant to note that these are the same deletion
lines having the highest protein content in flour.

Dough elasticity, indicated by relaxation half time (T} ,),
was decreased in flours of deletion lines 1BL-1 and 1DL-
4, which lack HMW-GS, and in deletion lines 6BS-1 and
6DS-2 (Figure 5 and Additional file 1: Rheological param-
eters). In contrast, deletion lines 1BS-19/6DS-4 and 1AS-
1, showed an increase in T,/ indicating more elastic
dough [32,33].

To summarize, in Figure 6 immunoblots are shown for
Chinese Spring wild type and the gliadin proteins reacting
with mAbs Glia-a9 and Glia-0.20 are numbered. In Table
2 the relation is shown of these proteins together with
their bin-location on the chromosomes and the rheologi-
cal parameters if these proteins are missing in the deletion
lines. Deletions of the long arms of chromosome 1A, 1B,
and 1D are not included because the HMW-GS encoded
by the loci on these arms (1BL and 1DL) seem to be
required for good technological properties.

Discussion

In this study, we examined the possibilities to develop a
bread wheat variety with both reduced levels of T-cell
stimulatory epitopes and good technological properties.
We used a set of Chinese Spring deletion lines that lack
different gluten protein-encoding loci from the group 1
and 6 chromosomes to determine whether reduction in T-
cell stimulatory epitopes can be achieved by removal of
certain gluten protein encoding genes with minimal effect
on the technological properties of bread wheat. Many
cytogenetic resources have been developed in T. aestivum
cv Chinese Spring, which is considered as a model variety
for hexaploid wheat. However, differences among varie-
ties may exist.

CD immunogenic epitopes

On the short arm of the group 6 chromosomes, the gluten
loci that encode a-gliadins are located. The a-gliadins are
considered the most immunogenic concerning both the
adaptive immune response and the innate immune
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Numbering of protein bands reacting with mAbs
Glia-a9 and Glia-a20 in Chinese Spring wild type.
Immunoblots of Chinese Spring wild type using mAbs Glia-a.9
(left) and Glia-0.20 (right).

response [2,8,10,11]. We observed that the locus on the
short arm of chromosome 6D, mapped to bin 6DS-0.45-
0.99, is responsible for most of the T-cell stimulatory a-
gliadin proteins. These results are in agreement with the
results obtained by Molberg et al. [34] who showed no
decrease in response of DQ2-a-II T-cells for deletion line
6DS-6 and a significant decrease in T-cell response for
deletion lines 6DS-4 and 6DS-2. In addition, results are in
agreement with results of Van Herpen et al. [ 18], based on
relative presence of CD-epitopes in a-gliadin ESTs from
the three homoeologous loci, and with results of Salentijn
et al. [35] on the presence in cDNAs from two hexaploid
and two tetraploid cultivars. When using mAb Glia-a20 in
immunoblotting also two gluten protein bands were
stained that were encoded by the short arm of chromo-
some 1D. We tentatively assign these as w-gliadins/D-type
LMW-GS containing the mAb Glia-020 sequence. Only a
few w-gliadin proteins have been sequenced so far
because they are difficult to clone due to the presence of
large repetitive domains [36]. It has been shown that ©-
gliadins may have epitopes that are involved in gluten-
sensitive response of CD patients [37,38]. The a-gliadins
encoded by chromosome 6 seem to be related to gliadins
encoded by chromosome 1 from which they might have
originated through gene duplication and/or translocation
[39,40]. Analysis of the minimal sequence recognized by
mAb Glia-a9 indicated that this sequence also occurs in

http://www.biomedcentral.com/1471-2229/9/41

some y- and ®-gliadins. Indeed, mAb Glia-a9 recognized
gluten protein bands that disappeared in deletion lines of
the short arm of chromosome 1A, 1B, and 1D (where y-
and o-gliadin encoding genes are located). We observed
that genes mapped to bin 1DS-0.48-1.00 had the highest
contribution to the number of T-cell stimulatory epitopes.

Technological properties

Studies have shown that the technological parameters of
wheat flours are influenced by alleles encoding different
HMW-GS [41-44], LMW-GS [45,46], and gliadins [47].

Deleting parts of the short arm of chromosome 1A
resulted in an increased dough development time (DDT)
and volume of glutenin macro polymer (GMP). A
decrease in LMW-GS or gliadins results in a relative
increase of ratios for HMW-GS/LMW-GS or glutenins/
gliadins. Such a change was suggested to increase dough
strength [15,16]. Indeed, we found that removal of the
locus from the short arm of chromosome 1A resulted in
increased dough elasticity. In the deletion lines 1AS-1 and
1DS-1, higher GMP volumes were observed, while in dele-
tion line 1BS-10 a decreased GMP volume was found
together with decreased DDT. On chromosome 1B, also a
Glu-B2 locus is located encoding a B-type LMW-GS
[48,49] and a Glu-B3 locus is located encoding two tightly
linked genes for an w-gliadin and a B-type LMW-GS [50].
This suggests that LMW-GS encoded by these loci are
important for the formation of the GMP [51,52]. Removal
of the loci could affect the ratios for HMW-GS/LMW-GS or
glutenins/gliadins. Chromosome 1D encodes a D-type
LMW-GS containing a single cysteine residue and there-
fore may act as a chain terminator [53,54]. The absence of
the protein could increase the GMP volume in deletion
line 1DS-1. It would be expected that the GMP volume
would decrease in deletion line 1AS-1 because of removal
of the locus encoding major LMW-GS. We observed, how-
ever, that no T-cell stimulatory epitopes present in LMW-
GS disappeared from the immunoblot using mAbs LMW-
1 and LMW-2, which is possible if expression from the
deleted locus is compensated for by the other two loci
present on the homoeologous chromosomes, for example
by a higher expression of Glu-B3. Compensation behavior
of storage protein synthesis in wheat was observed by
Wieser et al. [55] after inhibition of the expression of a-
gliadins by RNA interference (RNAi). Also Gil-Humanes
et al. [56] recently observed while RNAi reduced the pro-
portion of y-gliadins by 55-80% and a-gliadins by 63%,
this did not lead to similar reduction in proteins detected
by the sandwich ELISA using the R5 monoclonal anti-
body. The R5 assay was, however, developed for the detec-
tion of gluten proteins from different sources and not
optimized to detect T-cell stimulatory gluten proteins
[57]. Hence, although the R5 assay is currently considered
the standard test for identification of gluten contami-
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Table 2: Bin location of gliadin proteins and effect on rheological parameters if absent in deletion lines.

mAb Rheological parameters
Gliadin protein ~ Glia-a9 Glia-020  Bin location Total protein  DDT2(min) BWPRP (%) T,,¢(sec) GMPdvolume Particle surface
bands in CS in flour (%) (ul/mg) area (D3 ,) (um)
| yes yes 1DS5-0.70— 0 0 + 0 + 0
1.00
2 yes yes IDS5-0.70— 0 0 + 0 + 0
1.00
3 yes no 1DS5-0.70- 0 0 + 0 + 0
1.00
4 yes no 1DS5-0.70- 0 0 + 0 + 0
1.00
5 yes no | BSsat0.50— 0 0 + 0 - -
1.00
6 yes no I AS3-0.86— + + + + + 0
1.00
7 no yes 6DS4-0.79— + + + - - -
0.99
8 yes yes 6DS4-0.79— + + + - - -
0.99
9 yes yes 6DS4-0.79— + + + - - -
0.99
10 yes no 6DS4-0.79— + + + - - -
0.99
I yes yes 6AS-0.35— + 0 ++ - + ++
1.00
12 no yes 6AS-0.35— + 0 ++ -- + ++
1.00
Chinese Spring wild type 0 0 0 0 0 0

Protein bands are numbered as shown in Figure 6 and their bin location is determined. Bin location is linked to rheological parameters. Results are
compared to Chinese Spring, which is set at "0". "+" in cell means value is up to 50% higher. "++" in cell means value is between 50 to100% higher.

in cell means values is up to 50% lower. "--" in cell means value is between 50 to100% lower. "Yes" or "no" in cell means the reaction with the

mAb.

2Dough development time
bBand Width at Peak Resistance
cFlow-relaxation half time
dGlutenin Macro Polymer

nants, we regarded this test unsuitable in the context of
this study.

With respect to technological properties, deletion line
6AS-1 showed an increase in GMP volume and a strong
increase in glutenin particle size. In contrast, deletion
lines 6BS-1 and 6DS-2 showed a decrease in glutenin par-
ticle size and a decrease in GMP volume for deletion line
6DS-2. Gliadins of the a- and y-type have been identified
to contain an extra cysteine residue that makes them act as
chain terminators. We suggest that the short arm of chro-
mosome 6A in CS is encoding a chain terminating a-glia-
din. The lower content of chain terminators could account
for a larger size of glutenin particles as observed in dele-
tion line 6AS-1. Because of compensation, deletions of the
short arm of chromosome 6B and 6D could lead to an
increased expression of chain terminating o-gliadins
encoded by the short arm of chromosome 6A and result
in observed smaller glutenin particle sizes. The deletions

of the short arm of chromosome 6B and 6D resulted in
stronger dough as shown by increased DDT. This effect on
dough strength is expected because a decrease in a-glia-
dins results in a relative increase of the glutenin/gliadin
ratio. The GMP volume of flour from deletion line 6DS-2
was decreased, which indicates weaker dough, whereas
the DDT was increased, which indicates stronger dough.
Because of this effect, the decrease in GMP volume in dele-
tion line 6DS-2 resulted in decreased elasticity rather than
decreased dough strength.

We observed that technological properties of flour from
deletion lines were strongly affected by the removal of the
different HMW-GS with the strongest effect in deletion
line 1DL-4. Dough strength (as expressed as DDT and
GMP volume) and dough elasticity (T,,,) were both
strongly decreased, which is in agreement with published
results [15,58,59]. Deletion of the locus on the long arm
of chromosome 1A resulted in some increase in dough
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strength (DDT and GMP volume) and elasticity (T, ;). In
addition, glutenin particle sizes were significantly
increased. Both the x-type and y-type encoding genes of
CS at Glu-A1 are silent [19]. In most studies, the silent
locus at Glu-A1 was not found to be important to deter-
mine dough strength compared to non-silent loci [45,46],
so the effect of deletion of the long arm of chromosome
1AL might be because of the absence of other gene prod-
ucts. Based on these results, the Glu-1 loci of CS are con-
sidered inappropriate as a focus to breed for wheat with
less T-cell stimulatory epitopes if technological properties
are to be preserved.

Conclusion

A strategy to breed for bread wheat with less T-cell stimu-
latory gluten epitopes while retaining technological prop-
erties is feasible by focusing on eliminating genes present
on the short arms of chromosome 1D and 6D. This will
result in a wheat variety with highly decreased T-cell stim-
ulatory epitopes. However, eliminating genes might
decrease dough elasticity because of a changed ratio in
glutenin and gliadin proteins. This ratio could be com-
pensated for by the addition of monomeric proteins with
no T-cell stimulatory to the flour, for example from safe
sources like oats, or by the introduction through breeding
or genetic modification of CD-safe gliadin genes. In addi-
tion, wheat varieties with limited but not complete
reduced levels of T-cell stimulatory epitopes may still con-
tribute to lower the gluten load for the entire population
and it may reduce the development of CD in a number of
potential patients.

Methods

Wheat materials

From the Wheat Genetic & Genomic Resources Center
(WGGRC) Kansas State University, USA http://www.k-
state.edu/wgrc/Germplasm/Deletions/del index.html,
twenty-six T. aestivum Chinese Spring deletion lines were
selected as described [22-24]. The deletion lines had par-
tial deletions of the long and short arms of chromosomes
1 and 6, which was characterized by cytogenetics (Figures
2C and 4B). One line contained deletions of both the
short arm of chromosome 1 and chromosome 6 (1BS-19/
6DS-4, Figure 2C). All deletion lines were grown in con-
tainment glasshouses. No morphological differences were
observed. Seeds were harvested from mature wheat plants.

Database search for the specificity of the sequences
recognized by mAbs compared to T-cell epitopes

The frequency of occurrence of known T-cell epitopes
involved in the onset of CD was analyzed by searching
within the National Center for Biotechnology Informa-
tion (NCBI) database. From the NCBI protein database
http://www.ncbi.nlm.nih.gov/ five different groups of
gluten protein sequences were extracted and subsequently
converted into FASTA formats, using the following search

http://www.biomedcentral.com/1471-2229/9/41

queries: 'alpha gliadin', 'gamma gliadin', 'omega gliadin'
'D-type LMW-GS', 'LMW glutenin', and 'HMW glutenin'.
All non-Triticum, non-Aegilops entries, and sequences con-
taining less than 100 amino acids were removed. For the
'HMW glutenin' group only full size sequences were ana-
lyzed. The obtained protein sequences were aligned using
ClustalW to validate if the correct groups were assigned to
the sequences. Within the 'gamma gliadin' group, four
sequences (AAA34286, P04729, P04730, and AAA34285)
were more similar to LMW glutenins and were transferred
to the 'LMW glutenin' group. In the 'omega gliadin/D-type
LMW-GS' group, one sequence (ABI20696) was specific
for the 'alpha gliadin' group and was transferred to the
‘alpha gliadin' group. The sequences in the five estab-
lished groups were analyzed for the different minimal rec-
ognition sequences of mAbs and T-cells [25]. No
mismatches were allowed. Scores were expressed as the
number of sequences and as the percentage of the
sequences in the established group that contained one or
more recognition sequences. The T-cell minimal recogni-
tion sequences used in the analyses were: Glia-a9
(PFPQPQLPY), Glia-020 (FRPQQPYPQ), LMW-glt
(PFSQQQQSPF), HMW-glt (QGYYPTSPQ) and mAb
minimal recognition sequences used were: Glia-a9 (QPF-
PQPQ), Glia-a:20 (RPQQPYP), LMW-1 (PPFSQQ), LMW-
2 (QSPF), HMW-glt (QGQQGYYP) [25-27,60].

Extraction of gluten proteins

Gluten proteins were extracted from wheat grains accord-
ing to Van den Broeck et al. [61]. Grains were ground in
an analytical mill (A 11 Basic, IKA-Werke) and sieved
through mesh (0.5 mm). Gluten proteins were extracted
from 50 mg wheat flour by addition of 0.5 ml of 50% (v/
v) aqueous iso-propanol with continuous mixing (MS1
Minishaker, IKA Works, Inc.) at 1000 rpm for 30 min at
room temperature, followed by centrifugation at 10,000
rpm for 10 min at room temperature. The residue was re-
extracted twice with 50% (v/v) aqueous iso-propanol,
50mM Tris-HCI, pH 7.5 containing 1% (w/v) DTT, for 30
min at 60°C with mixing every 5 to 10 min followed by
centrifugation at 10,000 rpm for 10 min at room temper-
ature. After addition of each next extraction solution, the
residue was resuspended by shaking in a Fastprep®
FP220A Instrument for 10 sec at 6.5 m/sec followed by
sonication for 10 min in an ultrasonic bath (Branson
3510, Branson Ultrasonics Corporation). The three
obtained supernatants were combined and considered the
gluten protein extract. The protein content was quantified
using the Biorad Protein Assay (Bio-Rad Laboratories),
based on the Bradford dye-binding procedure, according
to manufacturer's instruction with BSA as a standard.

SDS-PAGE

Gluten proteins were separated on SDS-PAGE gels (10%)
using a SE260 mighty small II system (GE Healthcare,
UK). SDS-PAGE was followed by immunoblotting or by
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silver staining [62] with some modifications. Gels were
fixed in 50% (v/v) ethanol/10% (v/v) acetic acid in water
for 30 min. Then, gels were washed in 5% (v/v) ethanol/
1% (v/v) acetic acid in water for 10 min, followed by three
times washing for 5 min in MilliQ water. Gels were sensi-
tized in 0.02% (w/v) sodium thiosulfate for 1 min and
again washed three times for 30 sec in MilliQ water. Gels
were incubated in 0.1% (w/v) silver nitrate for at least 20
min. After this incubation, gels were rinsed 2 times for 5
sec in MilliQ water and developed in 6% (w/v) sodium
carbonate containing 0.05% (v/v) formaldehyde (37%)/
0.4%o (w/v) sodium thiosulfate. Development of staining
was stopped by addition of 5% HAc/water.

Immunoblotting

Proteins were blotted onto nitrocellulose (0.2 um, Bio-
Rad Laboratories), in buffer omitting methanol, using a
Mini Trans-Blot Cell (Bio-Rad Laboratories) at 100 V for 1
hour. Blots were incubated and visualized as described
[63] using mAbs specific for T-cell stimulatory epitopes
against Glia-a9 [26,60], Glia-020 [25,60], GLT-156
(LMW-1 and LMW-2) [27,60], HMW-glt [26,60]. Mono-
clonal Ab binding was visualized by staining for alkaline
phosphatase, using Nitro Blue tetrazolium (NBT) and 5-
Bromo-4-chloro-3-indolyl phosphate (BCIP) (Sigma).

Quadrumat milling

To obtain white wheat flour, wheat kernels (total weight
ranging 7.6-36 g) were milled using a Quadrumat JR
(Brabender, Germany). Kernel moisture was adjusted to
16.5%. Bran was separated from endosperm flour by siev-
ing through mesh (150 pm). After sieving the average
yield was 50% (w/w), noting that samples 6AS-1 and
6DS-2 had a typically higher flour yield of 64% and 60%,
the other samples ranged from 43% to 51%.

Total protein content in flour

Flour protein content was estimated by the Dumas method
[64] using an NA2100 Nitrogen and Protein Analyzer (Ther-
moQuest-CE Instruments, Rodeno, Italy). The Dumas
method is based on the measurement of total nitrogen in the
sample (N x 5.7). Methionine was used as a standard.

Isolation of glutenin macro polymer from flour and
glutenin particle size analysis

Dough strength is correlated to the amount of the glute-
nin macro polymer (GMP) and to the size of glutenin par-
ticles. Glutenin macro polymer was isolated by dispersing
wheat flour in 1.5% (w/v) SDS followed by ultracentrifu-
gation as described [29]. Fresh GMP from flour was dis-
persed in 1.5% (w/v) SDS (10 ml) by rotating overnight at
room temperature. Particle size distributions were meas-
ured using a Mastersizer 2000 (Malvern Instruments, UK).
The laser diffraction pattern obtained with the instrument

http://www.biomedcentral.com/1471-2229/9/41

was correlated to the particle size distribution based on
Fraunhofer theory, assuming a spherical particle shape.
The range of the instrument was 0.02-2000 pm. Disper-
sions of GMP were transferred to the water filled sample
vessel at an obscuration of approximately 8%. The surface
area mean (Dj; ,) was used from the particle size distribu-
tion data for comparisons. Further details of this method
are described by Don et al. and Wang et al. [31,65].

Mixing experiments

Dough strength was determined using a micro-Mix-
ograph. A 2 g Mixograph (National Manufacturing Co.,
USA) pin-mixer was used to analyze the mixing properties
of the different flour samples. Mixing was performed at
20°C. Water was added according to the Plastograph
method (ICC 115/1 (ICC, 1992) [66]. Dough contained
2% (w/w) sodium chloride (Merck, Germany). Band-
width at peak resistance (BWPR) in percentages and
dough development time (DDT) in minutes were used
from the midline analysis for comparison.

Flow-relaxation measurements

Relaxation tests were performed to study dough elasticity.
Longer relaxation half times indicate more elastic dough
behavior [32,33]. Dough was mixed to peak in the 2 g
Mixograph pin-mixer, carefully removed from the mixer
and transferred to the Bohlin VOR rheometer (Bohlin
Instruments, Sweden). Flow-relaxation measurements
were performed using an aluminum grooved plate geom-
etry with a cross-section of 30 mm and a gap of 1 mm
[33]. Moisture loss from the dough piece was prevented
using paraffin oil. The actual measurement was performed
after an equilibration time of 30 min to allow appropriate
release of dough stress. The measuring temperature was
20°C. During measurement, the sample was deformed to
a strain of 100% at a shear rate of 0.0208 s1. The strain
was kept constant and the subsequent decrease of stress of
the dough was recorded as a function of time. The time
necessary for the dough to relax to a stress of 50% of the
initial stress, recorded directly after stopping deformation,
was used as the flow-relaxation half time (T ,).
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