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Abstract
Background: Flavonol glucosides constitute the second group of secondary metabolites that
accumulate in Crocus sativus stigmas. To date there are no reports of functionally characterized
flavonoid glucosyltransferases in C. sativus, despite the importance of these compounds as
antioxidant agents. Moreover, their bitter taste makes them excellent candidates for consideration
as potential organoleptic agents of saffron spice, the dry stigmas of C. sativus.

Results: Using degenerate primers designed to match the plant secondary product
glucosyltransferase (PSPG) box we cloned a full length cDNA encoding CsGT45 from C. sativus
stigmas. This protein showed homology with flavonoid glucosyltransferases. In vitro reactions
showed that CsGT45 catalyses the transfer of glucose from UDP_glucose to kaempferol and
quercetin. Kaempferol is the unique flavonol present in C. sativus stigmas and the levels of its
glucosides changed during stigma development, and these changes, are correlated with the
expression levels of CsGT45 during these developmental stages.

Conclusion: Findings presented here suggest that CsGT45 is an active enzyme that plays a role in
the formation of flavonoid glucosides in C. sativus.

Background
Flavonols constitute a major class of plant natural prod-
ucts that accumulate in a wide range of conjugate struc-
tures. A large proportion of this diversity is due to the
attachment of one or several sugar moieties at different
positions. Besides providing beautiful pigmentation in
flowers, fruits, seeds, and leaves [1], flavonoids also have
key roles in signalling between plants and microbes, in
male fertility of some species [2], in defence as antimicro-
bial agents and feeding deterrents [3], in UV protection

[4], in the regulation of polar transport of auxins [5], and
more recently, their role in cell cycle regulation in plants
has been demonstrated [6,7]. There is increasing evidence
to suggest that flavonoids, in particular those belonging to
the class of flavonols (such as kaempferol and quercetin),
are potentially health-protecting components in the
human diet as a result of their high antioxidant capacity
[8,9]. Therefore, flavonoids may offer protection against
major diseases such as coronary heart diseases and cancer
[10,11]. Flavonoids are present at relatively high concen-
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trations in saffron, the dessicated stigma tissue of C. sati-
vus [12,13]. Their antioxidant properties, along with their
bitter taste, could qualify them as potential organoleptic
agents of the spice [13-15]. In addition, they show anti-
conceptive and anti-inflammatory effects [16]. Neverthe-
less, the studies of these compounds in saffron stigma are
scarce, and have only been analysed with some detail in
tepals [17,18].

Flavonoid synthesis is organ- and tissue-dependent, and is
affected by environmental conditions [19]. In the early
steps of flavonoid biosynthesis, phenylalanine derived
from the shikimic acid pathway is converted to cou-
maroyl-CoA by phenylalanine ammonia-lyase, cinnamate
4-hydroxylase, and 4-coumarate:CoA ligase. Chalcone
synthase, the first committed enzyme for flavonoid bio-
synthesis, results in the condensation of coumaroyl-CoA
with three molecules of malonyl-CoA from acetyl-CoA to
form naringenin chalcone, which suffers further modifica-
tions that result in the synthesis of substitute flavones, fla-
vonols, catechins, deoxyflavonoids, and anthocyanins.
The flavonoid aglycones, which have a variety of glyco-
sylation sites, are converted into glycon by glycosyltrans-
ferases.

In higher plants, secondary metabolites are often con-
verted to their glycoconjugates, which are then accumu-
lated and compartmentalized in vacuoles [20], while
glycosylation of phytochemicals is known to alter their
regulatory properties by causing enhanced water solubil-
ity and lower chemical reactivity. Glycosylation involves a
UGT-catalysed transfer of a nucleotide diphosphate-acti-
vated sugar molecule to the acceptor aglycone [21]. The
glycosylation reactions are catalysed by glycosyltrans-
ferases (GTases). Among these GTases, family 1 GTases
(UGTs), commonly utilize small molecular weight com-
pounds as acceptor molecule substrates and UDP-sugars
as donors [22]. The first gene encoding a plant glycosyl-
transferase was isolated in Zea mays, during the analysis of
the Bronze locus, which codes for an UDP-glucose:flavo-
nol glucosyltransferase [23]. Since then, several clones
have been characterized at a molecular level in a range of
species including Petunia hybrida [24,25], Vitis vinifera
[26], Perilla frutescens [27], Allium cepa [28], Nicotiana tab-
acum [29], Arabidopsis thaliana [30-34], Dianthus caryophyl-
lus [35], Beta vulgaris [36], Glycine max [37]; Pyrus
communis [38], Oryza sativa [39,40] and Fragaria × anan-
assa [41] among others.

Here the isolation of a UDP-glucose:flavonol glucosyl-
transferase from C. sativus stigmas using a degenerate PCR
technique is reported. The substrate specificity analyses
using recombinant protein indicated that C. sativus flavo-
nol GT, CsGT45, was able to catalyse glucosylation of
kaempferol and quercetin. Interestingly, CsGT45 was not

expressed in Crocus species unable to accumulate kaemp-
ferol 7-O-glucosides in stigmas, suggesting the involve-
ment of CsGT45 in the formation of kaempferol
glucosides in the stigma tissue of C. sativus.

Results
Profile of flavonols accumulation during stigma tissue 
development
In saffron, the flavonoids kaempferol 3-O-sophoroside-7-
O-glucopyranoside and kaempferol 7-O-sophoroside
were identified as abundant compounds [12,13], and
more recently, a kaempferol tetrahexoside and kaemp-
ferol 3,7,4'-triglucoside have been tentatively identified as
minor flavonoids in saffron [15], whereas quercetin and
its glucosides have not been detected. Initially the content
of flavonoids present in C. sativus stigma at anthesis was
analysed by LC-ESI-MS (Figure 1A). In addition, six
stigma developmental stages were selected and methanol
extracts were analysed by HPLC. Under our experimental
conditions, three significant flavonoids were evident in
the HPLC chromatograms from extracts of C. sativus stig-
mas (Figure 1A). The retention times, the UV spectra and
the LC-ESI-MS analysis on stigmas at anthesis allowed us
to tentatively identify these flavonoids as 3-O-sophoro-
side-7-O-glucopyranoside, 3,7,4'-triglucoside and 7-O-
sophoroside (Figure 1B). This compound was also charac-
terized by NMR analysis and the obtained structural data
correspond to those found in the literature [13]. The pres-
ence of all three flavonoids increased with stigma devel-
opment and the increase for the two kaempferol
triglucosides was equal. The relative levels of kaempferol
7-O-sophoroside, which reached the maximum levels at
anthesis, were much higher than those observed for both
kaempferol 3-O-sophoroside-7-O-glucopyranoside and
kaempferol 3,7,4'-triglucoside, with relative high levels in
the scarlet stages (-2da to +3da) (Figure 1C).

Cloning and deduced structure of CsGT45
To identify flavonoid glucosyltransferases from C. sativus
stigmas, a homology-based strategy was used, taking
advantage of specific glycosyltranferase motifs located in
the C-terminus region [42]. A cDNA population was pre-
pared by reverse transcription of poly (A)+ from total RNA
isolated from C. sativus stigmas at anthesis, which showed
the highest levels of kaempferol glucosides. DNA frag-
ments were amplified by degenerate primers and the
obtained products were cloned and analysed. Sequencing
of one PCR product revealed homology to glycosyltrans-
ferases. The sequence information from this clone,
CsGT45, allowed the design of PCR specific primers to
obtain the full-length transcripts. We performed 5' and 3'
RACE using poly(A)+ from C. sativus stigma as a template.
The GTase gene obtained (1674 bp, Gen Bank FJ194947)
was intronless, containing a putative open reading frame
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Presence of flavonoid glucosides in C. sativus stigmasFigure 1
Presence of flavonoid glucosides in C. sativus stigmas. (A) HPLC-ESI-MS chromatogram of a MeOH extract of C. sativus 
stigmas at anthesis. Three flavonoid peaks, 1, 2, and 3 are denoted by arrows. The compound 4-methylumbelliferyl β-D-glu-
curonide was used as internal standard (IS). (B) Positive ion mass spectrum corresponding with the observed flavonoid peaks in 
A: 1, kaempferol 3-O-sophoroside-7-O-glucopyranoside; 2, kaempferol 3,7,4'-triglucoside, and 3, kaempferol 7-O-sophoroside 
acquired during the HPLC-ESI-MS analysis. (C) Relative kaempferol 3-O-sophoroside-7-O-glucopyranoside, kaempferol 3,7,4'-
triglucoside and kaempferol 7-O-sophoroside levels at different stigma developmental stages.
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of 1500 bp encoding 500 amino acid residues with a cal-
culated molecular mass of 55.42 kDa and a pI of 5.19.

Because C. sativus is a triploid, we employed in silico
screening of a large stigma cDNA EST database http://
www.saffrongenes.org/[43] as an effective method for
identification of potential CsGT45 alleles. We identified
three EST clones with 98% identity in 611 bp
(EX147039.1), 98% identity in 264 bp (EX144545.1) and
84% identity in 426 bp (EX148389.1). The first two ESTs
correspond to CsGT45, and the third could correspond to
a CsGT45 allele.

The carboxyl terminal of the protein contained the plant
secondary product glycosyltransferase (PSPG) box signa-
ture motif. Analysis of CsGT45 sequence for N-terminal
targeting signal or C- terminal membrane anchor signal
using SignalP and TMpred web-based programmes pre-
dicted CsGT45 to be non-secretory with an absence of pre-
dicted signal peptides or transmembrane signals [44].

For comparative modelling, CsGT45 was aligned with
MtUGT71G1, whose crystal structure has recently been
solved [45]. CsGT45 displayed 18% overall identity with
MtUGT71G1 (Figure 2A). A molecular model of CsGT45
was constructed from the structural alignment. Structur-
ally conserved regions of the CsGT45 model were built
from the crystal structure of MtUGT71G1 using the Pyre
server [46] (Figure 2B). In plant GTs, the most common
sugar donor is UDP-Glc. Several conserved residues, most
of which are found in the PSPG motif of plant UGTs,
interact with the sugar donor [22]. The conserved residues
involved in the interaction with UDP-Glucose in
MtUGT71G1 are also conserved in CsGT45, with the
exception of the E381 residue that in CsGT45 is aspartate
residue D385, which is also found in the characterized
VvGT1 [22].

Comparison of the predicted amino acid sequence with
that of other glycosyltransferases reveals overall positional
identities of 44% with Pyrus communis flavonoid 7-O-glu-
cosyltransferase (AAY27090.1), 41% with Arabidospis fla-
vonoid 3-O-glucosyltransferase (At5g17050) and
flavonoid 7-O-glucosyltransferase NtF7GT (Nicotiana tab-
acum, BAB88935). The phylogenetic tree based on
deduced amino acid sequences if plant GTases is shown in
Figure 3. Currently, GTases function and specificity can-
not be fully predicted based on sequence information
alone. However, the phylogenetic tree of functionally
characterized GTases showed several clusters, which could
be characterized by the specificity of the flavonoid glyco-
syltransferase activities of enzymes involved therein. Clus-
ter I is characterized by flavonoid 3-O-
glycosyltransferases, cluster III mainly contains flavonoid
7-O-glycosyltransferases, and cluster IV contains broad

substrate GTases. Cs45GT is included in cluster II, which
contains anthocyanin 5-O-glucosyltransferases (A5GT),
like VhA5GT, PfA5GT and PhA5GT which activities have
been tested in vitro [25,27] and other GTases with a broad
substrate specificity that are not involved in the biosyn-
thesis of anthocyanins, like UGT74F1 and UGT74F2 from
Arabidopsis, which produced distinct multiple glucosides
of quercetin in vitro [47], while in vivo act as anthranilate
glycosyltransferases [48] and GTases implicated in sali-
cylic acid metabolism, like NtSalGT that reacts on several
phenolic compounds in vitro [49]. NtF7GT from Nicotiana
that reacts on the 7-hydroxyl group of flavonol and 3-
hydroxyl group of coumarin [29] and PcF7GT from Pyrus
communis that reacts on the 7-hydroxyl group of flavonol
[38]. Therefore, CsGT45 was presumed to encode a flavo-
noid GTase in C. sativus stigmas and was subjected to fur-
ther analyses.

Biochemical characterization
To identify the function of CsGT45, the full-length open
reading frame was cloned into the expression vector
pGEX-5T-3 for heterologous protein expression in E. coli.
The recombinant protein was affinity purified on a glu-
tathion sepharose column that binds the protein's N-ter-
minal GST-tag (Figure 4A). Due to its homology with
other flavonoid glycosyltransferases, CsGT45 was
expected to glucosylate flavonoids. Activity tests were per-
formed with UDP-Glucose and the flavonols quercetin
and kaempferol (Figure 4B). CsGT45 forms monogluco-
sides on the 7- hydroxyl group of kaempferol (Figure 4C
and 4E), whereas over quercetin forms monoglucosides
on the 7-, 3'-, and 4'-hydroxyl groups of quercetin (Figure
4D and 4F). Glucosylation positions of the kaempferol
and quercetin reaction products were assigned based on
the hypsochromic shift data [50], comparison with pub-
lished data [31,47,51] and when available, using authen-
tic reference compounds. Flavonols have two absorption
maxima: Band I (350–380) and Band II (240–280) corre-
sponding to the B- and A-ring, respectively. Conjugation
of 3-, 5-, or 4'-hydroxyl groups causes a Band I hypsochro-
mic shift, which is larger for a 3-substitution (12–17 nm)
than a 4'-conjugation (3–5 nm). The maximum absorb-
ances of kaempferol were 266 and 368, and those of the
kaempferol reaction product were 268 and 368 nm. The
lack of a hypsochromic shift between substrate and reac-
tion product strongly suggests that glycosylation occurred
at the hydroxyl group of C-7, which was confirmed by
comparison with an authentic reference standard (Figure
4C). For quercetin (256, 372) only the product P1 (256,
372) did not show a hypsochromic shift (Figure 4D) sug-
gesting conjugation at the 7-hydroxyl group. P2 (254,
368) showed a Band I hypsochromic shift of 4 nm sug-
gesting conjugation at the 4'-hydroxyl group, which was
confirmed by comparison with an authentic reference
standard (Figure 4D). The product P3 (252, 370) was ten-
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Amino acids sequence alignment of CsGT45 against MtUGT71G1 and structures comparisonFigure 2
Amino acids sequence alignment of CsGT45 against MtUGT71G1 and structures comparison. (A) The alignment 
was performed guided by conservation of secondary structure, predicted for CsGT45 (B9UYP6) and observed from the solved 
crystal structure of MtUGT71G1 (Q5IFH7). α-helices are highlighted in blue and β-strands in pink. Structurally conserved 
regions (SCRs) are highlighted by dots above the alignment. Loops are numbered and named above the alignment. The amino 
acids residues within the PSPG motif that interact in MtUGT71G1 with the sugar donor are marked with starts. (B) Ribbon dia-
grams showing the conserved secondary and tertiary structure of MtUGT71G1 (right) used as template for modelling of 
CsGT45 and the constructed model (left).
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tatively assigned to quercetin 3'-O-glucoside based on
comparison of related flavonoid product elution profiles
[31,47], and by the lack of coincidence with the quercetin
3-O-glucoside standard regarding spectral data and elu-
tion time (Fig 4D). When longer incubation times (60
min) and higher substrate concentration (100 mM) of
kaempferol or quercetin were used the formation of one
diglucoside was observed for each flavonoid (data not
shown). Other compounds, i.e. trans-cinnamic acid,
sinapic acid, crocin, IAA and abscisic acid were assayed,
but no activity was detected with any of these substrates.
The results obtained suggest that CsGT45 acts on fla-
vonols in vivo. The kinetic parameters for the individual
glucosides formed were determined at variable concentra-
tions of quercetin and kaempferol. The Kcat and Km values
are described in Table 1. The Vmax/Km ratios clearly dem-
onstrate that CsGT45 exhibits the highest specificity
towards 7-OH of kaempferol (100%), followed by the 7-

OH and 4'-OH of quercetin (20.5 and 9.1%, respectively),
and low affinity toward the 3'-OH (3.1%).

The kinetic constants for UDP-glucose were also calcu-
lated. Different concentrations of UDP-glucose were
assayed keeping the level of kaempferol constant. UDP-
glucose showed a Km of 0.6 mM and a Vmax of 2.9 nkat/mg,
thus suggesting that glucose is a good substrate for
CsGT45.

Spatial and developmental expression
The spatial and temporal expression pattern of CsGT45
was studied by RT-PCR throughout stigma development.
Analyses were performed with RNA isolated from differ-
ent stages of stigma development, i.e. flowers containing
yellow, orange and red stigmas, which are characterized
by the presence of immature anthers, and small tepals that
do not show the characteristic purple coloration of C. sati-

Unrooted phylogenetic tree of the GTases based on amino acid sequence similarityFigure 3 (see previous page)
Unrooted phylogenetic tree of the GTases based on amino acid sequence similarity. GenBank accession numbers 
and sources for the respective protein sequences are: CsGT45 (FJ194947) from Crocus sativus; flavonoid 3-O-glucosyltrans-
ferases from Arabidopsis thaliana (AAD17392), AtUGT73B4 and (At5G17050), At GT; Zea mays (X13502), ZmF3GT; from Vitis 
vinifera (AAB81682), VvF3GT; from Fragaria × ananassa (BAA12737), GtF3GT; from Dianthus caryophyllus (BAD52005), 
DicGT3 and (BAD52003), DicGT1; At3RhaT, flavonol 3-O-rhamnosyltransferase from Arabidopsis thaliana (At1g30530); 
At7RhaT, flavonol 7-O-rhamnosyltransferase from Arabidopsis thaliana (NP_563756); flavonoid 7-O-glucosyltransferases from 
Scutellaria baicalensis (BAA83484), ScbF7GT; Pyrus communis (AAY27090), PcF7GT; from Nicotiana tabacum (BAB88935), 
NtF7GT from Arabidopsis thaliana (AAR01231), AtF7GT; NtSalGT, salicylic acid glucosyltransferase from Nicotiana tabacum 
(AAF61647); AtUGT73B3, pathogen-responsive glucosyltransferase from Arabidopsis thaliana (AAD17393); DicGT4, chal-
cononaringenin 2'-O-glucosyltransferase (BAD52006) from Dianthus caryophyllus; DbBet5GT, betanidin-5-O-glucosyltransferase 
from Dorotheanthus bellidiformis (CAB56231); UGT74F1, UGT74F2, and UGT73B1, flavonoid glucosyltransferases from Arabi-
dopsis thaliana (AAB64022.1), (AAB64024.1) and (At4g34138); Letwi1, wound-inducible glucosyltransferase from Solanum lycop-
ersicum (CAA59450); NtIS5a, immediate-early salicylate-induced glucosyltransferase from Nicotiana tabacum (AAB36653); 
FaGT7, multi-substrate flavonol-O-glucosyltransferase (ABB92749); AtF3GTb, putative flavonol 3-O-glucosyltransferases from 
Arabidopsis thaliana (NP_180535.1), AtF3GTc and (NP_180534.1), from Petunia hybrida (AAD55985), PhF3GT; from Gentiana 
triflora (BAA12737), GtF3GT; from Dianthus caryophyllus (BAD52004), DicF3GT; DbBET6GT, betanidin 6-O-glucosyltransferase 
from Dorotheanthus bellidiformis (AAL57240); UGT71B6, glucosyltransferase from Arabidopsis thaliana (AB025634); FaGT3 and 
FaGT7, flavonol-O-glucosyltransferases from Fragaria × ananassa (AAU09444) and (ABB92748); NtGT1a and NtGT1b, broad 
substrate specificity glucosyltransferases from Nicotiana tabacum (BAB60720) and (BAB60721); AtA5GT, glucosyltransferase 
from Arabidopsis thaliana (AAM91686); anthocyanin 5-O-glucosyltransferases from Torenia hybrida (BAC54093), ThA5GT; from 
Verbena hybrida (BAA36423), VhA5GT; from Perilla frutescens (BAA36421), PfA5GT; from Petunia hybrida (BAA89009), PhA5Gt; 
UGT71F1, regioselective 3,7 flavonoid glucosyltransferase from Beta vulgaris (AY526081); UGT73A4, regioselective 4',7 flavo-
noid glucosyltransferases from Beta vulgaris (AY526080); UGT71G1, triterpene glucosyltransferase from Medicago truncatula 
(AAW56092). The horizontal scale shows the number of differences per 100 residues derived from the ClustalW alignment.

Table 1: The kinetic parameters Km and Vmax and the relation (Vmax/Km) of CsGT45, toward kaempferol and quercetin with a fixed 
UDPG concentration.

substrate Km (μM) Vmax (pkat/mg protein) Vmax/Km

Kaempferol 7-OH 15.6 ± 1.2 366 ± 19.8 23.46
Quercetin 4'-OH 86.95 ± 8.4 186 ± 12.4 2.14
Quercetin 3'-OH 30.3 ± 3.6 22.9 ± 2.6 0.75
Quercetin 7-OH 21.50 ± 2.3 104 ± 5.46 4.83

Enzyme assays were carried out using purified CsGT45 (7 μg), substrate (20 to 100 μM) and UDP-glucose (2.5 mM). Reactions mixtures were 
incubated at 30°C, and performed in triplicate.
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The glutathione S-transferase-CsGT45 fusion protein shows activity toward flavonoidsFigure 4
The glutathione S-transferase-CsGT45 fusion protein shows activity toward flavonoids. (A) The recombinant 
CsGT45 was analyzed using 10% (w/v) SDS-PAGE, and visualized with Coomassie staining. (B) Chemical structures of the flavo-
noids kaempferol and quercetin. (C) HPLC analysis of CsGT45 activity toward kaempferol. (D) HPLC analysis of CsGT45 
activity toward quercetin. The obtained products, P1, P2, and P3 are denoted by arrows. (E) Positive ion mass spectrum of 
kaempferol 7-O-glucoside acquired during the HPLC-ESI-MS analysis. (F) Representative positive ion mass spectrum obtained 
for quercetin 7-O-glucoside, quercetin 4'-O-glucoside and 3'-O-glucoside acquired during the HPLC-ESI-MS analysis of each 
reaction product. Abbreviations: St, flavonol standard; -E, minus enzyme; and +E plus enzyme.
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vus. These immature flowers are contained inside perianth
tubes that elongate as flowers develop inside. Only when
flowers are completely developed do they emerge from
the perianth tubes and open when anthesis (da) occurs a
few days later. Upon emerging, all flowers exhibited pur-
ple tepals and scarlet stigmas (-2da to +3da). The RT-PCR
analysis revealed that CsGT45 expression is developmen-
tally regulated. The CsGT45 transcript level in the yellow
and orange stages was low, but increased from the red
stage, and reached a peak at anthesis (Figure 5A). The
expression of the CsGT45 was also examined in different
tissues. The expression in flower tissues showed that
CsGT45 transcripts were present in pollen, tepals and
styles at low levels whereas expression in corms was prac-
tically undetectable under these conditions (Figure 5A).

The high expression levels of CsGT45 transcripts in the
stigma tissue and its in vitro activity suggested that CsGT45
was associated with the observed kaempferol glucosyla-
tion in the stigma tissue. To investigate further such corre-
lation the expression levels of CsGT45 were investigated in
the stigma tissue of Crocus species in which kaempferol
with substitutions in the 7-OH position were not detected
(Figure 5B–D). These three Crocus species showed reduced
flavonoid levels in comparison with C. sativus. In C. niveus
we were unable could to detect kaempferol glucosides, in
C. speciosus and C. cancellatus (Figure 5B and 5D) a kaemp-
ferol treahexoside was identified at position 10.35. This
compound, substituted at position 3, has been also iden-
tified in C. sativus as a minor flavonoid [15]. The expres-
sion of CsGT45 was not detected in the stigma tissue of C.
niveus, C. speciosus and C. cancellatus (Figure 5F), while was
present in the stigma tissue of C. sativus and C. cartwright-
ianus that accumulate kaempferol with substitutions in
the 7-OH position (Figure 1A and Figure 4E). By contrast,
the expression of UGTCs3, a GTase previously identified
in C. sativus stigmas [52] was detected in all the species
(Figure 5F). The absence of CsGT45 expression in the
stigma tissue of of C. niveus, C. speciosus and C. cancellatus
suggests a role of CsGT45 in the accumulation of specific
kaempferol glucosides in the stigma of Crocus species.

Unaltered Expression of CsGT45 under stress conditions
Several studies have shown that GTases are induced by a
variety of stresses, including: salicylic acid [49,53], auxin
[54], methyl jasmonate [55] and wounding [56]. To deter-
mine whether the gene expression levels of CsGT45 were
influenced by exogenous hormones or by other stimuli
such as drought stress and wounding, total RNA was iso-
lated from treated leaves and used as template in the RT-
PCR reactions. The expression of the gene was not altered
24 hours after the treatments (Figure 6). Shorter times
were also tested with the same results (data not shown).
Exogenous JA, ABA, GA3, or 2,4D did not significantly
promote the expression of the genes (Figure 6). Drought,

wounding and SA failed to affect the expression levels of
CsGT45 (Figure 6).

Discussion
In general, GTases that use secondary metabolites as sub-
strates are minor constituents in plant cells [21]. Although
many of these enzymes have been isolated from several
plant species and assayed in vitro, in many cases their roles
in the secondary metabolism of these plants are still
unknown.

The saffron CsGT45 protein belongs to glucosyltrans-
ferase family 1, as do most of the UGTs involved in plant
secondary metabolism. This protein possessed a PSPG
box with a conserved sequence of 45 amino acid residues
and showed specificity towards flavonoid aglycones. This
protein has no signal sequence, nor any clear membrane-
spanning or targeting signals, as the plant glycosyltrans-
ferases identified to date [57]. This suggests that these
enzymes function in the cytosol, although within that
compartment the proteins may associate as peripheral
components of the endomembrane system, as previously
suggested [58]. Sequence analysis showed CsGT45 as
being most closely related to the Pyrus communis flavonoid
7-O-glucosyltransferase and belonging to the same clade
of the phylogenetic tree, in which other glucosyltrans-
ferases of flavonoids attach sugars without high regiospe-
cificity. The presence in this clade of A5GT enzymes
suggest a common ancestral gene for all these GTases,
where the A5GTs enzymes showed a strict substrate specif-
icity [25,27,59], and seem to have evolved to a more spe-
cific function.

Plant secondary product glycosyltransferases have been
reported to exhibit a rather strict regioselectivity towards
the position of the sugar attachment [21]. The most com-
mon site on the flavonol molecule for glycosyl addition is
carbon 3 of the C-ring, although other sites, especially the
hydroxyl at carbon 7, are often substitutes [60]. However,
in proportion, there are few studies on the enzyme activity
and genes implicated in the catalysis of the 7-O-glucoside
reaction. Many plant GTases recognize quercetin as an
acceptor when assayed in vitro, and some others can gluc-
osylate multiple hydroxyl groups of the aglycone and even
form diglucosides in some cases [28-31,36,41,56]. In Ara-
bidopsis, from ninety one GTases analyzed for their activity
toward quercetin, 29 enzymes showed catalytic activity,
and four recognize three sites [31]. Analysing the activity
of some enzymes related to CsGT45, the Arabidopsis
enzyme UGT74F1, glycosylated the 3'-OH, 4'-OH and 7-
OH positions of quercetin [47]. We have observed similar
activity for CsGT45 toward quercetin, but with a prefer-
ence for the 7-OH position (Km 21.5 μM). However,
CsGT45 showed high regioselectivity toward kaempferol,
and the same was reported for NtGT7 [29], present in the
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Expression analysis of CsGT45 in plant tissuesFigure 5
Expression analysis of CsGT45 in plant tissues. (A) The level of CsGT45 was analysed in the stigma tissue of C. sativus in 
different developmental stages: yellow (y), orange (o), red (r), two days before anthesis (-2da), anthesis (da), one day after 
anthesis (+1da), and three days after anthesis (+3da), and in closed and open stamen (stc and sto), corm, tepals (pt) and style. 
Equal amounts of total RNA were used in each reaction. The levels of the constitutively expressed RPS18 coding gene were 
assayed as controls. (B) HPLC-ESI-MS chromatograms of MeOH extract of C. cancellatus stigmas at anthesis. (C) HPLC-ESI-MS 
chromatograms of MeOH extract of C. niveus at anthesis. (D) HPLC-ESI-MS chromatograms of MeOH extract of C. speciosus 
stigmas at anthesis. (E) HPLC-ESI-MS chromatograms of MeOH extract of C. cartwrightianus stigmas at anthesis. The peaks 1, 
kaempferol 3-O-sophoroside-7-O-glucopyranoside; 2, kaempferol 3,7,4'-triglucoside; and 3, kaempferol 7-O-sophorosid. The 
compound 4-methylumbelliferyl β-D-glucuronide was used as internal standard (IS). (F) Transcript levels of CsGT45 in the 
stigma tissue of different Crocus species: 1, C.niveus; 2, C. cancellatus; 3, C. speciosus; 4, C. sativus and 5, C. cartwrightianus. To 
ensure the detection of the transcripts, 40 PCR cycles were carried out.
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CsGT45 cluster. This feature is characteristic for several 7-
O-glucosyltransferases present in cluster III and IV and
distantly related to CsGT45 [28,37,39,40,56]. The Km
value of kaempferol with CsGT45 is 15.6 μM, indicating
its sufficient affinity to the substrate. These Km values were
the same as other plant GTases reported [29,56], suggest-
ing that these substrates are reasonable acceptors for
CsGT45. Moreover, the CsGT45 enzyme did not react on
other OHs of kaempferol, indicating that in this case the
regiospecificity of the glucosylation is strictly determined.
It has recently been reported that the hydroxylation pat-
tern in ring B of the acceptor molecule can influence prod-
uct specificity. UGT73A4 from Beta vulgaris accepts the
positions 4' and 7 of flavonols. If a hydroxy group is
present at position 3' (e.g. quercetin), 4'-O-glucosides are
preferentially formed. If the hydroxy group is missing (e.g.
kaempferol), the enzyme produced 7-O-glucosides [36].
Perhaps the differences observed for CsGT45 towards
quercetin or kaempferol are due to this fact.

Because quercetin and kaempferol are substrates for
CsGT45 in vitro, it is reasonable to propose that this
enzyme is involved in the glucosylation of phenolics in
the stigma tissue. Analysis of the flavonoid fraction from
saffron revealed the unique presence of kaempferol [15].
The gene expression pattern of CsGT45 correlates with
high levels of kaempferol glucosides in the stigma tissue.
Interestingly the three main flavonoid glycosides detected
in the stigma at anthesis were kaempferol 3-O-sophoro-
side-7-O-glucopyranoside, kaempferol 3,7,4'-triglucoside
and kaempferol 7-O-sophoroside. CsGT45 was found to
be active on the C-7 position of kaempferol, with the pro-
duction of a monoglucoside and probably a diglucoside
under the experimental conditions tested. Since kaemp-
ferol-7-O-sophoroside was the main flavonoid in the
stigma tissue, we can speculate whether CsGT45 uses
UDP-sophoroside as a sugar donor. However, UDP-Glc
does appear to be a good donor and the sugar donor pref-
erence of a specific GT is often very narrow, showing little

or no activity with alternative sugars [22]. By using a
molecular modelling approach, we observed that CsGT45
and MtUGT71G1 share higher structural similarity, indic-
ative of similar binding modes with sugar donors. In addi-
tion, the residues that interact with the UDP-Glc molecule
were conserved in CsGT45. To our knowledge, no GTase
has been shown to use UDP-sophoroside as a sugar
donor. Furthermore, the bright blue or red flowers in the
Japanese morning glory (Ipomoea nil) contain anthocya-
nidin 3-O-sophoroside derivatives, and the UDP-glu-
cose:anthocyanidin 3-O-glucoside-2"-O-
glucosyltransferase (3GGT) enzyme mediates the gluco-
sylation of anthocyanidin 3-O-glucosides to yield
anthocyanidin 3-O-sophorosides, whereas another gluco-
syltransferase catalyzes the addition of a glucose molecule
to the 3 position [61]. Thus, most probably CsGT45 is
responsible for the production of Kaempferol 7-O-gluco-
side and another GGT could be responsible for the gener-
ation of kaempferol 7-O-sophoroside.

The absence of CsGT45 activity toward the C-3 or the C-4'
positions of kaempferol indicates that other glucosyl-
transferases are implicated in the flavonoid glucosylation
in C. sativus stigma. In fact, enzymes that catalyzed the
transfer of glycosyl groups to the flavonol C-3 position are
included in a different cluster than CsGT45.

The increase of flavonoids in the stigma tissue could be
associated with the role of flavonoids in protection
against abiotic and biotic stresses [62]. The ultra-violet
(UV)-absorbing characteristics of flavonoids have long
been considered to be evidence for the role of flavonoids
in UV protection. The mechanism of protection by flavo-
noids could be suppression of free radicals formed upon
exposure to UV light [63]. Flavonoids are often present in
the epidermal cell layers of leaves and in tissues that are
susceptible to UV light, such as pollen and the apical mer-
istem [64]. In C. sativus the flavonoid levels are specially
high in scarlet stigmas (-2da to +3da) that are character-
ized for being exposed to sunlight, whereas the stigmas for
earlier developmental stages are under the soil and
enclosed inside the perianth tubes, and therefore pro-
tected from the light.

Another well-documented property of flavonoids is their
antimicrobial effect [65,66]. High levels of kaempferol are
even reported to inhibit the growth of viruses [67]. The
mechanism of kaempferol toxicity is not known, but
kaempferol can promote radical formation that might
interfere with vital functions of pathogens [68]. The
stigma appears to offer a hostile environment to bacteria
and fungi since growth of these organisms on the stigma
is rare [69]. The presence of flavonoids in the stigma tissue
could be associated with the protection of stigmas from
pathogen attack.

Transcript levels of CsGT45 in response to different treat-mentsFigure 6
Transcript levels of CsGT45 in response to different 
treatments. Untreated control leaves (Ct), treated leaves 
with abscisic acid (ABA), calcium chloride (CaCl2), giberellic 
acid (GA3), potassium salicylate (SA), 2,4-dichlorofenoxiace-
tic acid (2,4D), methyl jasmonate (MetJa) and wounded 
leaves of C. sativus were collected 24 hr after treatment and 
total RNA extracted for CsGT45 expression analysis.
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In addition to these possible functions of flavonoids in
the stigma of C. sativus, flavonoids are also involved in the
control of polar auxin transport [5,70,71], which deter-
mines plant organ morphology, such as leaf and flower
shape [72]. In flowers, stigma and style growth is due to
cell elongation, but not to cell division. The transition
from the red stage of stigma development in C. sativus to
the fully developed stigma (-2da to +3da) is accompanied
by a rapid increase in size. When the stigmas of C. sativus
are fully developed they are slender at the base and wider
at the apex where they fold to give a trumpet-like structure
[73]. The typical morphology of C. sativus stigmas could
be the result of different auxin distribution controlled by
flavonoid signals.

Expression analysis showed low levels of CsGT45 in
tepals. The tepals of C. sativus are characterized by high
levels of anthocyanins, up to 90% of total flavonoids [17].
Nevertheless, a total of nine quercetin and kaempferol
glycosides have been identified in minor amounts in C.
sativus tepals, and a flavonoid-7-O-glucosyltransferase was
predicted to be responsible for the formation of two of
them [17].

Conclusion
In this study, we have determined the role of CsGT45 in
the transfer of glucose on 7-OH of flavonoids, together
with its implication in the generation of C. sativus flavo-
noids in the stigma tissue. C. sativus stigmas are mainly
used for culinary purposes, and historically have been
employed in many medicinal drugs against numerous
health conditions [74,75]. Flavonoids have long been
known to be important nutraceutical components in our
diet, due to their potent anti-oxidant properties [76], with
glycosylation as a major mechanism influencing their
activity. Therefore, the characterization of glucosyltrans-
ferases implicated in the formation of these compounds
in C. sativus will help to understand the biosynthesis and
regulation of these glucosides and their implications in
the nutraceutical properties of saffron.

Methods
Chemicals and Plant materials
Chemicals and reagents were obtained from Sigma-
Aldrich unless otherwise stated. Plant tissues and stigmas
from C. sativus grown under field conditions in Tarazona
de La Mancha, Spain, were used throughout the experi-
ments. C. cancellatus, C. speciosus, C. niveus and C. cart-
wrightianus were obtained from Dr. U. Jacobsen from the
Agricultural University of Denmark. Stigmas were col-
lected at the developmental stages previously described
[77], and defined as follows: yellow stigma, closed bud
inside the perianth tubes (around 0.3 cm in length);
orange stigma, closed bud inside the perianth tubes
(around 0.4 cm in length); red stigma, closed bud inside

the perianth tubes (0.8 cm in length); -2da, two days
before anthesis, dark red stigma in closed bud outside the
perianth tubes (3 cm in length); da, day of anthesis, dark
red stigma (3 cm in length); +1da, one day after anthesis,
dark red stigma and +3da, three days after anthesis, dark
red stigma. Tepals, style and stamens were collected from
flowers at the time of anthesis and together with corms
were frozen in liquid nitrogen and stored at -80°C until
required. To determine stress-induced gene expression in
leaves, whole leaves were collected from plants growing in
fields, cut into 1 cm-long pieces and transferred to 24-
well-plates containing 1 ml water supplemented with
abscisic acid (ABA) (100 μM), 2,4-dichlorofenoxiacetic
acid (2,4D) (100 μM), Giberellic acid (GA3) (100 μM),
0.2 μl/ml Methyl Jasmonate (MetJa), 200 mM CaCl2, 1
mM potassium salicylate (SA), pH 6.5, and distilled water
that was used as a control. All the samples were incubated
under normal conditions (16 h light/8 h dark cycles at
22°C). Wounding was performed on leaves with a sterile
needle and samples were then frozen immediately in liq-
uid nitrogen and were stored at -80°C until used.

Cloning of C. sativus GTase cDNA
As a first step in identifying GTases genes expressed in saf-
fron stigmas, total RNA and mRNA were isolated from
developed saffron stigmas by using Ambion PolyAtrack
and following manufacturer's protocols (Ambion Inc.,
Austin, TX, USA). First-strand cDNAs were synthesized by
reverse transcription (RT) from 2 μg of total RNA using an
18-base pair oligo dT primer and a first-strand cDNA syn-
thesis kit (Amersham Biosciences) according to manufac-
turer's instructions. These cDNAs were used as templates
for PCR using degenerate primers designed based on the
conserved regions of the plants GTases [78]. The primers
used were: glut-f (5'-TSNGTNGCNTAYGTNTSNTTYGG-
3') and glut-r (5'-TTCCANCCRCARTGNGTNACRAA-3').
Anchored PCR with gene-specific primers were used to
analyse and identify the 5' and 3' ends of the glucosyl-
transferases. For these, 1 μg of poly(A)+ RNA from stigmas
was used to synthesize the 5' and 3' ends of the first-strand
cDNA using Superscript II reverse transcriptase, using the
primers 5'-CDS primer and SMARTII-A oligo for the 5'-
RACE reaction and the 3'-CDS primer A for the 3'-RACE
reaction supplied in the SMART™ RACE cDNA Amplifica-
tion kit (Clontech-Takara). Following dilution, the first-
strand reaction product was subjected to PCR for amplifi-
cation. We used the gene-specific primers CsGT45-f1 (5'-
AGCTGTCGATAAGATGGATATC-3'), and CsGT45-f2 (5'-
GAGTGTCTTATCGCATCCT-3') as forward primers, and
CsGT45-r1 (5'-GAAGCCAAGCTCTCCATCGTCGA-3')
and CsGT45-r2 (5'-CTCCAGCTGGCCGAATGTGTTC-3')
as reverse primers in combination with the universal
primer mix from the SMART RACE kit as the reverse/for-
ward primer with the following cycling program: one
cycle at 94°C for 3 min, 10 cycles at 94°C for 20 s, 66°C–
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0.2°C/cycle for 20 s, and 72°C for 2 min, 30 cycles at
94°C for 20 s, 64°C for 20 s and 72°C for 2 min, and a
final extension at 72°C for 5 min. The amplified PCR
products were analysed by electrophoresis in 1% agarose
gel. The PCR products were then cloned into pGEM-T
(Promega Corporation, Madison, WI, USA). The ligated
DNA was transformed into E. coli strain JM109. The clones
(20 colonies) were picked individually and amplified in 3
ml of LB medium at 37°C overnight. The plasmid DNA
from each clone was extracted using a DNA plasmid Min-
iprep kit (Promega Corporation, Madison, WI, USA) and
then analysed by EcoRI restriction digestion. One clone of
each size was sent to t Macrogen Inc. (Seoul, South Korea)
for sequencing using the BigDyeTM terminator kit and
run on ABI 3730XL (Perkin Elmer) with either the T7 or
Sp6 sequencing primers. Computer-aided sequence simi-
larity searches were made with the BLAST suite of pro-
grams at the National Centre for Biotechnology
Information (NCBI; http://www.ncbi.nlm.nih.gov) Motif
searches were made using PROSITE http://
expasy.hcuge.ch/sprot/prosite.html, TMPRED http://
www.isrec.isb-sib.ch/sofware/sofware.html, Signal IP
http://www.cbs.dtu.dk/services/SignalP and PSORT II
http://psort.nibb.ac.jp. Once the 5' and 3' sequences were
determined, the full-length clone CsGT45 was amplified
from the cDNA and genomic DNA with the following
primer sequences: the forward primer, 5'-CAGATGGAC-
CAACATCAGCCT-3'; and the reverse primer 5'-ATTATCT-
CAACACCTGTGTGG-3'.

Heterologous expression
The full-length open reading frame of CsGT45 cDNA was
amplified by PCR using Pfu polymerase (Promega Corpo-
ration, Madison, WI, USA). The oligonucleotide
sequences for CsGT45 cloning were as follows: the for-
ward primer 5'-ACCAACATCAGCCTAACATT-3', and the
reverse primer 5'-TGCGGCCGCTCCTCCTTTAAGAG-
GGTGA-3'. Using these primers, the generated product
has a NotI site at the 3' end (underlined in the reverse
primer). The PCR product was cloned directionally (SmaI-
NotI) into bacterial GST expression vector pGEX-5T-3
(Amersham Biosciences/GE Healthcare) to create in-
frame fusions at the 5' terminus with the GST coding
sequence. The construct was sequenced to confirm that
the gene was in the correct reading frame. After transfor-
mation into BL21(DE3) E. coli cells, colonies were
selected on LB containing ampicillin (AMP) plates. Indi-
vidual colonies were grown overnight in 5 ml of LB-AMP
medium at 20°C, and 2.5 ml of the culture was used to
inoculate 500 ml of LB-AMP fresh medium. Cells were
grown at 20°C until an A600 of 0.6 was reached, after
which the culture was induced with 0.5 mM IPTG and
allowed to grow for 16 h at 20°C. The cells were harvested
by centrifugation at 5,000 g for 10 min and resuspended
in 20 ml PBS. Resuspended cells were sonicated with a

microtip probe in ice until the viscosity disappeared. After
sonication, the samples were centrifuged at 10,000 g for
25 min. The supernatant and pellet were tested by PAGE
(polyacrylamide gel electrophoresis)/SDS for solubility of
the fusion protein by coomasie stain. The soluble proteins
were applied to a glutathione Sepharose column for puri-
fication following manufacturer instructions (Amersham
Biosciences/GE Healthcare). Protein concentration was
determined according to the Bradford method [79], using
serum albumin as standard.

Enzyme assays and analysis of reaction products
The affinity-purified enzyme was used to determine sub-
strate specificity and enzymatic parameters. In a final
assay volume of 200 μl, the reaction conditions were 50
mM Tris-HCl, pH 7.5, 14 mM 2-mercaptoethanol, 2.5
mM UDP-glucose, the recombinant enzyme (7.0 μg) and
the corresponding substrates: 100 μM Quercetin, 100 μM
kaempferol, 100 μM cyanidin, 1 mM trans-cinnamic acid,
1 mM sinapic acid, 1 mM indole acetic acid, 1 mM abscisic
acid and 1 μM crocetin encapsulated in maltosyl-β-cyclo-
dextrin as described [80]. All the glucosyltranferase activ-
ity assays were carried out at 30°C for 30 minutes. For the
determination of the Km values of substrates, the concen-
trations of kaempferol and quercetin were varied from 20
to 100 μM, at a fixed UDP-glucose concentration of 2.5
mM and 7.0 μg of the purified enzyme. These enzymatic
reactions were performed at 30°C for 10, 15 and 20 min-
utes for each substrate concentration. The reactions were
terminated, and the proteins precipitated, by the addition
of 20 μl of trichloroacetic acid (240 mg/ml). Subse-
quently, samples were centrifuged at 15,000 g for 5 min to
collect the supernatant, and aliquots were analysed by
reverse-phase HPLC as previously described [81] using a
C18 Ascentis, 25 × 4.6, particle size 5 um column
(Supelco, Sigma-Aldrich). Km values were determined
from Lineweaver-Burk plots of initial rate data. The assays
were also analysed by HPLC DAD detector and by electro-
spray ionization (ESI)-mass spectrometry (MS) for the for-
mation of glycosylated products as previously described
[81] using a C18 Ascentis, 25 × 4.6, particle size 3 um col-
umn (Supelco, Sigma-Aldrich). A standard curve for peak
area of quercetin and kaempferol was produced by inject-
ing known amounts of these flavonoids. For individual
quercetin glucosides, standard curves were constructed
indirectly by calculating the amount of quercetin or
kaempferol released after quantitative hydrolysis of the
glucoside with β-glucosidase from almonds (60 min, pH
6, 30°C). The assignment of a glucosylation position to
quercetin and kaempferol was determined indirectly fol-
lowing the method by Mabry et al. [50] for the identifica-
tion of flavonoids, using published data [31,47,51] and
by comparison with authentic flavonol standards: kaemp-
ferol 7-O-glucoside and quercetin 4'-O-glucoside (Trans-
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MIT Flavonoidforschung, DE) and quercetin 3-O-
glucoside (Sigma-Aldrich).

Flavonoid analysis in stigma tissue
Stigmas at the time of anthesis were ground in liquid
nitrogen. The fine powder obtained was extracted with
methanol (500 μl), centrifuged and the supernatant ana-
lysed by LC-ESI-MS using a C18 Ascentis column 15 × 2.1,
particle size 3 um (Supelco, Sigma-Aldrich) and following
the method previously described [81]. For flavonoid anal-
ysis from stigmas at different developmental stages (yel-
low to +3da), three stigmas of each stage were collected
and freeze-dried. The powder obtained from one stigma
was extracted with 500 μl of methanol containing 0.2 mg/
ml 4-methylumbelliferyl β-D-glucuronide as an internal
standard. The samples were centrifuged (5,000 g, 10 min),
and the supernatant evaporated and treated as described
[15]. Samples in triplicate were analysed by HPLC as
described [81] using a C18 Ascentis, 25 × 4.6, particle size
5 um column (Supelco, Sigma-Aldrich).

The nuclear magnetic resonance (NMR) spectra were
recorded on Brucker DRX 500 NMR instrument operating
at 500 MHz for 1H and at 125 MHz for 13C, respectively.
Chemical shifts were recorded as described [15].

Analysis of mRNA levels in different tissues and stress 
conditions
Reverse Transcription-PCR (RT-PCR) was used to deter-
mine the relative levels of CsGT45 and UGTCs3 messages.
Total RNA was isolated from control and treated leaves,
tepals, stamens, stigmas, styles and corms using the Trizol
reagent (Gibco-BRL). The RNA was resuspended in 100 μl
of RNase-free water and treated with RQ1 RNase-free
DNase (Promega Corporation, Madison, WI, USA). The
DNase was heat inactivated before RT-PCR. The RNA was
quantified with a spectrophotometer and stored at -80°C.
Various initial concentrations of mRNA, ranging over 10
fold difference, were used to demonstrate the differential
accumulation of the mRNA in the tissues analysed. First-
strand cDNAs were synthesized by RT from 2 μg of total
RNA using a first-strand cDNA synthesis kit (Pharmacia)
and random primers. Conditions for semi-quantitative
RT-PCR were as follows: 65°C for 5 min, followed by
37°C for 1 h, followed by 75°C for 5 min. The cDNAs
obtained were used as templates for PCR using the
CsGT45 gene-specific primers: 5'-GATGGGGAGAGAGGT-
GTTGA-3' and 5'-TCCTCGCAATGCTGTCTATG-3', and
for the amplification of gene coding for the 18S ribosomal
RNA (RPS18) the primers used were: 5'-AGTTTGAG-
GCAATAACAGGTCT-3' and 5'-GATGAAATTTCCCAA-
GATTACC-3'. UGTCs3 was amplified using the primers
previously described [52]. Thermal cycling parameters
were 2 min at 95°C, 30 × (20 s at 95°C, 20 s at 60°C, and
30 s at 72°C). The PCR products were separated in a 2%

agarose gel. The gels were photographed with the IP-010-
Sd photo-documentation system (Vilber Lourmat). The
PhotoCaptMw programme was used to quantify the
intensity of the ethidium bromide stained DNA bands
from the positive images of the gel. These experiments
were repeated three times and averaged for each sample.
To correct the initial mRNA levels, each intensity score
was normalized to the intensity for the RPS18 gene ampli-
fication.

List of abbreviations
C4H: cinnamate-4-hysroxylase; GTases: glycosyltrans-
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reverse transcription-PCR; UDP: uridine diphosphate glu-
cose; UGT: UDP-glycosyltransferase.
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