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Abstract
Background: In most flowering plants, pollen is dispersed as monads. However, aggregated pollen
shedding in groups of four or more pollen grains has arisen independently several times during
angiosperm evolution. The reasons behind this phenomenon are largely unknown. In this study, we
followed pollen development in Annona cherimola, a basal angiosperm species that releases pollen
in groups of four, to investigate how pollen ontogeny may explain the rise and establishment of this
character. We followed pollen development using immunolocalization and cytochemical
characterization of changes occurring from anther differentiation to pollen dehiscence.

Results: Our results show that, following tetrad formation, a delay in the dissolution of the pollen
mother cell wall and tapetal chamber is a key event that holds the four microspores together in a
confined tapetal chamber, allowing them to rotate and then bind through the aperture sites
through small pectin bridges, followed by joint sporopollenin deposition.

Conclusion: Pollen grouping could be the result of relatively minor ontogenetic changes beneficial
for pollen transfer or/and protection from desiccation. Comparison of these events with those
recorded in the recent pollen developmental mutants in Arabidopsis indicates that several failures
during tetrad dissolution may convert to a common recurring phenotype that has evolved
independently several times, whenever this grouping conferred advantages for pollen transfer.

Background
Pollen development is a well characterized and highly
conserved process in flowering plants [1-3]. Typically, fol-
lowing anther differentiation, a sporogenous tissue devel-
ops within the anthers producing microsporocytes or
pollen mother cells. Prior to meiosis, pollen mother cells
become isolated by a wall with the deposition of a callose
layer. Each pollen mother cell, as the result of the two mei-

otic divisions, generates four haploid cells forming a tet-
rad and, for a short time, these four sibling microspores
are held together in a persistent pollen mother cell wall
that is surrounded by callose. The tapetum then produces
an enzyme cocktail that dissolves the pollen mother cell
wall and the microspores are shed free and become inde-
pendent [2]. The unicellular microspores go through an
asymmetric mitotic division (pollen mitosis I) to produce
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a pollen grain with two cells, a larger vegetative cell that
hosts a smaller generative cell; the latter will divide once
more to produce two sperm cells (Pollen mitosis II). Pol-
len mitosis II can take place before or after pollen release
and, depending on when it occurs, the pollen will be
bicellular or tricellular at the time of anther dehiscence.
Throughout the manuscript we will use the term "pollen
tetrads" for mature pollen to avoid confusion with the tet-
rads of early developmental stages ("microspore tetrads").

Angiosperms pollen is most commonly released as single
pollen grains or monads [4] which represent the basic
angiosperm pollen-unit. Dehiscence of aggregated pollen
(mostly in groups of four) is considered a recent apomor-
phic characteristic [5,6] that has arisen independently sev-
eral times during evolution primarily in animal-
pollinated taxa although, in some cases, monads may
have evolved secondarily from groups of four grains [6].
Pollen release as tetrads has been reported in some or all
members of 55 different angiosperm families and also in
some pteridophytes [7]. Blackmore and Crane (1988) [8]
put forward that the maintenance of pollen tetrads could
be the result of relatively minor ontogenetic changes and,
consequently, this could be an excellent example of con-
vergence in situations where the release of pollen as tet-
rads is an effective reproductive strategy. Interestingly, the
dissemination of pollen as tetrads has also been reported
in the quartet mutants of Arabidopsis [9,10].

Annonaceae, included in the order Magnoliales, is the
largest family within the basal angiosperm Magnoliid
clade [11,12]. Due to its phylogenetic position among the
basal angiosperms, the family has been the object of con-
siderable interest from a taxonomic and phylogenetic
point of view [13-15] and a number of studies have
focused on pollen morphology [16-20]. Although most
genera of the Annonaceae produce solitary pollen at
maturity, in several species of the family pollen is released
aggregated in groups of four or in polyads [17]. Recent
studies on the mechanism of pollen cohesion in this fam-
ily have been performed in species of the genera Pseudu-
varia [21], Annona and Cymbopetalum [22,23]. Pollen
cohesion in these species is generally acalymmate (four
pollen grains are grouped only by partial fusion) with
simple cohesion [21]. But these studies show differences
in cohesion mechanisms; thus, while pollen grains in
Pseuduvaria are connected by wall bridges (crosswall cohe-
sion), involving both the exine and the intine, in A. glabra,
A. montana and Cymbopetalum cohesion is achieved
through a mass of callose-cellulose. Evolutionary transi-
tions in flowering plant reproduction are proving to have
a clear potential in plant evolutionary biology [24], and
the need for more detailed ontogenetic studies in the fam-
ily has been put forward [22]. Indeed the fact of being the
largest family among basal angiosperms, together with the

puzzling connection mechanisms so far described in the
different species examined, provide an excellent opportu-
nity to investigate the ontogeny of pollen development
and its evolutionary implications.

In this work, pollen development is characterized in A.
cherimola, one of the species in the Annonaceae where pol-
len is shed aggregated in groups of four, paying special
attention to the events close to pollen formation and
retention of the individual pollen grains together,
observed by immunolocalization of different wall compo-
nents. Results are discussed in relation to the shedding of
pollen in groups of four in other species and how this
event may have occurred and settled during evolution.

Results
The mature A. cherimola flower is a syncarpous gynoecium
with a conic shape composed of about 100 fused carpels
surrounded at its base by several rows of anthers with up
to 200 stamens, encircled by two whorls of three petals.
The flower cycle from opening to anther dehiscence lasts
two days: the flower opens on the morning of the first day
in the female stage and remains in this stage until the
afternoon of the following day when the flower enters the
male stage. Anther dehiscence occurs concomitantly in all
stamens of a flower and, as the anthers dehisce, they
detach from the flower and fall over the open petals.

Flower buds of A. cherimola develop in the leaf axes fol-
lowing leaf expansion; the basal nodes are differentiated
in the year preceding anthesis. The uppermost distal buds
differentiate in synchrony with shoot growth [25]. Flower
bud growth begins 39 days prior to anthesis. Anther dif-
ferentiation proceeded centripetally, with the most devel-
opmentally advanced anthers placed in the outermost
rows and the different stages of anther and pollen devel-
opment present within the same flower. This fact was
helpful for establishing successive stages of anther devel-
opment. The anther becomes septate with pollen mother
cells positioned between rows of interstitial tapetum sim-
ilar to the anthers described in a sister species, Annona
squamosa [26].

To determine if pollen development followed a standard
pattern and whether pollen tetrads at anther dehiscence
corresponds with the cytological and morphological fea-
tures of mature pollen, anther and pollen development
were examined from microsporogenesis to maturity. Spe-
cial attention was given to the events responsible for pol-
len cohesion. Microgametogenesis and tapetum
degeneration were also examined sequentially.

Microsporogenesis
Initial hypodermal archesporial cells were apparent 24
days before anthesis (Figure 1A). From them, anther septa
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initials and pollen mother cells (PMC) developed in 9 cm
long flower buds 19 days before anthesis (Figure 1B).
Each anther contained a uniseriate row of pollen mother
cells with a conspicuous common wall. The PMC began to
accumulate starch grains (Figure 1C) and increased in size

(Figure 1C, 1D). Starch grains vanished concomitantly
with the beginning of meiosis, some 15 days before anthe-
sis, as a translucent cell wall layer was apparent surround-
ing the PMC (Figure 1D). Meiosis proceeded rapidly and
was followed by a new accumulation of starch grains in
the young microspores (Figure 1E) 14 days before anthe-
sis. The microspore tetrads remained together in isolated
tapetal chambers surrounded by the PMC wall that
stained positively with periodic acid-Shiff's reagent (PAS)
for carbohydrates (Figure 1F, 1G).

Immunocytochemical essays revealed the localization of
various cell wall components (Figure 2). Callose sur-
rounded the PMC wall and, following meiosis I, an addi-
tional furrow of callose developed inwards (Figure 2A)
forming a callose positive band between the dyad cells
(Figure 2B, 2C). Successive cytokinesis followed (Figure
2C), resulting in a tetrad (2D), each separated by callose.
Dyad and tetrad stages coexist in the flower as centripetal
maturation progresses. The PMC wall also reacted posi-
tively to JIM7 (Figure 2E) and JIM5 (Figure 2F) staining,
indicating the presence of methyl-esterified and unesteri-
fied pectins respectively. However, while the walls of the
anther somatic and tapetal cells also reacted positively to
the JIM7 for methyl-esterified pectins (Figure 2E), they

Microsporogenesis of Annona cherimolaFigure 1
Microsporogenesis of Annona cherimola. (A) Uniseriate 
row of arquesporial cells. (B) Septal and pollen mother cells 
(PMC), showing a conspicuous wall, alternate in the sporoge-
nous tissue. (C) PMC increase in size and starch grains are 
visible. (D) Starch grains vanish, a translucent layer appears in 
the PMC wall, and PMC starts meiosis. The tapetum vacu-
olates and the tapetal chambers are apparent. (E) Following 
meiosis, starch grains accumulate again in the young micro-
spores, which are surrounded by callose. (F) The young 
microspores, with an incipient exine, appear to float and turn 
within the still remaining PMC wall (arrow) that holds the 
four microspores together. (G) Detail of PMC wall (arrow). 
Longitudinal sections of the anthers stained with PAS and 
Toluidine blue. Bar = 20 μm.

Callose and pectins during microsporogenesis in Annona cher-imolaFigure 2
Callose and pectins during microsporogenesis in 
Annona cherimola. (A-D) Anticallose in dyad/tetrad phases. 
(A) A furrow of callose developed inwards, forming a wall 
between the dyad cells. (B) Dyad phase, showing (B) an incip-
ient, and (C) a well developed callose wall. (D) Tetrad micro-
spore showing in the section plane three of the microspores 
separated by callose walls. (E) PMC and other anther tissue 
walls showing methyl-esterified pectins. (F) PMC wall also 
shows unesterified pectins. Specific cell components were 
localized using antibodies against callose (A, B, C, D), methyl-
esterified pectin (JIM7) (E), and unesterified pectin (JIM5) (F). 
A-D Bar = 10 μm. E-F: Bar = 20 μm.
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showed only a faint staining for the presence of unesteri-
fied pectins (Figure 2F).

Pollen cohesion
Following tetrad formation, callose disappeared but the
microspores remained within the PMC calcofluor-positive
cellulosic wall (Figure 3A). At this developmental stage,
an interesting event was detected: the microspores within
each tapetal chamber, which initially had their pollen
aperture sites facing outward towards the PMC wall (Fig-
ure 3A), appeared to float and rotate within their individ-
ual chambers (Figure 3B). This movement was not
random, but the microspores turned 180° until the pollen
aperture sites faced each other (Figure 3B). The remaining
PMC cellulosic wall, which persisted for some time,
together with the confined space provided by the tapetal
chamber, appear to contribute towards keeping the micro-
spore tetrad together. Subsequently the PMC cellulosic
wall disappeared completely (Figure 3C) and the tapetum
degenerated as the microspores increased in size. They

remained in their new orientation attached by their appar-
ently sticky aperture sites that now faced each other (Fig-
ure 3D).

At this stage, both the cell walls of the somatic cells of the
anther and the inner wall of microspores (intine) reacted
similarly for methyl-esterified pectins (Figure 4A), while
unesterified pectins were present just in the microspore
intine (Figure 4B). The exine showed a low unspecific

Pollen development within the tapetal chamber in Annona cherimolaFigure 3
Pollen development within the tapetal chamber in 
Annona cherimola. (A) Two young microspores in a tetrad 
which still keeps the pollen mother cell wall. Aperture sites 
are located towards the outside facing the pollen mother cell 
wall. (B) Pollen is shed free, within the PMC wall, in the tap-
etal chamber. Within this confined space the young micro-
spores turn (C) with their aperture sites facing now each 
other as the PMC cellulosic wall is digested. (D) The pollen 
grains regroup sticking through the aperture sites, and 
enlarge as the tapetum degenerates. Longitudinal anther 2 
μm resin sections stained with calcofluor and auramine. Bar 
= 20 μm.

Establishment of pollen cohesion in Annona cherimolaFigure 4
Establishment of pollen cohesion in Annona cher-
imola. (A) Microspore walls show methyl-esterified pectins, 
and also (B) unesterified pectins. (C) As callose is digested, 
remnants of callose (white arrow) are observed layering the 
pollen aperture sites. (D-F) Microspores show crosswall 
cohesion bridges showing the presence of unesterified 
pectins. (G-H) Details of crosswall cohesion bridges, showing 
the presence of methyl-esterified pectins. (I) Phase contrast 
of a mature pollen grain showing internal cohesion and a 
joint sporopollenin layering. Specific cell components were 
localized using antibodies against: methyl-esterified pectin 
(JIM7) (A, G-H), unesterified pectin (JIM5) (B, D, E, F) Callose 
(C). A-E, I: Bar = 10 μm. F-H: Bar = 3 μm.
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autofluorescence but in a different fluorescence wave-
length (yellowish color) than the fluorescent marker of
the antibodies, AlexaFluor 488, which emitted green fluo-
rescence. As a consequence, exine autofluorescence was
clearly differentiated from the immunofluorescence sig-
nals. Anti-callose immunofluorescence revealed remnants
of callose at the pollen aperture sites where the thick exter-
nal layer of the microspore wall, the exine, was extremely
thin or absent. These callose remnants were apparent in
all microspores at this stage (Figure 4C). The four micro-
spores showed crosswall cohesion bridges that stained
with antibodies against unesterified and methyl-esterified
pectins in the microspore wall (Figure 4D-H). Following
this inter-intine cohesion, additional deposition of sporo-
pollenin with a joint layering of the four microspores fur-
ther strengthened this connection (Figure 4I).

Microgametogenesis
As the microspores increased in size, their cytoplasm
became vacuolated (Figure 5A) and starch grains were
absent (Figure 5B). During this vacuolization, nuclear

migration preceded the first mitosis to form bicellular pol-
len grains. Following the first mitosis, 4-6 days before
anthesis, the vacuoles decreased in size (Figure 5C) and
starch was again stored (Figure 5D). Young pollen grains
had no vacuoles (Figure 5E) and numerous starch grains
were present (Figure 5F). The second mitotic division pro-
ducing the first tricellular pollen grains started some four
hours prior to anther dehiscence (Figure 5G) and one day
prior to anther dehiscence starch grains began to hydro-
lyze (Figure 5H). Mitotic divisions were not synchronized
within a pollen tetrad and single pollen grains with differ-
ent numbers of nuclei could be observed in the same tet-
rad resulting in the coexistence of bicellular and tricellular
pollen upon anther dehiscence.

In mature pollen, while intine thickness was similar
around the pollen grain, the exine was thinner or absent
at the pollen aperture sites where contact points between
sibling pollen grains were established (Figure 6A). At

Microgametogenesis in Annona cherimolaFigure 5
Microgametogenesis in Annona cherimola. (A) Micro-
spores increase in size as vacuoles appear in the cytoplasm, 
(B) microspores at this stage do not have starch grains. (C) 
Microspores following mitosis I; (D) as vacuoles decrease in 
size, starch grains are stored. (E) Young pollen grains without 
vacuoles (F), which accumulated starch grains. (G) Close to 
the time of anther dehiscence, the second mitosis occurs, the 
tapetum is completely degenerated and (H) starch is 
digested. Longitudinal sections of anthers stained with PAS 
and Toluidine blue (A, C, E, G), and with PAS (B, D, F, H) to 
show starch grains. Bar = 20 μm.

Mature pollen of Annona cherimolaFigure 6
Mature pollen of Annona cherimola. (A) Intine (black 
arrow) is similar all around the pollen grain, but exine (white 
arrow) is thinner in the pollen aperture site. Longitudinal 
section stained with a 3:1 mixture of Auramine and Cal-
cofluor. (B) Sibling pollen grains have a faint cohesion that 
showed with JIM 5 antibody the presence of unesterified 
pectins. (C) Mature pollen tetrad following acetolysis. (D, E, 
F) Mature pollen observed with scanning electron micros-
copy (SEM). (D) Mature pollen grains with a globose shape 
and a radiosymmetric disposition. (E) Exine cohesion helps 
keeping sibling pollen grains together. (F) Pollen exine shows 
a tectate perforate appearance. A, B, D: Bar = 20 μm; C: Bar 
= 10 μm; E, F: Bar = 2 μm.
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these areas unesterified and methyl-esterified pectin
bridges were maintained throughout pollen development
although these connections seemed to be less strong in
mature pollen (Figure 6B). However, mature pollen tet-
rads resisted separation during acetolysis, showing the
permanence of joint sporopollenin (Figure 6C).

Scanning electron micrographs revealed that mature pol-
len had a radiosymetric globose shape, was inaperturated,
tectate perforate, and with a diameter of 40 μm (Figure
6D, 6E, 6F). Mature pollen was shed in groups of four sib-
ling pollen grains that stick together having an exine cohe-
sion, clearly visible with high magnification scanning
electron microscopy images (Figure 6E).

Tapetum degeneration
A. cherimola has a secretory tapetum with tapetal-type
septa similar to those described in other species of the
genus Annona such as A. squamosa [26] and A. glabra [27].
Prior to meiosis, septal initials formed tapetal chambers
that host the PMC (Figure 7A). After meiosis, the tapetum
showed a vacuolization and a progressive degeneration as
the tapetal chamber enlarged (Figure 7B). The nuclei of
the tapetal cells displayed elongated and lobular shapes

together with a extremely high chromatin condensation,
revealed by an intense 4',6-diamidino-2-phenylindole
(DAPI) fluorescence (Figure 7C), typical features of pro-
grammed cell death [28], which have also been found in
the tapetal nuclei of other species [29]. At the same time,
tapetal cells released their cellular contents that coated the
pollen grains to form the pollenkit. At anther dehiscence
the tapetum was completely degenerated and had disap-
peared (Figure 7D).

Discussion
Pollen development
Pollen in A. cherimola is shed in groups of four, originating
from the same meiotic division and, hence, the same tet-
rad. Pollen development, however, continues beyond tet-
rad formation and, although held together, pollen grains
are fully mature upon anther dehiscence. Meiosis cytoki-
nesis occurred through the formation of ingrowths of cal-
lose that are also found in genera of some primitive
angiosperms [30,31] including species of the Magnoliid
clade as Magnolia tripetala [32] and Degeneria vitiensis [33]
in the Magnoliales, Laurelia novae-zelandiae [34] and Liri-
odendron tulipifera [35] in the Laurales or Asarum in the
Piperales [30] as well as in monocots as Sisyrinchium [36].

Starch accumulated prior to meiosis and the first pollen
mitosis and vanished with the onset of these two divi-
sions; this also occurred 6 days before anther dehiscence,
preceding the shedding of starchless pollen. The accumu-
lation of starch in PMC has also been reported in other
primitive angiosperms, such as Anaxagorea brevipes [37] or
Austrobaileya maculata [38], and in other evolutionarily
more recent angiosperms [39,40]. Vacuolization also fol-
lows a conserved pattern [41,42]. The cytoplasm enlarges
through a first vacuolization and, later on, following the
first pollen mitosis, small vacuoles appear as starch builds
up.

In most species a dehydration process takes place prior to
pollen shedding and starch is hydrolyzed to form sucrose
that protects pollen against desiccation [43]. Starchless
pollen is the most common pollen type in the
angiosperms [44], being more frequent in bicellular than
in tricellular pollen [45,46]. In A. cherimola, pollen is shed
in a highly hydrated stage [47] and this lack of dehydra-
tion may explain why the second mitotic division contin-
ues in free pollen after pollen shedding, producing a
mixed population of bi and tricellular pollen [48]. How-
ever, both types of pollen are starchless at anther dehis-
cence.

Pollen cohesion
Several reasons could account for the release of pollen in
groups of four. In Arabidopsis, failure of different enzymes
during the dissolution of the pectic layer that surrounds

Tapetum degeneration in Annona cherimolaFigure 7
Tapetum degeneration in Annona cherimola. (A) Pollen 
mother cells in Prophase I and an active tapetum. (B) Dyad 
phase in enlarged tapetal chambers. (C) Anther, 4 days 
before anthesis, showing bicellular pollen and degenerated 
tapetum, with nuclei displaying elongated shapes and chroma-
tin condensation. (D) Tapetum has disappeared in anthers of 
flowers at the female stage showing mature pollen. Longitudi-
nal 5 μm resin sections stained with DAPI. Bar = 20 μm.
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the PMC wall has been reported in two quartet mutants
[10,49]. In our work the immunolocalization of esterified
and non-esterified pectins showed that, although they
were clearly present in the PMC wall, the pectins disap-
peared following tetrad formation. A closer examination
of the photographs reveals that the PMC wall, which
stains for cellulose, remained beyond the tetrad stage.
Interestingly quartet mutants of Arabidopsis also show a
defect in the degradation of the PMC wall [10]. Cellulase
has also been shown to be involved in the breakdown
process of the PMC wall [50] and a delay in its action
could lead to this phenomenon. However, this failure
does not seem permanent, since 25 days later this wall is
completely dissolved. Thus, the permanence of the PMC
wall appears as a key factor contributing to pollen group-
ing as pollen tetrads in A. cherimola, similar to the obser-
vations in Arabidopsis mutants. A mixture of enzymes is
require to break down the complex PMC wall [2], and a
failure of one or more of these enzymes could result in a
similar final result.

Different events that take place during the retention of
this wall may explain pollen adherence once this wall dis-
appears. The confining of pollen within the tapetal cham-
ber keeping the young microspores in close proximity
may contribute to this wall maintenance. Surprisingly, the
young microspores are apparently separated from their
sibling cells allowing some free movement indicated by
the strange 180° rotation of the pollen aperture sites.
Thus, those aperture sites that originally looked outwards
rotate inward to face each other. A similar rotation has
been reported previously in other Annonaceae [A. glabra
and A. montana [22] and Cymbopetalum [23], and also in
species of the Poaceae [51]. This distal-proximal micro-
spore polarity transition in development contrasts with
the evolutionary shift from a proximal to a distal aperture
that has been long regarded as one of the major evolution-
ary innovations in seed plants [52]. Proximal apertures
predominate in the spores of mosses, lycophytes and ferns
while distal apertures are more common in extant seed
plants including gymnosperms, cycads and early-diver-
gent angiosperms [52]. In fact, species in the Annonaceae
with monad pollen are reported to have distal apertures
[see [19] for review]. However, a complete study of 25
Annonaceae genera with species that release aggregated
pollen showed proximal apertures [16] and, conse-
quently, the distal-proximal transition observed in pollen
development of A. cherimola and other Annonaceae
[22,23] could represent a widespread situation in this
basal family.

Another reason proposed for this permanent binding of
pollen in groups of four could be a failure in the synthesis
of the callose layer during microspore separation in the
tetrad [8]. However, the results shown in this work in A.
cherimola indicate that callose is layered following the

standard pattern and vanishes later, after meiosis is com-
pleted, similar to the way it occurs in Arabidopsis quartet
mutants, in which callose dissolution proceeds normally
[53]. However, the use of antibodies against callose
showed that callose remains for a while in the area where
pollen apertures will form hampering the layering of spo-
ropollenin. Callose remnants in this area have also been
reported in other Annonaceae and it has been suggested
that these remnants pull the pollen grains to undergo the
180° turning [22,23]. In the formation of the pollen wall,
callose dissolution occurs concomitantly with the layering
of the exine [54] and the formation of the pollen aperture
is related to endoplasmic reticulum blocking the deposi-
tion of primexine [3]. The callose remnant at the pollen
aperture sites has not been investigated in detail in other
species and, given the high conservation of pollen ontog-
eny in angiosperms, this is a topic worthy of a detailed
study. Interestingly, in an Arabidopsis mutant lacking the
gene responsible for callose synthesis, pollen develops
unusual pore structures [55].

Further binding at the aperture sites could follow this ini-
tial adhesion process through the observed joint deposi-
tion of pollenkit that has also been reported in other
species [4]. Thus, two key processes could contribute to
holding together the four pollen grains in A. cherimola, the
confined space that permits the delay in the dissolution of
the PMC wall and the tapetal chamber and pollen rotation
that allows the adhesion of the sticky proximal faces by
the formation of small pectin bridges. Later, the join dep-
osition of sporopollenin would further strengthen this
initial binding.

Biological significance of the pollen dispersal unit
A failure or delay in the dissolution of the PMC wall and
tapetal chamber appears to be a critical step, resulting in
the continued proximity of the four microspores pro-
duced by meiosis of a single PMC. However, this pheno-
type could also result from failure in the different enzymes
that dissolve the PMC wall. The distribution of this char-
acter, together with the information provided by Arabidop-
sis mutants, shows that this has occurred independently
several times during evolution, suggesting that it must
provide some evolutionary advantages [8].

The adaptive advantages derived from aggregated pollen
have been reviewed recently [6]. The release of aggregated
pollen in insect pollinated species could increase pollina-
tion efficiency, since more pollen grains could be trans-
ferred in a single pollinator visit and, in this sense, a
correlation between pollen tetrads and polyads with a
high number of ovules per flower has been shown in a
survey of the Annonaceae [17]. The release of aggregated
pollen is more advantageous in situations where pollina-
tors are infrequent [6] and in situations of short pollen
viability and pollen transport periods. A short pollen via-
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bility period has been reported in A. cherimola, [47,56]
and a short pollen transport episode is common in several
Annonaceae [57] and in other beetle pollinated species of
early divergent angiosperm lineages [58].

An additional possible benefit of aggregated pollen is pro-
tection against desiccation and entry of pathogens
through the thin walls of the pollen aperture sites. Pollen
grouped in dyads, tetrads or polyads show a strong proxi-
mal reduction of the exine in Annonaceae [59]. A. cher-
imola pollen is inaperturate and germinates in the
proximal face, showing a large area of unprotected intine
[47,60]. More evolutionarily recent species present a col-
pus that, in dehydrated pollen, is just a narrow slit pro-
tected by loose pollenkit. Only upon hydration, when the
pollen faces a wet surface on the stigma, this slit swells
developing a wider colpus through which the pollen tube
protrudes [61]. Inaperturate pollen does not have this
protection from desiccation and the development of
inward facing intines may play a role in protecting pollen
against desiccation.

Conclusion
The results obtained in this work support the hypothesis
that aggregated pollen could be the result of relatively
minor ontogenetic changes beneficial for pollen transfer
or/and protection from pollen desiccation. Comparison
of the events reported here with those recorded in recent
pollen development mutants in Arabidopsis suggests that a
simple event along development, the delay in the dissolu-
tion of the pollen mother cell wall and tapetal chamber,
results in conspicuous morphological changes that lead to
the release of pollen in tetrads. A variety of different muta-
tions within the enzymes required to breakdown this wall,
may contribute to this common morphology. These
changes have occurred and recur in nature and, due to
their adaptive advantages for pollen transfer, have been
selected during evolution several independent times, rep-
resenting an example of convergent evolution.

Methods
Plant material
The research was performed on adult A. cherimola, cv.
Campas trees of located in a field cultivar collection at the
EE la Mayora CSIC, Málaga, Spain. To study the relation-
ship between flower bud length and developmental
stages, tagged flower buds were measured sequentially on
the trees. Buds were measured twice a week for 8 weeks
from leaf unfolding, when the buds were visible but bur-
ied under the leaf petiole until anthesis. A. cherimola, as
other members of the Annonaceae, presents protogynous
dichogamy [62]. The flower opens in the female stage and
remains in this stage until the following day in the after-
noon when at a precise time, around 6 pm. under our
environmental conditions, it changes to the male stage:

the anthers dehisce, the petals open more widely and the
stigmas shrivel [48].

Light microscope preparations
To follow pollen development, anthers were collected
from flower buds of a range of stages, with petals 6, 9, 12,
16, 22, 24 and 30 mm long. Anthers were also collected
from flowers one day prior to anthesis and at the female
(F) and male (M) stages of mature flowers. The anthers
from three flowers of each stage were fixed in glutaralde-
hyde at 2.5% in 0.03 M phosphate buffer [63], dehydrated
in an ethanol series, embedded in Technovit 7100 (Kulzer
& Co, Wehrheim, Germany), and sectioned at 2 μm.

Sections were stained with periodic acid-Schiff's reagent
(PAS) for insoluble carbohydrates and with PAS/Toluid-
ine Blue for general histological observations [64]. Sec-
tions were also stained for cutine and exine with 0.01%
auramine in 0.05 M phosphate buffer [65] and for cellu-
lose with 0.007% calcofluor in water [66]. Intine and
exine were observed with a 3:1 mixture of 0.01%
auramine in water and 0.007% calcofluor in water.

To observe nuclei during pollen development, anthers
collected from flowers at the same developmental stages
ranging from 9 mm long to anthesis were also fixed in 3:1
(V1/V2) ethanol-acetic acid, embedded as described
above, sectioned at 5 μm and stained with a solution of
0.25 mg/ml of 4',6-diamidino-2-phenylindole (DAPI)
and 0.1 mg/ml p-phenylenediamine (added to reduce fad-
ing) in 0.05 M Tris (pH 7.2) for 1 hr at room temperature
in a light-free environment [67]. Preparations were
observed under an epifluorescent Leica DM LB2 micro-
scope with 340-380 and LP 425 filters for auramine, cal-
cofluor, and DAPI.

For the study of pollen morphology and pollen size,
dehisced anthers were sieved through a 0.26 mm mesh
sieve and the pollen was placed in glacial acetic acid for
acetolysis. Pollen grains were transferred to a mixture of
9:1 acetic anhydride:concentrated sulphuric acid at 65°C
for 10 minutes, then washed with glacial acetic acid and
washed again three times with water following a modifi-
cation of the method by Erdtman (1960) [68].

Scanning electron microscopy
Pollen for scanning electron microscopy (SEM) was fresh
dried with silica gel and directly attached to SEM stubs
using adhesive carbon tabs and observed with a JSM-840
scanning electron microscope (JEOL) operated at 10 kV.

Immunocytochemistry
Immunocytochemistry was performed on Technovit 8100
(Kulzer & Co, Wehrheim, Germany) embedded semithin
sections and revealed by fluorochromes, as described pre-
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viously [69,70]. Anthers from three flowers per develop-
mental stage with petals 6, 9, 12, 16, 22, 24 and 30 mm
long and at anthesis were fixed in 4% paraformaldehyde
in phosphate buffered saline (PBS) at pH 7.3 overnight at
4°C, dehydrated in an acetone series, embedded in Tech-
novit 8100 (Kulzer), polymerized at 4°C and sectioned at
2 μm. Sections were placed in a drop of water on a slide
covered with 3-Aminopropyltrietoxy-silane 2% and dried
at room temperature.

Different antibodies were used to localize specific cell
components: an anti-RNA mouse monoclonal antibody,
D44 [71,72], for total RNA detection; JIM5 and JIM7 rat
monoclonal antibodies (Professor Keith Roberts, John
Innes Centre, Norwich, UK) which respectively recognize
low and high-methyl-esterified pectins [73] for localiza-
tion of pectins; and an anti-callose mouse monoclonal
antibody (Biosupplies, Parkville, Australia) for callose.

Sections were incubated with PBS for 5 minutes and later
with 5% bovine serum albumin (BSA) in PBS for 5 min-
utes. Then, different sections were incubated for one hour
with the primary antibodies: JIM5, JIM7, and anti-RNA
undiluted and anti-callose diluted 1/20 in PBS. After three
washes in PBS, the sections were incubated for 45 minutes
in the dark with the corresponding secondary antibodies
(anti-rat, for JIM5 and JIM7, and anti-mouse, for anti-
RNA and anti-callose) conjugated with Alexa 488 fluoro-
chrome (Molecular Probes, Eugene, Oregon, USA) and
diluted 1/25 in PBS. After three washes in PBS and water,
the sections were mounted in Mowiol 4-88 (Poly-
sciences), examined with a Zeiss Axioplan epifluorescent
microscope, and photographed with a CCD Digital Leica
DFC 350 FX camera.
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