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Background

Viroids, the smallest known pathogenic agents of plants,
are distinguished from plant viruses by their lack of a pro-
tein coat and absence of protein coding capacity [1]. Cov-

Abstract

Background: The serine-threonine protein kinase gene, designated pkv (protein kinase- viroid
induced) was previously found to be transcriptionally activated in tomato plants infected with the
plant pathogen Potato spindle tuber viroid (PSTVd). These plants exhibited symptoms of stunting, and
abnormal development of leaf, root, and vascular tissues. The encoded protein, PKV, is a novel
member of the AGC Vllla group of signal-transducing protein kinases; however, the role of PKV in
plant development is unknown. In this communication, we report the phenotypic results of over
expression and silencing of pkv in transgenic tobacco.

Results: Over expression of pkv in Nicotiana tabacum cv. Xanthi (tobacco) resulted in stunting,
reduced root formation, and delay in flowering, phenotypes similar to symptoms of PSTVd infection
of tomato. In addition, homozygous T2 tobacco plants over expressing PKV were male sterile.
Antisense expression of pkv, on the other hand, resulted in plants that were taller than non-
transformed plants, produced an increased number of flowers, and were fertile. Exogenous
application of GAj; stimulated stem elongation in the stunted, sense-expressing plants. PKV sense
and antisense expression altered transcript levels of GA biosynthetic genes and genes involved in
developmental and signaling pathways, but not genes involved in salicylic acid- or jasmonic acid-
dependent pathways. Our data provide evidence suggesting that PKV plays an important role in a
GA signaling pathway that controls plant height and fertility.

Conclusion: We have found that the over expression of the tomato protein kinase PKV resulted
in stunting, modified vascular tissue development, reduced root formation, and male sterility in
tobacco, and we propose that PKV regulates plant development by functioning in critical signaling
pathways involved in gibberellic acid metabolism.

alently-closed, circular RNA molecules ranging in size
from 239401 nucleotides, viroids replicate and move
from cell to cell and throughout the plant without a
helper virus, but with the aid of host cell components [2].
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Potato spindle tuber viroid (PSTVd) and the pospiviroids
replicate and accumulate in the nucleus [3,4]. PSTVd
causes a serious disease of tomato characterized by stunt-
ing, abnormal development of root and vascular tissues,
leaf epinasty and deformation; the severity of symptoms
ranging from mild to lethal depending on the viroid strain
[5]- Many of the symptoms caused by viroid infection sug-
gest an imbalance in growth hormones. A significant
decrease in endogenous gibberellins (GA; and/or GA,)
has been observed in viroid-infected plants [6].

The molecular basis of symptom formation in viroid-
infected plants is unknown, although the nuclear location
of PSTVd suggests interactions with the host genome and/
or transcription machinery. Viroid infection of tomato
results in increased transcription of defense-related genes
[7-14]. Using macroarray technology, Itaya et al. [15] also
observed induction or suppression of genes encoding pro-
teins involved in stress responses, cell wall structure, chlo-
roplast function, and protein metabolism. Growth
reduction in citrus caused by infection with Citrus exocortis
viroid (CEVd) (a pospiviroid) was correlated with reduced
levels of gibberellin 20-oxidase (GA200x) mRNA [16],
and Qi and Ding [17] reported that LeExp2 expansin gene
expression is down-regulated in viroid-infected tomato
plants, suggesting that stunting results from restricted cell
expansion.

Although gene expression in viroid-infected plants is
altered, little is known of the link between the viroid
infection process and gene activation or suppression and
resulting symptoms. Single or multiple nucleotide substi-
tutions in the pathogenicity region [18-21] or the central
conserved region [17] of PSTVd can dramatically alter
symptoms in infected tomato plants. Surprisingly, consti-
tutive expression a secondary hairpin derived from the
pathogenicity region of the virulent RG1 strain of PSTVd
resulted in viroid symptoms in transformed tomato [22].
RNA-induced silencing of host genes was proposed as the
mechanism of pathogenesis and a 1920 nucleotide
sequence similarity between the pathogenicity region of
PSTVd and a putative transcription factor (GenBank
B1969092) suggested that PSTVd may silence regulatory
genes [22]. Enhanced accumulation of viroid-specific siR-
NAs [23-27], and a bifunctional nuclease and RNase that
may be involved in the regulation of plant development
[25] were found to be associated with viroid infection in
PSTVd-infected tomato plants.

Phosphorylation/dephosphorylation of host proteins
most likely also plays a role in viroid pathogenicity. CEVd
infection of tomato plants was found to alter the general
pattern of leaf protein phosphorylation [28]. PSTVd infec-
tion of tomato induced the phosphorylation of a host-
encoded 68,000 Mr protein immunologically related to
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the mammalian ds-RNA dependent protein kinase (PKR)
[29-31]; however, the plant ortholog of PKR has not been
isolated. PSTVd strains varying in pathogenicity, on the
other hand, resulted in differential activation of the mam-
malian PKR in vitro, suggesting a possible triggering event
in viroid pathogenesis [32].

We previously identified a protein kinase gene that was
transcriptionally-activated in leaves of tomato plants
infected with intermediate and severe strains of PSTVd,
but whose transcripts were barely detectable in mock-
inoculated plants [33]. The gene, pkv (protein kinase
viroid-induced; GenBank Accession no. AF143505)
encodes a dual-specificity 52 kDa serine-threonine pro-
tein kinase (PKV). In addition to protein kinase signature
motifs, PKV contains a putative nuclear localization signal
and a potential transmembrane spanning region (indi-
cated in Figure 1), seven potential internal myristoylation
sites, one N-glycosylation site and one glycosaminoglycan
attachment site (not shown). Although PKV has been
shown to possess phosphorylation activity in vitro [33], it
is not known if the other predicted sequence motifs are
functional.

PKV is a novel member of the AGC VIIla protein kinase
superfamily [33], members of which have significant
homologies to cyclic nucleotide-dependent protein
kinases, however, little is known about the role of AGC
VIlIa kinases in plants. Within subgroup AGC VIIIa, only
PINOID [34] and Adi3 [35] have been genetically charac-
terized, and have been shown to play fundamental roles
in auxin signalling and plant cell death, respectively.

To better understand the biological role of PKV in plant
development, we introduced sense and antisense copies
of the full-length pkv gene into experimental Nicotiana tab-
acum cv. Xanthi tobacco plants by stable transformation.
N. tabacum encodes a homolog of PKV, with 99%
sequence identity to the tomato gene (GenBank
EU196240), which is also transcriptionally activated to a
low level in PSTVd-infected tobacco plants (tobacco is not
a symptomatic host of PSTVd; data not shown). We dem-
onstrate that over expression of PKV in tobacco results in
dwarfing and reduced root formation, similar to symp-
toms of PSTVd infection of tomato plants. Results from
hormone supplement and gene expression studies suggest
that gibberellic acid biosynthetic and/or signalling path-
ways are regulated by PKV.

Results

Molecular analysis of transgenic plants

To determine the role of pkv gene expression in plant
development, a full-length copy of the open reading
frame [33] was cloned in the sense and antisense orienta-
tions into the binary vector, pBI121, where transcription
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Figure |

Schematic diagram showing the key features of PKV. The protein kinase catalytic domain, putative nuclear localization
signal and transmembrane domains, and T-loop extension (in subdomain VII) are indicated by boxes. S;; = location of putative
phosphorylated serine in the extension loop; FEYF, location of the COOH-terminal FEYF PIF motif. (http://predictprotein.org,

[64])

of the inserted gene is under control of the CaMV35S pro-
moter. Several independently transformed lines for each
construct were obtained with similar phenotypes, and
three lines of each construct was selected for further inves-
tigations. Southern blot analysis revealed that plants con-
tained a single insert and segregated with a 3:1 ratio (data
not shown).

Transcript and protein levels of PKV in control and trans-
genic lines were examined by northern and western blot
analyses, respectively (Figure 2). pkv transcripts were read-
ily apparent in sense (XS) plants as opposed to untrans-
formed (X) plants (lane 2 and 1, respectively, Figure 2A).
By contrast, there was evidence of reduced accumulation
and corresponding degradation of the introduced pkv
transcripts in the antisense (XAS) plants (lane 3, Figure
2A), an indication of gene silencing of the tobacco
homolog of PKV and resulting from formation of double-
stranded RNAs of target gene transcripts and the intro-
duced antisense gene transcripts. Western blot analysis of
PKV protein synthesis revealed the presence of a protein
band of approximately 52 kDa reacting to PKV-specific
antiserum in XS plants (Figure 2B, lane 5). Although
tobacco contains a PKV homolog, no detectable PKV-
related protein was evident in the non transgenic control
(X) or XAS plants, indicating very low levels of basal

expression, similar to what was found in healthy tomato
plants [33].

Phenotypic changes in tobacco in response to transgenic
expression of pkv

Tobacco plants transformed with the XS and antisense
XAS constructs exhibited dramatic alterations in appear-
ance and development compared to non-transformed
control plants (X) (Figure 3). XS plants were dwarfed and
had noticeably reduced root systems in tissue culture and
as young plants (Figure 3A and 3B), phenotypes that are
similar to symptoms observed in tomato plants infected
by PSTVd. XAS transformants, on the other hand, were
taller than non-transformed tobacco plants and had a
more extensive root system (not shown in potted plants).
The phenotypic responses of the transformants were most
pronounced in mature tobacco plants, where XS plants
were stunted, possessed thick, dark leaves, and exhibited
reduced flowering and root formation, and XAS plants
were taller and had increased numbers of inflorescences
and flowers (Figure 3C). Morphometric analysis of the
mature plants (Table 1) revealed that internode number
and stem length were decreased in XS plants and increased
in XAS plants. The internode length contributed to the
overall difference in height from the non-transformed
control. Visualization of the vascular tissue in cross-sec-
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Figure 2

Characterization of transcript and protein expression in transgenic plants. (A) Northern blot analysis of the accu-
mulation of pkv transcripts in transgenic plants as described in the Methods section. Left panel, 20 ug of total RNA extracted
from control (I, X), XS (2) and XAS (3). Ethidium bromide staining of ribosomal RNA (rRNA) is shown to illustrate equal load-
ing of RNAs. Arrows indicate location of mRNAs hybridizing to the PKV DIG-labeled probe. Asterisk indicates degraded PKV
transcript in XAS plants. (B) Western blot analysis of PKV protein accumulation in mature leaves of control and transgenic
plants using a PKV-specific polyclonal antibody as described in the Methods section. Equal amounts of total protein were
loaded per sample lane. Numbers to the left of the figure represent the size of prestained protein markers. Lane |, X; Lane 2,
XS; Lane 3, XAS. The arrow designates the location of the 52 kDa PKYV protein.

Table I: Morphometric analysis of fully-grown untransformed (X), PKVS and PKVAS plants.

X XAS XS

Plant size (mm) 989.3 + 16.67 1219.33 £ 9.94 700.67 + 52.512
Internode # 71.67 £ 1.76 91.33+0.82 44.6 £ 0.82
Size of 10th internode (cm) 39£0.15 5.0 £ 0.032 1.86 £ 0.12
# flowers 42+ 145 65.6 + 3.8 17.6 + 1.8
Flower size (cm) 4.46 + 0.03 443 £ .06 3.67 £ .162
Stigma (cm) 350.1 3502 1.63 £.132
Style (cm) 372+ .02 375+ .1 22+ .2
Pollen (T)) viable viable not viable

aValues are significantly different compared to the X control (P < 0.05) as measured using the

unpaired t test. Six plants of each line were used for the analysis with three lines per construct.

Total height and number of internodes was measured from the base of the plant to the base of the inflorescence when all of the flowers were
developed.
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Figure 3

Growth of transgenic tobacco plants expressing the sense (XS) or antisense (XAS) copy of pkv. (A) Three week-
old in vitro plantlets of control (X), XS and XAS showing the reduced (XS) or enhanced (XAS) root production (arrows). (B)
Five-week old plants in soil showing the dwarfing phenotype of XS. (C) Fully mature greenhouse-grown plants showing the
increased height and flowering of XAS and the dwarfing habit and reduced/delayed flowering of XS. (D) Transverse petiole sec-
tions from leaves of mature control (X), XS, and XAS tobacco plants. Sections were observed by light microscopy without
staining. Petioles of the fifth leaf from the base were taken from each plant. Original magnification, 100 X. Arrows designate the

columns of lignified xylem elements.

tions of leaf petioles of control and transgenic plants
revealed increased numbers of lignified xylem elements
(darker cells) in XAS petioles as compared to petioles
derived from similarly positioned leaves of X plants,
whereas there was a decreased number of lignified ele-
ments in XS plants (Figure 3D).

Flower size was smaller in XS plants (Figure 4A and Table
1) with resulting shorter style and stigma. In addition, XS
plants had greatly reduced fertility, while seed set in XAS
plants was not affected. When pollen viability was exam-
ined by staining with acetocarmine, the cytoplasm of non-
transgenic and XAS pollen stained red, indicating viabil-
ity, while the majority of the XS pollen of T2,
homozygous, selfed plants had collapsed and was nonvi-
able (arrows, Figure 4B). When the XS flowers were polli-
nated with X pollen, however, the plants produced more
seeds than the XS parent, indicating that the XS plants
were male sterile but female fertile. Fifty per cent of the
seeds resulting from the X x XS cross germinated.

Northern blot analysis of salicylic acid- and jasmonic acid-
signaling pathways in transgenic plants

Induced defense and/or pathogenesis-related (PR) gene
expression occurs in PSTVd-infected, dwarfed tomato
plants [15]. To determine if PR expression is associated
with stunting caused by over expression of PKV in
tobacco, we probed Northern blots containing total RNA
isolated from leaf tissue for transcripts of Prial and Prib,
whose expression is salicylic acid-mediated. These genes
were transcriptionally activated in viroid-infected tomato
plants, as previously reported, but not in XS or XAS trans-
formants, nor in PSTVd-infected tobacco plants, indicat-
ing that neither PSTVd infection nor PKV over expression
induce a general pathogenesis response in tobacco (com-
pare lane 2 with lanes 4 and 5 in Figure 5A and lane 2 and
lanes 46 in Figure 5B). In addition, transcripts of the leu-
cine aminopeptidase gene (LAP) (jasmonic acid-medi-
ated; [36]) did not increase in transgenic tobacco plants,
nor in viroid-infected tomato (whereas such transcripts
did accumulate in Potato virus X-infected tomato), indicat-
ing that neither the dwarfing caused by PKV over expres-
sion in tobacco nor PSTVd pathogenesis in tomato
involve jasmonic acid signaling (Figure 5A).
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Figure 4
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Morphology of flowers and pollen from of transformants. (A) Over expression of pkv results in reduced flower size
(XS) as compared to control (X) and XAS. (B) Light microscopy of acetocarmine-stained pollen from control (X), XS, and
XAS anthers. The arrow in XS points to defective pollen grains which appear white and collapsed in the picture and are adja-
cent to a viable pollen grain which appears red in the picture. Bar = 20 um.

Exogenous application of gibberellic acid reverses stunting
in plants over expressing PKV

To investigate whether the reduced stature of XS plants
was due to a lower content of GA or to reduced response
to GA, exogenous hormone applications were made to
seedlings grown in vitro and seedling growth was moni-
tored. The hypocotyl length of XS seedlings increased sig-
nificantly in medium containing 10-> M GA,, where it was
not as greatly affected in control (X) or XAS seedlings (Fig-
ure 6, panel C). In medium containing 10-5 pachlobutra-
zol, an inhibitor of GA biosynthesis, the height of both
control and transgenic seedlings was reduced, and this
inhibition was fully reversed by addition of 10> M GA,
(Figure 6, panel D). Therefore the plants respond nor-
mally to GA. This suggests that the dwarf phenotype of XS
plants is due to a lower content of active GAs. The pheno-
type of mature XAS plants suggests that these plants may

be producing more GA than the control, non-transformed
plants

Transcript levels of genes involved in GA biosynthesis and
leaf expansion

The dwarfing phenotype of XS plants and its reversal by
exogenous GA; treatment suggested defects in GA biosyn-
thesis [37]. The accumulation of mRNAs of genes
involved in GA biosynthesis, GA20ox1 (GA200x) and
GA3pB-hydroxylase (GA3f), in non-transformed (X), XS,
and XAS tobacco plants was evaluated by real-time quan-
titative RT-PCR (Figure 7). GA200x and GA3f transcript
levels were 1.61.8 fold higher in XS plants compared to X
or XAS. In XAS plants, GA3f transcript levels were reduced
significantly compared to the non-transformed control. It
has been reported that, as key enzymes in the last catalytic
steps in the synthesis of active GA's, GA33 and GA200x
are subject to feedback regulation by GA [37]. Therefore,
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Figure 5

Northern blot analysis of the expression pattern of salicylic acid- and jasmonic acid- regulated genes. (A)
Northern blot analysis of the accumulation Prla, Prlb, and LAP transcripts in 20 ng of total RNA extracted from healthy
tomato (lane 1), PSTVd-infected tomato (Viroid-infected tomato, lane 2), non-transformed control (X, lane 3), transgenic
plants XS (lane 4) and XAS (lane 5), and tomatoes infected with Potato virus X (PVX-infected tomato, lane 7). Ethidium bromide
staining of ribosomal RNA (rRNA) is shown to illustrate equal loading of RNAs. SA, salicylic acid-inducible genes; JA-jasmonic
acid-inducible gene. (B) Northern blot analysis of total RNA samples as in (A) using only the Prlb probe. Lane I, Healthy
tomato; Lane 2, PSTVd-infected tomato; Lane 3, X; Lane 4, XS; Lane 5, XAS; Lane 6, PSTVd-infected Xanthi tobacco.

in XS plants, low levels of GA could result in induction of
these enzymes, whereas their gene expression would be
repressed in plants containing higher levels of GA.

Endogenous GA levels have also reported to be modu-
lated by the tobacco knotted-1 homeobox gene NTH
(Nicotiana tabacum homeobox gene 15) [38] and the
tobacco bZIP transcriptional activator gene RSG (repres-
sion of shoot growth) [39], which regulates the transcript
levels of GA biosynthetic enzymes. Over expression of the
NTH15 gene in tobacco has been found to lead to
decreased transcript levels of GA20ox and to abnormal
leaf morphology with little or no effect on GA3f transcript
levels [38]. In our study, NTH transcript levels were down-
regulated in XS plants compared to non-transformed con-

trol, and were up-regulated in XAS plants (Figure 7). The
dominant-negative form of RSG represses the expression
of the ent-kaurene oxidase gene in the GA biosynthetic
pathway, reducing GA levels, and resulting in a dwarfing
phenotype in tobacco [39]. In our studies, RSG levels in X,
XS, and XAS plants appeared to be similar to one another

(Figure 7).

The change in plant height in XS or XAS plants could be
due to changes in cell number or cell size. Transcript levels
of LeExp2 (EXP), the major expansin gene expressed in
stems and hypocotyls of tomato and regulated by auxin,
have been shown to correlate with growth rate in rapidly
expanding hypocotyl tissue due to increased cell size [40].
In our analysis of EXP transcript levels in tobacco leaf tis-
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P+ GA,

Growth effects of in vitro application of hormone to control and transgenic seedlings. Ethanol (EtOH), GA; (10-
5M), pachlobutrazol (10-3M), or GA;(10-3M) plus pachlobutrazol (P) (10-5M) were added to solidified media. Plants were evalu-

ated at 20 days after seeding.

sue using real time RT-PCR (experiment was repeated sev-
eral times), there was a positive correlation between plant
and leaf size and EXP expression in XS and XAS plants,
with EXP transcripts expressed at 0.28 fold in XS plants as
compared to non-transgenic plants (X), while EXP tran-
scripts were up-regulated and in XAS plants with respect to
non-transgenic plants (Figure 7). This result confirms
what was reported by Qi and Ding [17] in dwarfed, viroid-
infected plants.

Discussion

Constitutive sense and antisense expression of PKV affects
plant development

Our results suggest that PKV regulates plant development
by modulating levels of GA and the enzymes involved in
GA biosynthesis. Constitutive over expression of PKV
resulted in visually obvious phenotypes of stunting and
reduced root formation. In addition, the plants were male
infertile which may be attributed to defective pollen.
Accumulation of PKV transcripts or protein in flowers
may disrupt pollen production by affecting development
of stamens and microspore mother cells, resulting in non-

Page 8 of 14

(page number not for citation purposes)



BMC Plant Biology 2009, 9:108

Fold difference relative to control

'XS XAS ' XS XAS ' XS XAS ' XS XAS

2
s

""XS XAS | XS XAS

N
AR

Figure 7

Real-time quantitative RT-PCR (QPCR) analysis of
the effects of transgenes on the expression of host
genes. Total RNA isolated from leaf tissue of X, XS, and
XAS plants was subjected to QPCR analysis using primers
specific for the indicated genes as described in the Methods
section. Relative transcript expression levels of each target
were normalized with respect to actin and the transgenic val-
ues reflect fold change expression compared to non-trans-
genic (X) controls. Six biological replications were used to
calculate mean values and standard deviations. Bars mark the
standard deviation of the average. The line across the figure
indicates the normalized level of | in the non-transgenic con-
trol.

viable pollen. Antisense expression of pkv (XAS), on the
other hand, resulted in plants that were taller than non-
transformed plants, with enhanced root development and
greater numbers of flowers in the inflorescence, but with
no obvious influence on seed set.

The abnormal development induced by constitutive over
expression of PKV resembles that found in viroid-infected
plants. For example, reduced flower size was evident in
Hop stunt viroid (HSVd)-infected cucumber [41] and in
chrysanthemum infected with Chrysanthemum stunt viroid
[42]. In addition to stunting, infection of tomato by severe
strains of PSTVd reduced pollen viability [41]. Symptoms
of viroid infection in tissue culture are varied but include
specific inhibition of root formation by HSVd in cucum-
ber [43] and root and shoot formation by CEVd in tomato
[44]. Finally, vascular system development was arrested in
CEVd-infected tomato plants [45].

http://www.biomedcentral.com/1471-2229/9/108

Changes in pkv expression result in altered expression
levels of GA biosynthetic genes

Many factors are responsible for dwarfing phenotypes of
plants, but the roles of GA, auxins, and brassinosteroid
hormones are the most studied [46]. These hormones
control separate processes that contribute to stem elonga-
tion, and a deficiency due to reduced synthesis of the hor-
mones or the lack of response to the hormones may lead
to a dwarf phenotype. The elongation response of XS seed-
lings to exogenous GA suggests that they contain lower
levels of active GA and are not impaired in their response
to the hormone (Figure 4). Altered GA levels impact lignin
biosynthesis and development of xylem vessels in tobacco
plants [47]. The reduced number of xylem vessels in the
petioles of XS plants and increased number in XAS plants
also suggests decreased and increased levels of active GA's,
respectively (Figure 2D).

GA200x1 and GA3p hydroxylase are key biosynthetic
enzymes in the pathways to active GA, and GA, and are
subject to feedback regulation [48]. The transcripts of
these genes are up-regulated in GA-deficient XS plants, as
might be expected (Figure 7). Positive and negative sign-
aling components in GA signal transduction have been
characterized, and include the DELLA proteins and bZIP
transcriptional activators and repressors [37,49]. Further
investigations of transcriptional activation of enzymes
and activators/repressors involved in GA biosynthesis and
catabolism will help unravel the biochemical pathways
responsible for the dwarfing phenotype in XS plants.

Because of the reduced height of XS plants and increased
height of XAS plants, we would expect lower and higher
levels, respectively, of LeExp2 (EXP) transcripts in these
plants. As shown in Figure 7, EXP transcript levels as eval-
uated are reduced in leaves of XS plants compared to con-
trol and XAS plants. As the LeExp2 gene is expressed
primarily in stems and hypocotyls of plants [40], the
reduced leaf size in XS and enlarged leaf size in XAS also
result from altered LeExp2 gene expression.

NTH15, a knotted-1 homeobox gene, and the bZIP tran-
scriptional activator gene RSG modulate endogenous GA
levels by regulating the expression of GA biosynthetic
enzymes. For example, over expression of NTHI15
decreases the expression of GA20ox1, leading to abnor-
mal leaf and flower morphology. Following that reason-
ing, the results in Figure 7 showing that down regulation
of NTH expression levels corresponds to an increase in
GA200x1 transcripts in XS plants. These results suggest the
NTH may be involved in PKV signaling.

The RSG protein binds and activates the promoter of GA3,
encoding ent-kaurene oxidase, another key enzyme in the
GA biosynthetic pathway. Expression of a dominant-neg-
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ative form of RSG gene in tobacco plants severely inhibits
stem internode growth [39]. In our study, RSG transcript
levels are not repressed in XS plants, suggesting that RSG
may not play a role in PKV signaling However, as RSG is
activated through phosphorylation [39], the lack of regu-
lation at the transcriptional level does not eliminate its
involvement in the regulation of endogenous GA levels in
XS and XAS plants. Further investigations of transcrip-
tional activation of enzymes and activators/repressors
involved in GA biosynthesis and catabolism will help
unravel the biochemical pathways responsible for the
dwarfing phenotype in XS plants.

Proposed functional role of PKV in plant development and
viroid pathology

PKV is a member of the AGC protein kinases (specifically
Group AGC VIlla), members of which have been shown
to play roles in growth signaling pathways, regulation of
transcription, and programmed cell death [50]. Key fea-
tures of the AGCVIIIa family, and shared by PKV and
related kinases, include the DFD motif in the activation
loop, a 5080 amino acid variable insertion (T-loop exten-
sion) in subdomain VII of the conserved catalytic domain,
and a C-terminal hydrophobic domain known as PIF
(PDK1 [3-phosphoinositide-dependent protein kinase 1]-
interacting fragment), characterized by the amino acid
motif FxxFs/TF/Y (represented by FEYF in PKV) (Figure 1).
Two members of the AGC VIIla family, PINOID, which
regulates organ development by enhancing polar auxin
transport in plants [34,51], and Adi3, which negatively
regulates plant cell death [35] are activated by PDK1 phos-
phorylation [52-55]. PKV activity may also be regulated
by PDK1 phosphorylation. PDK1 interaction with PKV
through the PIF domain at the carboxy terminus of PKV
(Figure 1) would result in phosphorylation of the serine at
position 303 in the T-loop extension of PKV (Figure 1),
thereby transactivating PKV and leading to autophospho-
rylation at additional sites. Phosphorylated and activated
PKV would subsequently transphosphorylate down-
stream transcriptional activators or repressors, or genes
encoding enzymes involved in GA biosynthesis or degra-
dation, resulting in stunted plants exhibiting morpho-
genic abnormalities that characterize viroid-induced
disease.

Unlike viroid- or virus-infected tomato plants, transcripts
of pathogenesis-related proteins were not induced in pkv
sensetransformed tobacco plants, suggesting that pkv
downstream signaling is not through salicylic acid- or jas-
monic acid-dependent pathways. The putative promoter
region of pkv contains G- (CACGTG) and H-box
(GGTAGG) cis elements [33] which are known to interact
with, and be transcriptionally activated by, bZIP transcrip-
tional factors. These cis elements are speculated to be
responsible for early responses to pathogen attack [56],
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but they also function in the regulation of genes by devel-
opmental stimuli [57]. The genes encoding PKV and the
PR proteins may be transcriptionally activated by the
same bZIP transcription factors but diverge into separate
signaling pathways in tomato. Further studies are needed
to determine the extent to which PSTVd infection regu-
lates the transcription of pkv and to dissect the signaling
pathways and downstream substrates of PKV phosphor-
ylation. PSTVd RNA may bind to the pkv promoter directly
and enhance transcription. Alternatively, because of its
partially double-stranded structure [1], viroid RNA could
trigger posttranscriptional gene silencing of plant tran-
scriptional activators or repressors, as proposed by Wang
etal. [22], or viroid RNAs could act as transcriptional acti-
vators by targeting the noncoding regulatory regions in
gene promoters. Alternatively, PSTVd RNA may bind to
the pkv promoter directly and enhance transcription.
Although the exact mechanism of transcriptional activa-
tion by short dsRNAs is unknown, Li et al. [58] demon-
strated this mechanism in human cells. Further studies are
needed to determine the extent to which PSTVd infection
regulates the transcription of pkv and to dissect the
upstream signaling components, including PDK1, and
and downstream substrates of PKV phosphorylation to
dissect the role of PKV in plant development.

Conclusion

In this study, we have found that the over expression of
the tomato serine-threonine protein kinase gene PKV
resulted in stunting, modified vascular tissue develop-
ment, reduced root formation, and male sterility in
tobacco, while silencing of the endogenous tobacco PKV
gene by antisense expression resulted in a taller stature
and increased numbers of influorescences in transgenic
plants. The combined results of reversal of stunting in
plants over expressing PKV by exogenous application of
GA and the altered transcript levels of GA biosynthetic
genes suggests that PKV regulates plant development by
functioning in critical signaling pathways involved in GA
metabolism and GA-regulated transcriptional networks.
Our findings establish a foundation to further investigate
the molecular mechanisms of how PKV interacts with crit-
ical cellular factors, including transcriptional regulators
such as DELLA-domain proteins [59], that lead to altered
plant development. Ultimately, it may also lead to a
greater understanding of the signaling pathways function-
ing in viroid pathogenicity.

Methods

DNA manipulations

PKV sense (GenBank accession no. AY849915; 33) and
PKV antisense sequences were cloned into the binary vec-
tor pBI121 (Clontech, Inc., Palo Alto, CA) at the BamHI/
Sstl sites, releasing the GUS gene. For preparation of the
sense insert, construct pGEXKG/PKV [33] was doubly

Page 10 of 14

(page number not for citation purposes)


http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY849915

BMC Plant Biology 2009, 9:108

digested with BamHI and Sstl, and the PKV sense frag-
ments were recovered. To prepare the antisense insert,
construct pET28a/PKV [33] was first digested with EcoRI
to release the PKV insert, which was then ligated back into
the pET28a vector at the EcoRI site, generating clones with
opposite orientations. Antisense clones were selected and
one of the clones was doubly digested with BamHI and
Sstl, giving rise the antisense insert, which contained
cohesive ends compatible to the above prepared pBI121
vector. The pBI121 constructs were transformed into Agro-
bacterium tumefaciens LBA4404.

Plant growth conditions
Tobacco plants were grown under greenhouse conditions
under natural daylight with a temperature of 2025°C.

Plant transformation and hormone treatments

Leaf pieces of Nicotiana tabacum cv. Xanthi were trans-
formed with a suspension of A. tumefaciens LBA4404 bac-
terial cells containing the pBI121 PKV constructs as
described by Horsch et al. [60]. Stable incorporation of
the genes was verified by either Southern blot hybridiza-
tion or PCR analysis. Plant height, internode length,
number of flowers, and flower size were measured from
three plants of each category and the data were compared
using the unpaired ¢ test. Seeds of control and transgenic
tobacco plants were germinated and grown in Petri dishes
containing solidified sterile 1/2 MS media containing 3%
sucrose and either 10> M GA;, 5 uM indolebutyric acid
(Sigma Chemical Co., St Louis, MO) or 105 M
pachlorbutrazol (PhytoTechnology Laboratories, Shawnee
Mission, KS), alone or in combination, or ethanol as a
control was added at the same concentration as used to
solubilize the hormones.

Northern, Southern, and western blot analyses

Total RNAs were extracted from plant tissue using Tri Rea-
gent (Molecular Research, Cincinnati, OH). Twenty pg
aliquots were treated with glyoxyal using the Northern
max RNA kit (Ambion, Houston, TX) and were electro-
phoresed through 1% agarose gels and blotted onto nylon
membranes following manufacturers' instructions. DNA
clones corresponding to the Prial and Prlb genes were
prepared by RT-PCR amplified from tomato total RNA
using Titan One-tube RT-PCR (Roche Molecular Biochem-
icals, Bedford, MA) and primers PKVexonF and PKVexonR
corresponding to the tobacco PKV gene pkv; primers Pr1aF
and PrR, corresponding to the Prlal gene [11]; and prim-
ers Pr1b and PrR, corresponding to the Prib gene [61]
(primers sequences listed in Table 2). The PCR products
were cloned in the pCR2.1 TA cloning vector (Invitrogen,
Carlsbad, CA). PCR products were sequenced to confirm
their identity. DIG-labeled DNA probes were produced
from these cDNA clones using the primers listed above
and the DIG High-Prime DNA labeling kit (Roche Molec-
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ular Biochemicals) following manufacturer's instructions.
Primers LAPF and LAPR were used to prepared a 397 bp
DIG-labeled DNA probe from a pUC119:leucine ami-
nopeptidase cDNA clone [[62]; gift of L. Walling].

Northern blot hybridizations were carried out in a DIG
Easy Hybridization buffer (Roche Molecular Biochemi-
cals) at 47°C overnight. The blots were washed for 2 x 15
minutes in 2 x SSC (1 x SSC is 0.15 M NacCl, 0.015 M
sodium citrate, pH 7.0), 0.1% SDS at room temperature,
followed by 2 x 15 minutes washed in 0.5 SSC, 0.1% SDS
at 68°C. Colorimetric detection was made using the DIG
wash and block buffer set (Roche Molecular Biochemi-
cals) and NBT/BCIP according to manufacturer's instruc-
tions (Kirkegaard and Perry, Gaithersburg, MD). For
Southern blot analysis, RT-PCR products were electro-
phoresed through a 1% agarose/TBE gel, blotted onto a
nitrocellulose membrane, and hybridized using the same
conditions used for Northern blot analyses [33].

Total proteins were extracted from plant tissues using a
2:1 ratio (buffer: tissue) of Cell- Lytic P Plant Cell Lysis/
Extraction Reagent (Sigma Chemical Company) contain-
ing a 1:100 dilution of Plant Protease Inhibitor cocktail
(Sigma Chemical Company) by grinding in an eppendorf
tube using a disposable pestle. Samples were centrifuged
for ten minutes at 16,000 x g in a microfuge. Laemmli
sample buffer (Bio-Rad Laboratories, Hercules, CA) was
added (2:1, sample/dye ratio), the sample was boiled for
10 minutes, and a 20 pl aliquot was electrophoresed
under denaturing conditions through a 1020% Tris-gly-
cine gel (Invitrogen) and blotted according to manufac-
turers instructions onto a nitrocellulose membrane
(Invitrogen). The size marker was the Precision Plus Kale-
dioscope prestained markers (Bio-Rad Laboratories).
Western blot analysis was carried out using a polyclonal
antibody raised against a PKV-GST fusion protein [33]
(Cocalico Inc, Reamstown, PA) and a secondary goat anti-
rabbit polyclonal antibody (Kirkegaard and Perry). Color-
imetric detection was performed using NBT/BCIP accord-
ing to manufacturers' instructions (Kirkegaard and Perry).

Quantitative real-time RT-PCR analysis (QPCR)

Total RNA was extracted from plant tissues using TriRea-
gent. First strand cDNA was prepared using an oligo(dT)
primer from 1 pg total RNA using the Advantage RT-for-
PCR kit (Clontech). The cDNA reaction was diluted to 100
pl with sterile water. QPCR was performed using the first-
strand cDNA generated above, selected primer sets
designed using the Primer3 program [63] and listed in
Table 2 as RQ primers, and the Brilliant® SYBR® Green
QPCR Master Mix (Stratagene, La Jolla, CA). Each QPCR
reaction contained 12.5 pl of 2x Brilliant® SYBR® Green
QPCR Master Mix, 2 ul of the diluted cDNA, and 2.5 pM
of each gene-specific primer. The conditions used for the
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Table 2: Oligonucleotide primers used in experimental analyses.
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Oligonucleotide Sequence Accession No. Gene Amplicon, bp
PKVexonF 5'-GAAATCCTAGCAGTGGATCGG-3' EU196240 pkv 531
PKVexonR 5'-CAGCACTTCTTACTAAAGCCC-3' " " "
Prla 5'-CAAACTCCTCGAGAGAATTT-3' X71592 Prial 299
PrR 5-ACCACTTGAGTATAATGTC-3' " " "
PrlbF 5'-CAAAATTCACCCCAAGACTA-3' X12486 Prib 300
LAPF 5'-ATGCAGAACATGTATGTGCAG-3' SLU50151 LAP 397
LAPR 5-TTTGCTGCACCTAAAACAGC-3' " " "
ACTRQF 5-GTGGCGGTTCGACTATGTTT-3' EU938079 ACTIN| 186
ACTRQR 5-ATTCTGCCTTTGCAATCCAC-3' " " "
PKVRQF 5-TCCGTTGTTCTGTCAATCCA-3' EU196240 pkv 208
PKVRQR 5'-CCTCCCACAAAAAGACCAAA-3' " " "
GA20RQF 5'-TTCCGGTTCCACTTATCGAC-3' AB032198 GA20 oxidase | 153
GA20RQR 5'-GGCGTTGGAGATGATATTA-3' " " "
GA3RQF 5'-TCAAAGAAGGGAGTGGTTGG-3' AB032198 GA3 /3 hydroxylase 155
GA3RQR 5'-GGCTACAGAAAGGCGATGTC-3' " " "
NTHI5RQF 5'-CCCTCAGGCTGAAGATCAAG-3' AB004785 NTHI5 152
NTHI5RQR 5'-GTCTGGTCCACCAGTCCAGT-3' " " "
RSGRQF 5-TGCTGAGTTGGCTTTGATTG-3' AB040471 RSG 242
RSGRQR 5'-CTCCTTGTTCCAAAGCTTGC-3' " " "
EXPRQF 5 -TGTTGGAGGTGCTGGTGATA-3' AF096776 LeExp2 215
EXPRQR 5'-CCCCTCAAAAGTTTGTCCA-3' " " "
QPCR reactions were: 95 C for 10 min, followed by 40  Microscopy

cycles of 95 C, 30 sec, 50 C, for 1 min, and 72 C for 30 sec
in a Mx3000P QPCR System (Stratagene). Data were ana-
lyzed using the MxPro software (Stratagene) and relative
transcript expression levels of each target were normalized
with respect to the tobacco ACTIN gene (Accession no.
EU938079). Six biological replications were used to calcu-
late mean values and standard deviations.

Pollen grains were stained with acetocarmine and exam-
ined under light microscopy in a Zeiss Axioskop 2 micro-
scope (Carl Zeiss, Inc., Thornwood, NY). Hand-cut
sections of leaf petioles were examined using light micro-

scopy.
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