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Abstract

Background: The biochemical mechanisms that determine the molecular architecture of
amylopectin are central in plant biology because they allow long-term storage of reduced carbon.
Amylopectin structure imparts the ability to form semi-crystalline starch granules, which in turn
provides its glucose storage function. The enzymatic steps of amylopectin biosynthesis resemble
those of the soluble polymer glycogen, however, the reasons for amylopectin's architectural
distinctions are not clearly understood. The multiplicity of starch biosynthetic enzymes conserved
in plants likely is involved. For example, amylopectin chain elongation in plants involves five
conserved classes of starch synthase (SS), whereas glycogen biosynthesis typically requires only one
class of glycogen synthase.

Results: Null mutations were characterized in AtS52, which codes for SSll, and mutant lines were
compared to lines lacking SSIIl and to an Atss2, Atss3 double mutant. Loss of SSII did not affect
growth rate or starch quantity, but caused increased amylose/amylopectin ratio, increased total
amylose, and deficiency in amylopectin chains with degree of polymerization (DP) 12 to DP28. In
contrast, loss of both SSII and SSIll caused slower plant growth and dramatically reduced starch
content. Extreme deficiency in DP12 to DP28 chains occurred in the double mutant, far more
severe than the summed changes in SSII- or SSlll-deficient plants lacking only one of the two
enzymes.

Conclusion: SSII and SSlII have partially redundant functions in determination of amylopectin
structure, and these roles cannot be substituted by any other conserved SS, specifically SSI, GBSSI,
or SSIV. Even though SSlll is not required for the normal abundance of glucan chains of DPI2 to
DPI8, the enzyme clearly is capable of functioning in production such chains. The role of SSIlIl in
producing these chains cannot be detected simply by analysis of an individual mutation.
Competition between different SSs for binding to substrate could in part explain the specific
distribution of glucan chains within amylopectin.
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Background

Insoluble starch granules function as a central component
of plant metabolism to store reduced carbon produced
during photosynthesis. Starch is made up of two types of
glucan homopolymer, amylose and amylopectin [1].
Amylose molecules typically comprise several thousand
glucose units joined by a-(1—4) glycoside bonds, with a
low frequency of branch points provided by a-(1—6) gly-
coside bonds. Amylopectin has a degree of polymeriza-
tion (DP) on the order of 104 - 105 glucose units per
molecule, and contains a relatively high frequency of
branch linkages, approximately 5%. A specific distribu-
tion of a-(1—4)-linked glucan chain lengths, together
with clustered positioning of a-(1—6) branch linkages,
provides structure to amylopectin that allows crystalliza-
tion and formation of insoluble starch granules [2-4]. The
ability to crystallize in turn provides the functionality of
starch because very large numbers of glucose units can be
stored as an energy source to be used later when photo-
synthesis is not operative. Thus, an important objective
towards the aim of fully understanding plant physiology
is to determine how each of the enzymes involved in
starch biosynthesis functions to produce a polymer with a
crystallization-competent architecture.

Starch is produced by the coordinated actions of the fol-
lowing enzymes: 1) ADPGIc pyrophosphorylase
(ADPGPP), which provides the nucleotide sugar donor
ADPGIc 2) starch synthase (SS), which catalyzes the
transfer of a glucosyl unit from ADPGIc to a growing pol-
ymer chain through an a-(1 — 4) glycoside bond; 3)
starch branching enzyme (SBE), which cleaves an internal
o-(1 — 4) linkage and transfers the released linear chain
to a C-6 hydroxyl, thus forming a new a-(1 — 6) branch
point; 4) starch debranching enzyme (DBE), which selec-
tively hydrolyzes a-(1 — 6) linkages and has been pro-
posed to provide an editing function in selection of
branch points [5-8]. Most organisms outside the plant
kingdom possess a single class of glycogen synthase (GS),
in some instances comprising two closely related iso-
forms, which catalyzes the same glycosyl transferase reac-
tion as the plant SSs. In contrast, a highly conserved
feature of starch biosynthesis in diverse plant species is the
presence of five distinct classes of SS [9,10], again often
with multiple isoforms in each class. Each SS class is
found in unicellular green algae and thus likely was estab-
lished prior to the evolution of land plants [11]. Such con-
servation suggests that each SS is functionally significant
for synthesis of granular starch as opposed to water-solu-
ble glycogen, presumably through its influence on the
architectural structure of amylopectin. Some functions of
SSs with regard to amylopectin architecture are relatively
well understood, however, for the most part their func-
tional relationships to each other remain to be deter-
mined.
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One SS is nearly exclusively granule-bound (GBSS),
whereas the other four classes are distributed between
granules and stroma (SSI, SSII) or are located nearly
entirely in the stroma (SSIII, SSIV) [12-18]. Genetic evi-
dence indicates that all five SSs have specific functions
that cannot be provided by any other SS class. For exam-
ple, elimination of GBSS by mutation or antisense gene
expression conditions loss of the amylose component of
starch granules without major effects on amylopectin
[19,20]. Thus, it appears that GBSS is specifically involved
in amylose biosynthesis and that no other SS can provide
this function. SSII deficiency in numerous species results
in increased frequency of short glucan chains (DP6 to
DP11) within amylopectin, decreased abundance of
DP12 to DP25 chains, and in most instances an elevated
amylose to amylopectin ratio [18,21-27]. A possible
explanation for these results is that SSII catalyzes forma-
tion of chains of DP12 - DP25, and that the other SS iso-
forms cannot fulfil this function. The uniformity of the
SSII-mutant phenotype also indicates that the physiologi-
cal function of SSII is conserved across plant species, in
addition to the paralogous amino acid sequences.

Arabidopsis is useful as a model organism for study of SS
function, as well as starch biosynthesis in general, owing
to genome-wide reverse genetic resources that can provide
null mutations in all of the individual enzyme classes.
Using such tools the effects of eliminating either SSI, SSIII
or SSIV on Arabidopsis leaf starch have been determined.
Mutations that eliminate SSI cause decreased frequency of
the shortest linear chains within amylopectin, of DP6 to
DP12 [28]. Loss of SSIII causes increased frequency of
long glucan chains greater than DP60 but has relatively lit-
tle effect on the abundance of any chains less than DP50
[29]. SSIV deficiency did not cause any noticeable changes
in amylopectin structure, however, this enzyme has a
function in initiation of starch granule formation [30].

These unique phenotypes provide further evidence that
each SS isoform serves a role in starch biosynthesis that
cannot be supplied by any of the other enzyme classes.
Genetic data alone, however, cannot fully determine the
specific physiological functions of any enzyme because
the phenotypic effects on starch structure might not nec-
essarily be direct. Such considerations are important in
light of the findings that SSI, SSII, and SSIII from either
wheat or maize are capable of assembling with each other
into various multiple subunit complexes [31,32]. Thus,
analysis of plants lacking multiple SSs may be informative
regarding the comprehensive mechanisms by which the
chain length distribution within amylopectin molecules is
determined. This approach has been reported previously
using antisense technology to simultaneously repress the
levels of SSII and SSIII in potato tubers, and synergistic
effects indicative of functional interactions between the
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two enzymes were observed [22,27]. Arabidopsis provides
a tractable genetic system to further these studies owing to
the ability to completely eliminate any SS class by null
mutation and to couple these mutations in desired com-
binations by standard genetic manipulations. Also, study-
ing SS functions in different organisms, and in a transient
starch system in leaves compared to storage starches in
tubers or other tissues, likely will reveal conserved bio-
chemical functions that are significant in determination
of amylopectin structure.

In this study analysis of SS functions in Arabidopsis leaves
was extended by characterization of mutations in AtSS2,
the gene coding for SSII, and by construction of a double
mutant line that is completely deficient in both SSII and
SSIII activity. Loss of SSII in Arabidopsis has effects very
similar to those observed in other species. Elimination of
SSII and SSIII together causes synergistic defects more
severe than those resulting from mutation of only one of
the two enzymes with regard to starch content and amylo-
pectin structure. Thus, designation of SS function based
on particular chain length ranges synthesized by each
enzyme class is not likely to fully explain the conservation
of multiple SSs. The data suggest that competition
between different SS enzymes for binding to the ends of
growing linear chains is an additional factor important for
the determination of amylopectin structure.

Results

Identification of null mutations in the gene coding for SSII
The Arabidopsis genomic locus At3g01180, hereafter
referred to as AtSS2, codes for a protein highly similar in
amino acid sequence to SSII proteins from rice, wheat,
barley, pea, potato, and maize [21-26] that clearly falls
into the conserved group of orthologous SSII genes dis-
tinct from any other SS [9-11]. Comparison of the
genomic sequence to the corresponding cDNA sequence
(Genbank accession number NM_110984) revealed that
AtSS2 comprises eight exons and seven introns (Figure
1A). The 5'-untranslated region of the mRNA contains at
least 168 nt upstream of the initiation codon. The compu-
tational programs ChloroP and TargetP [33,34] predict
that the first 55 amino acids of the polypeptide coded for
by AtSS2 are likely to function as a chloroplast targeting
peptide, and the predicted molecular weight of the mature
protein is approximately 81 kDa.

Three independent Arabidopsis lines with T-DNA insertion
mutations in the AtSS2 locus were identified. Two T-DNA
insertion mutant lines, Salk_ 065639 and Salk 102650,
were obtained from the Salk collection [35], and a third T-
DNA insertion line, EIB123, was obtained from the T-
DNA mutant collection at INRA of Versailles, France [36-
38]. Thus, all subsequent analyses were performed inde-
pendently in two different Arabidopsis wild type back-
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grounds, Columbia for the Salk lines and WS for the INRA
Versailles line. The mutations in these lines were desig-
nated as Atss2-1, Atss2-2, and Atss2-3, respectively.

PCR amplification of genomic DNA was used to identify
homozygous mutant lines for each allele. Gene specific
primer pairs flanking the approximate site of the T-DNA
insertion identified the wild type allele, and one gene spe-
cific primer in combination with a T-DNA end primer
revealed the mutant allele (Figure 1A) (primer pair
sequences for genotype assignment are specified in Meth-
ods). The nucleotide sequences of the fragments ampli-
fied by one gene specific primer and a T-DNA end primer
were determined in order to identify the exact insertion
sites. These results showed that the T-DNA element in
Atss2-1 is located in exon 2, and those in Atss2-2 and Atss2-
3 are located at distinct sites in exon 8 (Figure 1A). Several
successive generations of plants were genotyped by PCR
analysis to confirm that each line was homozygous for its
Atss2 allele.

RT-PCR analysis was used to confirm that the three T-DNA
insertion in the AtSS2 locus effectively prevented expres-
sion of normal mRNA. For all three Atss2 alleles, primers
flanking the known insertion site failed to generate any
RT-PCR signal, whereas the same primer set generated a
fragment of the expected size from wild type mRNA (Fig-
ure 1B and data not shown). Thus, normal AtSS2 tran-
scripts are lacking in all three mutant lines. Some
abnormal transcripts, however, do accumulate from the
mutant genes. RT-PCR signal was detected when mRNA
from an Atss2-1 plant was amplified using primers located
in the downstream region of the gene (Figure 1A, primer
pair 2LP2/2RP2). Similarly, amplification of an upstream
region was detected from mRNA of an Atss2-2 plant (Fig-
ure 1A, primer pair 2LP1/2RP1) or an Atss2-3 plant (Fig-
ure 1A, primer pair For51/Rev51) (Figure 1B).

In the case of Atss2-1, immunoblot analysis was used to
determine whether the mutation prevented accumulation
of the protein product. Total soluble leaf extracts were first
fractionated by anion exchange chromatography in order
to partially purify SSII and thus facilitate its detection.
Proteins in selected chromatography fractions were sepa-
rated by SDS-PAGE and probed with a monoclonal anti-
body, referred to as aAtSSII, elicited using full-length
recombinant Arabidopsis SSII as the antigen. Wild type
extracts analyzed in this way revealed a signal at an appar-
ent molecular mass of approximately 80 kDa (Figure 1C),
which matches the predicted molecular mass for mature
SSII after removal of the putative plastid targeting peptide.
This band was not detected in the same chromatography
fractions from Atss2-1 homozygous mutant leaf extracts
(Figure 1C). These results, together with the RT-PCR data,
indicate that Atss2-1 is a null allele in the sense that no
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Gene structure and allele verification. A, AtSS2 gene map. The scaled linear map depicts the eight exons as black boxes

and the seven introns as lines between the exons. The positions of the translational start and stop codons are noted. The loca-
tions of specific primer sequences used for PCR amplification are noted, as well as the locations of three T-DNA insertions in
the gene. B, RT-PCR analysis of transcripts from the Atss2-3 mutant. Total RNA from leaves of WS wild type plants or the

Atss2-3 mutant was amplified by RT-PCR using the indicated primer pairs. C, Inmunoblot analysis. Total soluble proteins from
crude leaf extracts were separated by anion exchange chromatography, then selected fractions were separated by SDS-PAGE

and subjected to immunoblot analysis using anti-AtSSI| antibody.
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detectable SSII protein is present in the homozygous
mutant plants. Atss2-2 and Atss2-3 are also likely to be null
alleles based on the demonstrated disruption of the
mRNA structure.

Construction of an Atss2, Atss3 double mutant and
analysis of plant growth phenotypes

A double mutant was generated in order to examine for
possible synergistic effects of simultaneous elimination of
both SSIT and SSIII. The particular alleles involved in the
cross were Atss2-1 (Figure 1A) and Atss3-1, previously
shown to be a null mutation [29]. Double homozygous
mutant lines were identified at approximately the
expected Mendelian ratio among the progeny of a double
heterozygote, using PCR analysis to assign genotypes.

Single and double mutant plants were compared to wild
type with regard to seed germination rate, plant growth
rate, flowering time, and silique formation. When grown
under constant light or under a 16 h light/8 h dark long
day photoperiod (LD), no significant differences were
noted between wild type, Atss2 single mutants, Atss3 sin-
gle mutants, or the Atss2, Atss3 double mutant plants
(data not shown). In contrast, when plants were grown
under a 8 h light/16 h dark short day photopheriod (SD),
a significantly reduced growth rate was observed uni-
formly for every Atss2, Atss3 double mutant tested as com-
pared to wild type or either single mutant line (Figure 2).
One double homozygous mutant line was characterized
by RT-PCR to confirm that the normal mRNA for both of
the genes was absent (data not shown), and this particular
Atss2, Atss3 line was used in all further analyses.

Effects of mutations on SS activity and other starch
metabolizing enzymes

Two-dimensional zymograms were used to determine the
effects of the SSII single mutations and the SSII/SSIII dou-
ble mutation on specific SS enzyme activities. Soluble leaf
extracts were fractionated by anion exchange chromatog-
raphy, and equal volumes of selected fractions were
loaded onto non-denaturing PAGE gels containing 0.33%
glycogen. After electrophoresis, the gels were incubated in
a buffer containing ADPGIlc and glycogen, and then
stained with I,/KI solution. Gel zones that contain an
active SS stain dark brown in these assays because the
enzyme lengthens exterior glucan chains on the glycogen
substrate. Two major SS activity bands were observed in
wild type leaf extract (Figure 3). The more slowly migrat-
ing band was previously identified as SSIII [29]. The faster
migrating band was identified as SSI based on its absence
from Atss1 mutants [28]. The minor band visible below
the major SSI band in the double mutant (Figure 3) also
requires a functional AtSS1 gene (data not shown) and
thus is identified as a form of that enzyme. The faint band
visible in fractions 18 and 19 in the analysis of wild type
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Figure 2

Plant growth phenotype. Plants of the indicated genotype
were germinated in soil in a growth room under long day
conditions (16 h light/8 h dark). Small plants were then trans-
ferred to pots and grown in a growth chamber under short
day conditions (8 h light/16 h dark) for three weeks.

and the Atss2-1 mutant in Figure 3 is not an SS activity
because it appears even when ADPGIc is omitted from the
incubation medium [29].

As expected SSIII was missing in the Atss2-1, Atss3-1 dou-
ble mutant (Figure 3). No difference was observed in the
SS activity pattern between the Atss2-1 line and wild type
(Figure 3), and the wild type pattern was also observed for
the Atss2-2 mutant (data not shown). The zymogram was
also performed on total soluble leaf extract, i.e., without
prior anion exchange fractionation, and again both Atss2
mutants exhibited the same pattern as wild type (data not
shown). Therefore, SSII either is present in very low abun-
dance in leaf extracts, or the zymogram assay is ineffective
in detecting this particular SS form as compared to SSI or
SSIII.

Total soluble SS activity in soluble leaf extracts was meas-
ured in the various mutant strains by an in vitro assay
using 14C-ADPGIc as a substrate. Total SS activity was not
significantly decreased in Atss2 mutant plants or the Atss2,
Atss3 double mutant compared to wild type control lines
(Table 1). The reason that eliminating two of the three
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Figure 3

SS activities observed by two dimensional zymo-
gram. Soluble leaf extracts from plants of the indicated gen-
otype were separated by anion exchange chromatography
followed by native PAGE in the presence of 0.3% glycogen.
SS activity was then qualitatively assayed in place in the gel by
addition of ADPGlIc and subsequent staining with 1,/KIl solu-
tion.

major soluble SS classes does not affect total enzyme
activity in the leaf extracts is not obvious, however, the
explanation may involve increased SSI activity in the
absence of the other SSs. This situation has been observed
in other species, specifically maize and rice, where eleva-
tion of SSI activity in extracts lacking SSIII compared to
wild type has been described previously [13,39,40].

Two dimensional starch zymogram analysis [41] was used
to examine whether the mutations pleiotropically affect
BE, DBE, or amylolytic activities. Anion exchange column
fractions were separated by non-denaturing PAGE, and
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then the gels were electro-blotted to a second polyacryla-
mide gel impregnated with 0.3% starch. After incubation
the gels were stained with I,/KI solution, so that colored
bands above the dark background revealed the presence of
starch modifying enzymes. No differences in the banding
pattern were observed between the wild type and mutant
lines for the isoamylase-type DBEs, BEs, or amylolytic
activities detected in this assay (Figure 4 and data not
shown).

Other starch metabolic enzymes were characterized by
standard biochemical assays of total soluble leaf extracts,
again to examine for major pleiotropic effects that could
affect phenotype (Table 1). Only minor changes likely
due to statistical variation were observed for total BE activ-
ity, ADPGPP (particularly in the absence of 3-PGA as an
activator), o-amylase, B-amylase, disproportionating
enzyme (DE), and maltase. Potentially significant changes
were observed in the mutants with regard to pullulanase-
type DBE and starch phosphorylase (SP), although the
nature of these changes requires further investigation.
Taken together the data indicate that the phenotypic
effects of Atss2 mutation and Atss2, Atss3 double mutation
likely result directly from the effects on SS as opposed to
pleiotropic effects on other starch metabolic enzymes.

Effects of mutations on glucan and sugar content

Starch content was examined in leaves from the various
mutants harvested throughout the diurnal cycle. As a first
approximation, leaves collected at the end of the light
phase of the LD cycle were decolorized by boiling in eth-
anol and then stained with I,/KI solution. In this assay
there was no difference in the apparent starch content
between wild type and Atss2 mutants, and the previously
reported increase in staining intensity in the Atss3 mutants
[29] was again observed (data not shown). In contrast to
the single mutants, the Atss2, Atss3 double mutant
appeared to contain very low amounts of starch as
detected by staining of leaves with iodine (Figure 5A).

Starch content was quantified by chemical assay in leaves
collected at the end of the light phase in plants grow in
either the LD diurnal cycle, when all the mutant plants
appear to grow at the same rate as wild type, or the SD
cycle when the double mutant lacking both SSII and SSIII
exhibits a clear growth defect. The results confirmed that
Atss2 mutations do not cause a major change in leaf starch
content and that in these growth conditions the Atss3
mutation conditions an apparent increase in starch con-
tent (Table 2), in agreement with previously published
results [29]. The major decrease in starch content seen by
leaf staining in the Atss2, Atss3 double mutant was also
detected with clear statistical significance in the quantita-
tive assay (Table 2) in either LD or SD growth conditions.
In these two growth conditions the double mutant con-
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Table I: Starch metabolic enzyme activities in soluble leaf extracts
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Enzyme Activity by genotype

Wild type Atss2-1 Atss3-1 Atss2/Atss3
SSa 212 + 8.66 (4) 237 £ 8.74 (4) 265 + 18.6 (4) 190 + 8.78 (4)
SS 9.24 £ 0.80 (2) 9.19+£0.16 (2) 9.82 £ 0.07 (2) 9.85+ 041 (2)
SBEP 503 +7(l) 526 +£9.9 () 458+ 5.7 (1) 51.5+10.0 ()
ADPGPP 155+ 3.8 (3) 19.9 £ 3.1 (3) 145 £ 2.4 (3) 145+ 2.5 (3)
ADPGPP + 3PGA 353+ 1.8(3) 33.7+£40(3) 22.1 £6.9(3) 232+ 13.0(3)
a-amylase 326 £2.0(3) 33.7+34(3) 355+ 1.3 (3) 44.1 £3.7 (3)
B-amylase 191 £27 (3) 237 + 46 (3) 259 +22 (3) 243 + 30 (3)
Pullulanase-type DBE 840+ 1.7 (3) 154+ 1.8(3) 2.06 £ 0.34 (3)c 390+ 1.9(3)
DE 25.6 £ 5.8 (3) 293 +3.0(3) 30.4 + 0.65 (3) 328+ 1.8(3)
Maltase 425+ 47 (3) 37.6 £ 0.59 (3) 40.5 4.9 (3) 385+9.8(3)
SPb 1.34 £ 0.20 (1) 2.86 +0.22 (1) 0.70 + 0.35 (1) 0.97 + 0.08 (1)

Unless otherwise noted, units are nmol product/min/mg protein. Values in parentheses indicate the number of independent biological replicates

used to generate the mean and standard error values indicated.

Abbreviations are as follows: DE: disproportionating enzyme; SP, starch phosphorylase; ADPGPP: ADPGlc pyrophosphorylase; DBE: starch

debranching enzyme; 3PGA: 3-phosphoglycerate.

2SS activity was measured independently in two completely separate sets of assays. For the assays in this row only the units are nmol glucose

incorporated/g FW/min.

b The values for SP and BE activity were determined by triplicate measurements from a single plant extract.
< Value is significantly different from wild type after Dunnet's adjustment for multiple comparisons. Unless so indicated, values are not significantly

different from wild type.

tained 28% or 53%, respectively, of the wild type starch
content.

Starch content was also quantified at various times
through a single LD diurnal cycle in the Atss2, Atss3 dou-
ble mutant as compared to wild type. The reduced granu-
lar starch content of the double mutant was evident
throughout the entire cycle (Figure 5B). The timing of
starch synthesis was not affected in the Atss2, Atss3 line, as
accumulation was noted at the end of the light phase.
Starch content in the Atss2-1 single mutant was also quan-
tified throughout the diurnal cycle. In this instance there
were no major differences from the wild type values (data
not shown).

The levels of water-soluble glucan polysaccharide (WSP)
were quantified in order to examine whether a glycogen-
like polymer or low-molecular weight maltooligosaccha-
rides (MOS) might accumulate in the Atss2, Atss3 double
mutant in place of crystalline starch granules. Statistically
significant differences from wild type were not observed
in LD conditions, however, in SD conditions this compo-
nent was elevated in the double mutant approximately
4.5-fold compared to wild type (Table 2).

Simple sugar levels also were quantified in plants grown
under SD and LD conditions. In SD conditions sucrose
levels were not significantly different from wild type in
either single mutant line or the Atss2, Atss3 double mutant
(Table 2). Monosaccharide levels in SD-grown plants, spe-
cifically glucose and fructose, were elevated in the double

mutant compared to the other strains (Table 2). The
increase compared to wild type was approximately 4.5-
fold for glucose and 3.4-fold for fructose, and these differ-
ences were statistically significant. In contrast to the SD
conditions, LD-grown plants did not exhibit significant
difference between the Atss2, Atss3 double mutant and
wild type (data not shown). The reason that the double
mutation has significant effects on soluble carbohdyrate
content, i.e., WSP, glucose, and fructose, in SD conditions
but not in LD conditions, is not obvious but may be
related to the rate of starch accumulation in the different
diurnal cycles.

Effects of mutations on starch structure and composition
Granule morphology

The morphology of leaf starch granules isolated from wild
type and the various mutant lines was examined by scan-
ning electron microscopy (Figure 6). As previously
reported, starch granules of the Atss3-1 mutant have nor-
mal morphology [29]. Granules from both Atss2-1 and
Atss2-2 are distorted in shape and seemingly larger than
those of the wild type control (Figure 6 and data not
shown). Starch granules in the Atss2, Atss3 double mutant
are also distorted in shape, similar to the Atss2 single
mutants, and the phenotype appears to be more exagger-
ated in the double mutant line.

Amylose content and amylose/amylopectin ratio

The relative amounts of amylose and amylopectin in
starch granules were compared between wild type and the
three mutant lines after separating starch polymers by gel
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HitrapQ fraction

Figure 4

Starch modifying activities observed by two dimen-
sional zymogram. Proteins in total soluble leaf extracts
were separated by anion exchange chromatography and then
by native PAGE. The proteins in these gels were transferred
to a second polyacrylamide gel containing 0.3% potato starch.
Gels were then stained with I,/KI solution.

permeation chromatography (GPC). The apparent amy-
lose peak from the Atss2 mutant lines exhibited a maximal
absorbance wavelength when complexes with iodine
(Anax) of approximately 610 nm, closely matching the
wild type value (Figure 7). Thus, the slower-eluting glucan
present in the mutants is identified as amylose, as
opposed to a modified amylopectin of anomalously low
molecular mass. The single measurement of the Atss3-1
mutant showed no obvious difference in amylose:amylo-
pectin ratio compared to wild type (Table 3), confirming
the previously published result [29]. All three Atss2 muta-
tions conditioned an increase in the apparent amylose
content. In the WS background, the wild type starch con-
tained 25% amylose and the Atss2-3 mutant contained
43% amylose, and this difference was shown to be statis-
tically significant (Table 3). Both Atss2 mutant alleles in
the Columbia background also exhibited increased amy-
lose content compared to wild type (Figure 7A, Table 3).
These results are similar to the reported effect of SSII defi-
ciency on starch composition in other species [21-26]. In
the single analysis of the Atss2, Atss3 double mutant starch
an even greater increase in amylose content was observed
(Figure 7A, Table 3).
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Figure 5

Glucan content. A, lodine staining. Leaves were harvested
at the end of the light phase from plants of the indicated gen-
otype grown for several weeks in long day growth room
conditions. These leaves were then decolorized, stained with
1,/KI solution, and destained for 5 — 10 min in water. B,
Starch quantification. Starch was isolated from leaves of
plants grown under long day growth room conditions, har-
vested at specific times in the 16 h light/8 h dark diurnal
cycle. Granules were collected by low-speed centrifugation
and the glucan content in the pellet quantified. Each point is
the average of leaves from six individual plants, and standard
error is indicated.

In addition to the increased ratio of amylose to amylopec-
tin, increased total accumulation of amylose was observed
in all three SSII single mutant lines. Normalizing the
amount of amylose to the mass of leaf fresh weight
revealed increases between 38% and 76% (Table 3). This
effect was not observed in the Atss2, Atss3 double mutant,
presumably because of the low total starch content in that
line.

Page 8 of 18

(page number not for citation purposes)



BMC Plant Biology 2008, 8:96

Table 2: Carbohydrate content
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Genotype Starch WSP2 Sucrose Glucose Fructose
LD SD LD SD SD SD SD
WTP 5.54+£0.35 4.39 £ 039 0.15 £ 0.03 0.04 £ 0.01 0.35 £ 0.09 0.15 £ 0.03 0.08 + 0.02
Atss2-[b 522 £0.37 491 +£0.20 0.14 £ 0.05 0.1'1 £0.02 0.33 £0.05 0.15 £ 0.04 0.06 0.0l
Atss2-2b 6.16 £0.30 ND ND ND ND ND ND
Atss3-1b 6.77 £ 0.24 6.02+0.11¢ 0.14 + 0.04 0.10 + 0.04 0.30 £ 0.09 0.22 £ 0.07 0.08 + 0.0l
Atss2, Atss32 1.56 + 0.074 2.34 £ 0.294 0.16 £ 0.0l 0.19 £ 0.044 0.36 £ 0.08 0.69 £ 0.104 0.26 + 0.044
WTe 8.60 + 0.54 ND ND ND ND ND ND
Atss2-3¢ 7.00 £ 0.60 ND ND ND ND ND ND

aWSP indicates water soluble glucan polysaccharide
bColumbia genetic background
WS genetic background

dValues significantly different from wild type after adjustment for multiple comparisons. Any values not so noted were not significantly different

from wild type.

Units are mg/g FW. The values shown are the mean and standard deviation from four independent leaf extractions, each of which was assayed in
duplicate. Abbreviations are as follows: LD: 16 h light/8 h dark long day diurnal cycle; SD: 8 h light/16 h dark short day diurnal cycle; ND: not

determined.

Phosphate content

The phosphate content of starch is known to be influ-
enced by SS mutations, either positively or negatively
depending on the affected isoform [27,29,42]. To extend
this analysis the phosphoryl group frequency in Atss2-1

Wild type

Figure 6

Starch granule morphology. Purified starch granules
from plant leaves of different genotype were coated with
gold particles, visualized by scanning electron microscopy,
and then photographed. Bar = 2 um.

mutant starch was quantified, with the result that phos-
phate content was decreased by approximately 30% com-
pared to wild type (Table 3). This is in contrast to Atss3
mutations, which are known to result in significantly
increased phosphate content [29]. The phosphate content
could not be determined in the Atss2, Atss3 double mutant
owing to sample limitation.

Amylopectin structure

Absorption spectra of glucan-iodine complexes indicated
distinct amylopectin structures in the mutants as com-
pared to wild type. In the Columbia background the A,
for both Atss2-1 and Atss2-2 mutants was 565 nm, whereas
wild type amylopectin had a &, value of 545 nm (Figure
7, Table 3). Elevated A, for the Atss2-3 mutant compared
to wild type in the WS background was also observed
(Table 3). The A, value for amylopectin from the Atss2,
Atss3 double mutant was further elevated to 570 nm (Fig-
ure 7B, Table 3), indicating a structure different from
either wild type or the Atss2 single mutants.

The glucan chain length distribution in total leaf starch
was determined for wild type and the mutant lines using
fluorophore-assisted ~ carbohydrate  electrophoresis
(FACE) [43,44]. The frequency of each individual chain
length was calculated as a percentage of the total chains
analyzed (Figure 8A). To enable comparison between gen-
otypes, the normalized wild type distribution value for
each chain length was subtracted from the equivalent
value for a particular mutant (Figure 8B). Positive values
indicate enrichment of that chain length in the mutant
relative to wild type, whereas negative values indicate
reduced frequency of such chains.
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Table 3: Leaf starch properties
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Genotype Amylose content Amylopectin A, Phosphate
% (mgl/g FW)

Wild type? 21.6 1.4 (5) 1.20 545 nm 435+043(2)
Atss3-/2 20.7 1.40 555 nm 10.7 £ 0.03 (2)
Atss2-12 337 1.75 565 nm 3.01 £0.24 (2)
Atss2-22 342 2.11 565 nm NA
Atss2 Atss32 40.1 0.63 575 nm NA
Wild typeb 252+ 1.8 (5) 2.17 549 nm NA
Atss2-3b 42.7 £ 6.7 (5)c 2.99 555 nm NA

aColumbia genetic background
bWS genetic background
Value significantly different from wild type as indicated by P-value < 0.05.

Starch was analyzed from leaves harvested at the end of the light period of the LD diurnal cycle. GPC fractions 42 and lower were designated as
amylopectin and fractions 43 and higher were designated as amylose (Figure 7). Parentheses indicate the number of independent biological replicate
assays used to generate the mean and standard deviation. The Atss2-/ and Atss2-2 mutant lines were analyzed only once, however, these assays are
independent biological replicates for the condition in which SSIl is absent. Amylose content was normalized to leaf fresh weight by multiplying the
normalized total starch amount from Table 3 by the amylose percentage determined for each genotype. Phosphate content units are nmol
phosphoryl groups/mg starch. "NA" indicates data not available. Data for Atss3-/ were previously published [29] in a study using identical analytical

methodology.

The difference plots for Atss2-1 and Atss2-2 are very simi-
lar, showing a significant enrichment in chains from DP5
to DP10 and depletion in chains from DP12 to DP28 (Fig-
ure 8B). A qualitatively similar result was observed for the
Atss2-3 mutant analyzed in the WS genetic background,
with the distinction that the degree of difference was
larger compared to the Columbia lines (Figure 8B). In a
previous report the Atss3-1 and Atss3-2 mutations were
shown to have very small changes in these chain length
ranges [29] (Figure 8B). The double mutant shows enrich-
ment and depletion in the same chain length regions as
those affected by the Atss2 single mutants, but the degree
of the change was extreme (Figure 8B). In the most
extreme case, DP8 chains represented 2.2% of the normal-
ized total in wild type or the Atss3-1 mutant, 5.6% in
either of the Atss2 mutants, and approximately 14% in the
Atss2, Atss3 double mutant (Figure 8A and data not
shown). Thus, the Atss2, Atss3 double mutant profile was
quantitatively distinct from the sum of the patterns of the
Atss2 and Atss3 single mutants (Figure 8C).

Discussion

Atss2 single mutation

The phenotype described here for amylopectin structure
and amylose content can be definitively assigned as a
result of the Atss2 mutations, as opposed to any other uni-
dentified mutation(s) present in the T-DNA insertion
lines. Three independent alleles of the AtSS2 locus were
analyzed for phenotypic effects, and in all instances essen-
tially identical results were obtained regarding starch
structure and amylose content. Each T-DNA insertion
allele originated in a distinct line as an independent event,
so the probability is negligible that any unidentified sec-
ond mutation in the genetic background could be the

causative agent of the phenotype. Furthermore, major
effects of the Atss2 mutations on other starch metabolic
enzymes were not detected, so that pleiotropic effects are
not a likely explanation for the changes in starch structure.

The effects of eliminating SSII on amylopectin structure in
Arabidopsis leaves closely resembled the phenotype caused
by SSII deficiency in other plant species including maize,
barley, wheat, potato, rice, and pea [18,21-27]. In all these
species SSII mutations cause altered amylopectin structure
such that the frequency of linear glucan chains of DP6 to
DP10 is significantly increased while the abundance of
DP12 to DP28 chains is decreased. Like most of the other
plant species, Arabidopsis granules exhibit distorted mor-
phology when SSII is inactive.

From these observations it is clear that the physiological
function of SSII is highly conserved among plants. The
current study indicates that this function also applies to
transient starch in leaves, in addition to storage starch in
the other species analyzed previously. This conservation
applies regardless of the abundance of SSII activity in the
soluble phase of each tissue examined. For example, in
pea embryos SSII represents up to 60-70% of the total sol-
uble SSII activity [14], in pea leaves SSII is a minor but
detectable isoform and SSIII accounts for the major por-
tion of the activity [45], and in the current study SSII was
undetectable in soluble extracts of Arabidopsis leaves. A
possible explanation for this apparent discrepancy may be
that the portion of SSII that is present within granules is
the determining factor in amylopectin structure, as
opposed to that in the soluble fraction. This parameter has
not been tested in Arabidopsis leaves, however, in all stor-
age starches examined SSII has been observed to partition
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Figure 7

Glucan separation by gel permeation chromatogra-
phy. A, Wild type and Atss2-1. Purified granules from plants
of the indicated genotypes were dissolved by boiling in
DMSO, and the polymers present were separated by GPC
on Sepaharose CL-2B on a column measuring 1.8 cmi.d. x |
m height. Glucan polymer in each fraction was enzymatically
quantified, and samples of each fraction were stained with I,/
Kl solution. Visible absorbance spectra were recorded and
the maximal absorbance wavelength is noted. B, Wild type
and Atss2, Atss3. Analysis was as in panel A, except that the
column size was 1.2 cm i.d. X 50 cm height.

to some extent within the insoluble granules
[14,16,18,21,23,26,46,47]. Another possible explanation
is that the in vitro measurement of SSII activity does not
accurately reflect the enzyme's activity in vivo, owing to an
unidentified effect of the assay conditions employed.

Analysis of leaf starch offered an advantage in observing
the effects of SSII on total starch levels, because during the
diurnal cycle the starch content is reduced to near zero at
the end of the dark phase. Thus, the starch that accumu-
lates during the light phase is synthesized nearly entirely
over the previous 16 h in the light regime used in this
study. This is in contrast to storage starch that accumulates
over a period of weeks. The observed result is that SSII
mutation did not cause a major change in the starch levels
at the end of the day, indicating that despite the signifi-
cant change both in amylopectin structure and amylopec-
tin/amylose ratio the overall rate of starch accumulation is
not decreased by loss of SSII.

An interesting feature of starch biosynthesis in all three
Atss2 mutants is that the amount of amylose produced in
leaves relative to the total tissue fresh weight is increased.
The fact that the percentage of amylose in starch granules
rises in the absence of SSII was known from previous stud-
ies in other species. This effect on relative amylose content
could result from decreased amylopectin directly caused
by the SS defect. The current study, however, demon-
strates that the absolute amount of amylose is increased in
the mutants over that found in wild type leaves. Presuma-
bly the activity of GBSS, the isoform responsible for amy-
lose production, is increased in Atss2 mutant granules
compared to wild type.

Increased abundance of GBSS does not appear to be the
explanation for the elevated total amylose content,
because approximately equal amounts of this enzyme
were observed by immunoblot analysis in wild type and
Atss2-3 mutant granules (CD and NS, unpublished
results). Possible explanations for the increased amylose
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Figure 8 (see previous page)

Amylopectin chain length distribution. A, Chain length distributions. The population distribution of chains of a given DP
was normalized to the total number of chains in the DP range of 5-55. For wild type and Atss2-/ the values shown are the
mean from at least three independent biological replicates, with error bars indicating the standard error. Starch from the Atss2,
Atss3 double mutant was analyzed only once owing to sample limitation. B, Difference plot comparison of chain length distribu-
tions. For each given DP, the distribution mean value for wild type was subtracted from that of the indicated mutant strain. The
chain length distribution means used to generate the difference plots for the Atss2-2 and Atss2-3 lines are taken from data not
shown. Appropriate wild type controls were used, i.e., Columbia for the Atss2-/ and Atss2-2 mutants, and WS for the Atss2-3
mutant. For comparison, the difference plot for the Atss3-/ line is shown from previously published results [29]. C, Pleiotropic

effect plot. The predicted sum of the Atss2-1 and Atss3-1 effects in single mutants (solid line) is compared to the observed

result for the double mutant (dotted line).

content are a direct regulation of GBSS by SSII, or that the
altered amylopectin structure resulting from loss of SSII
affects the GBSS activity. The latter explanation could
occur through an allosteric regulation of GBSS by the glu-
can environment in which it is located [48]. Alternatively,
it has been proposed that GBSS directly uses amylopectin
as a precursor to the synthesis of amylose [49]. According
to this hypothesis the structurally altered amylopectin of
the Atss2 mutants may provide a more effective substrate
for GBSS, allowing greater levels of amylose production.
Yet another possible explanation for the increased total
amylose content is that elevated MOS levels stimulate
GBSS activity by acting as a primer, as has been demon-
strated in vitro [50]. This explanation is unlikely to apply,
however, because WSP levels were not elevated in any of
the mutants grown in LD conditions (Table 2) yet the
total amylose increase was clearly evident (Table 3).

Atss2, Atss3 double mutation

Combining mutations that eliminate SSII or SSIII in a sin-
gle line provided a test of whether or not those two
enzymes act independently in starch biosynthesis. Previ-
ous analysis of Atss3 mutants showed no change in amy-
lose content or granule morphology, and only minor
changes in amylopectin chain length distribution on a
much smaller scale than were observed here for Atss2
mutation [29]. Accordingly, if SSII and SSIII act independ-
ently then the expected amylopectin structure in the dou-
ble mutant would be the nearly same as that of the Atss2
single mutants. To the contrary, the starch phenotype of
the double mutant was far different than that of either
Atss2 or Atss3 single mutants. The most likely explanation
for these results is that SSII and SSIII are capable of execut-
ing the same or similar functions in the determination of
amylopectin structure.

The chain length range affected in the double mutant is
the same as in the Atss2 single mutants, however, the mag-
nitude of the change is far greater. In fact, the glucan struc-
ture of the Atss2, Atss3 line is highly abnormal and
resembles glycogen more than it does amylopectin, even
though the mutant polymer is still present in water-insol-

uble granules. Synergism is also evident in the starch con-
tent, which is reduced in the double mutant by more than
70% at the end of the day. This compares to no reduction
in content owing to the SSII deficiency, and an increase in
the starch content conditioned by SSIII mutation in the
growth environment used in this study.

The current study confirms the synergistic effects of simul-
taneous reduction in SSII and SSIII observed previously in
antisense potato plants [22,27], and in addition reveals
several distinctions between the leaf and tuber systems.
First, the total amounts of starch produced were not
affected in SSII/SSIII antisense tubers [22,27], whereas the
Arabidopsis mutant lacking both enzymes clearly exhibited
a starch deficiency. This effect is likely due to the nature of
the transient system in which starch present at the end of
the light phase accrues during the course of single day,
compared to tubers where starch accumulates steadily
over a much longer period of time. Second, more severe
effects on chain length distribution were detected in Ara-
bidopsis double mutant compared to the potato antisense
plants. Most notably, the extreme magnitude of the syner-
gistic effects of simultaneous loss of SSII and SSIII on
chains of DP6 to DP10 is most clearly observed in the cur-
rent study. The technique applied for measurement of
chain length frequency in one of the potato antisense
studies prevented accurate quantification of the synergis-
tic effects [27]. In the other antisense study in potato
tubers synergism was detected regarding the DP range of
the chains that were affected, however the change in rela-
tive abundance of any particular length chain was the
same in the single and double antisense lines [22]. This
result is different than the synergistic effects observed in
Arabidopsis leaves. A possible explanation for the differ-
ences is that in Arabidopsis the insertion mutations com-
pletely eliminated each enzyme activity, whereas in
potato the SS activities were reduced but not necessarily
lost entirely. Alternatively, although the individual roles
of each SS appear to be conserved in plants, the nature of
the interactions in these two comprehensive biosynthetic
systems may vary. These observations point out the utility
of the Arabidopsis genetic system.
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The observed changes in starch metabolism in the Atss2,
Atss3 double mutant occurred despite the fact total SS
activity in soluble leaf extracts was not significantly
reduced compared to wild type (Tables 1 and 2). This
observation is unexpected in light of the fact that SSI activ-
ity appears to account for only approximately 50% of the
total, as determined by analysis of Atss1 mutants [28].
However, neither Atss2 nor Atss3 mutations alone dimin-
ish total SS activity (Tables 1 and 2) [29]. This apparent
paradox may be explained by the proposal that SSIII
serves as a negative regulator of SSI [29], potentially
through interactions in the same multi-subunit complex
[31], so that SSI activity could be elevated compared to
wild type in the double mutant. Similar observations were
made in maize endosperm extracts in which mutations
affecting SSIII caused increased total SS activity as
opposed to the expected reduction [13,39], and nearly all
of the elevated activity could be attributed to SSI [13]. A
similar relationship also was demonstrated in rice
endosperm, in which SSI activity was shown to be ele-
vated 1.3 to 1.7-fold as the result of a mutation affecting
SSllla [40].

These considerations emphasize the point that total SS
activity is not entirely responsible for amylopectin struc-
ture determination, and that the relative abundance of
each conserved class of SS enzyme likely is an important
factor. Similarly, total soluble activity is not solely respon-
sible for determining starch content, because the Atss2,
Atss3 double mutant is deficient in starch even though the
remaining SS classes are able to provide a high level of
activity. Either SSII or SSIII, acting in concert with SSI, are
able to support the wild type level of starch synthesis. A
possible explanation of this fact is that SSI may be unable
to extend chains to a length suitable for BE action,
whereas either SSII or SSIII can produce suitable BE sub-
strate chains.

Functional interaction among SS classes

The effects of single and double mutations in Arabidopsis
genes raise the idea that normal amylopectin chain length
distribution is determined in large part by competition
between different SSs for binding to any glucan chain sub-
strate along with the inherent ability of each SS class to
catalyze elongation of chains of particular lengths. The lat-
ter point is illustrated by the extreme deficiency of chains
of DP12 to DP25 in the Atss2, Atss3 double mutant. In this
instance the major soluble SS remaining is SSI. Thus, this
enzyme appears to be unable to elongate glucan chains
much beyond DP10, which is consistent with the known
biochemical properties of maize SSI measured in vitro
[51].

Competition between SSI and SSII or SSIII for binding to
each glucan chain is suggested from the phenotype caused
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by the Atss1 mutation [28] or the analogous mutation in
rice [52]. Amylopectin from these mutants exhibits
increased frequency of chains in the length region of
DP12 to DP28 and a relative deficiency in short chains of
DP6 to DP10. In the absence of SSI, access of SSII or SSIII
to substrate chains may be increased owing to reduced
competition with SSI. If the catalytic efficiency of SSII or
SSIII relative to chain length is extended compared to SSI,
then the population of DP13 to DP25 chains would rise
compared to the wild type condition in which SSI to some
extent prevents SSII or SSIII action. In this view, SSI may
bind to the shorter chains of approximately DP10 but
have a low probability of catalytic activity, thus acting as a
negative regulator of SSII or SSIII by means of steric inter-
ference. The balance between short chains of DP6 to
DP10 and intermediate chains of DP12 to DP28 would be
determined by the relative abundance of the three
enzymes, their affinities for glucan chains as a function of
DP, and their catalytic efficiencies after binding to sub-
strate, again as a function of DP. The proposal that differ-
ent SS classes would compete with each other for binding
to potential substrate chains is consistent with the obser-
vation that SSII from pea embryos is a distributive enzyme
that dissociates from the glucan substrate after each glu-
cose unit addition [48,50]. Thus SSII and SSIII might com-
pete for binding to potential glucan substrates during each
cycle of chain elongation.

In order to explain the chain length profile of the Atss2,
Atss3 double mutant, SSIII is proposed to partially overlap
with SSII with regard to the DP region suitable for cataly-
sis, but not with that of SSI. In the absence of SSII, SSIII
would still be available to produce chains in the interme-
diate length region, and to compete with SSI for binding
to potential substrates. SSIII is proposed to compete with
SSI less effectively than does SSII, in order to explain the
reduction in intermediate length chains of DP12 to DP20
in the Atss2 mutants. The fact that the Atss3 mutation
alone has only a minor effect on amylopectin chains
shorter than DP40 could be explained by a competitive
advantage of SSII over SSIII for binding to short glucan
chains. Accordingly, SSIII would not be involved to a great
extent in intermediate chain length production in the wild
type condition, but could provide that function in the
absence of SSII.

Conclusion

The activity of SSII is required in Arabidopsis for produc-
tion of the normal frequency of amylopectin chains of
DP12 to DP25, and thus the protein exhibits the same
function that is conserved in numerous other plant spe-
cies. None of the other SS classes can completely compen-
sate for loss of SSII, however, SSIII is able to partially
function in production of DP12 to DP25 chains. SSIII is
not required for the normal population of these chains.
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These observations can be explained by competition
between SSII and SSIII for binding to the non-reducing
end of each potential substrate chain. Finally, loss of SSII
affects the activity of GBSS such that the total amount of
amylose in leaves is increased.

Methods

Plant materials and growth conditions

Wild type Arabidopsis thaliana of the ecotype Columbia
(Col-0), and Atss2-1 or Atss2-2 mutant lines in this back-
ground, were sown in Sunshine Soil mix. Sown seeds were
incubated at 4°C for 2-3 days then grown either in a
growth room under a 16-h light/8-h dark photoperiod at
21°C and 60% relative humidity, or in a growth chamber
under a 8-h light/16-h dark photoperiod and the same
temperature and relative humidity. These growth facilities
are located at Iowa State University in Ames, IA. Wild type
Arabidopsis of the WS background, and the congenic Atss2-
3 mutant line, were grown similarly. The growth facilities
used for all lines in the WS background were located at the
University of Science and Technology of Lille (USTL), Vil-
leneuve d'Ascq, France. All subsequent analyses of the
Columbia and WS lines were performed independently,
the former at lowa State University and the latter at USTL.
Appropriate wild type control lines were used in all
instances, i.e., Columbia for the Atss2-1 and Atss2-2
mutants, and WS for the Atss2-3 mutant.

Identification of mutant alleles by PCR, and generation of
mutant lines

Standard methods were used for isolation of genomic
DNA from leaf tissue, and PCR amplification. PCR prim-
ers used to identify the mutant alleles were derived from
the T-DNA left border (LBal, TGG TTC ACG TAG TGG
GCC ATC G) and from the AtSS2 gene sequence (2RP1,
GCT ACC AAT ATC ACA TTC ATG AC; 2LP1, CIT ACC
ATG ATT TGC CIT CTG; 2LP2, CCT CIT CTC TGA AGC
CCT TCC C; 2RP2, AGT GGT GGA AAA TTA GGG GCG)
(Figure 1A). Nucleotide sequence analysis of PCR prod-
ucts generated by the LBal/2RP1 primer pair or the LBal/
2LP2 primer pair revealed the genomic location of the T-
DNA insertion generating Atss2-1 or Atss2-2, respectively
(Figure 1A). The primer sets used for identification of
Atss2-3 in the WS genetic background were as follows:
Revl, TGG TTC CAT AGT TCA TTG CGT AAA; Forl, GAA
GGA GGT TGG GGT CTG C; Tag5, CTA CAA ATT GCC
TTT TCT TAT CGA C (Figure 1A).

The Atss2,Atss3 double mutant was generated by crossing
homozygous Atss2-1 and Atss3-1 homozygous single
mutant lines, then allowing the double heterozygous F1
plants to self pollinate. Genomic DNA from segregants
was screened by PCR to reveal the presence of each inser-
tion allele. The mutant allele Atss2-1 was revealed by
amplification with the LBal/2RP1 primer pair, and the
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wild type allele AtSS2 was identified by the 2RP1/2LP1
primer pair. Primer combinations for identification of
Atss3-1 and the wild type AtSS3 allele were LBa1/SS3-TU1
and SS3-TU1/SS3-TL1, respectively [29]. One double
homozygous line identified in the F2 generation was
propagated for several more generations, and PCR geno-
typing consistently revealed all individuals in the lineage
to be double homozygous mutants (data not shown).

RT-PCR

Total RNA was isolated from approximately 100 mg of
fresh leaf tissue from leaves harvested approximately 20
days after germination using the RNeasy Plant Mini Kit
(Qiagen). Total RNA was treated with RNase-free DNase
(Promega) (1 U, 30 min, 37°C) to remove any contami-
nating genomic DNA in the samples. A commercial
enzyme kit (Invitrogen Superscript I11) was used to syn-
thesize cDNA. The sequences of the primers used to
amplify the AtSS2 mRNA are specified in the previous sec-
tion, or were as follows: For51, GCT GAG GCA TTC CCG
TGTTTCT; Rev51, TGC GGT TCT TCA AGG ATT CAG TA;
ForRT, GGG GAC CGG TAG ATG ATT TC, and RevRT,
CGG TCG CCC TGT GCC TAA C. The primers used to
amplify the AtSS3 mRNA were described previously [29],
except for 3-EU1 located near the AtSS3 initiation codon
(GGG GAC AAG TIT GTA CAA AAA AGC AGG CTIT CCT
GGT GCC ACG CGG TTC CGG AAG TGC TCA GAA AAG
AAC).

Expression of recombinant SSll in E. coli and monoclonal
antibody production

Cloned, full length SSIT cDNA was obtained from Riken
(resource number: pda04163). The coding region of the
SSII ¢cDNA, minus the 120 nucleotide sequence at the 5'
end coding for a predicted transit peptide, was cloned into
pDONR201 using Gateway cloning technology (Invitro-
gen) to generate plasmid pESS2. The native stop codon of
the SSII cDNA was included in the cloned region. The SSII
cDNA sequence was then transferred by in vivo recombi-
nation to the expression vector pDEST15 to create expres-
sion plasmid pDSS2. In pDSS2, the SSII coding region is
fused at its 5' end to a sequence coding for glutathione-S-
transferase (GST). SSII was expressed from pDSS2 in E. coli
BL-21 AI cells (Invitrogen). The fusion gene was induced
by addition of 0.2% arabinose and induced cells were
grown at room temperature for approximately 6 h. The
SSII fusion protein was purified from E. coli lysates by
binding to glutathione-agarose (Sigma) on a GST affinity
column. Monoclonal antibody against this full length
SSII-GST recombinant protein was generated as described
previously [29]. The hybridoma culture fluid containing
SSII antibody (aAtSSIT) was used undiluted for immuno-
blot analysis.
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Partial purification of leaf proteins and enzyme activity
measurements

Leaf extracts were prepared and fractionated by anion
exchange on HiTrapQ (Pharmacia) as described previ-
ously [29]. Proteins from selected fractions were analyzed
by immunoblot using o AtSSII monoclonal antibody.
Fractions or whole leaf extracts were also analyzed by
starch synthase zymogram [29] or by native starch zymo-
gram [43], as described previously.

Total soluble starch synthase activity in leaf extracts was
assayed essentially as described previously [13]. Fresh
leaves (200 mg) were ground into fine powder in liquid
nitrogen and suspended in 400 pL Extraction Buffer (50
mM Tris-acetate, pH 7.5, 10 mM DTT). After centrifuga-
tion to remove insoluble materials, protein concentration
was determined by the Bradford method, and the starch
synthase activity assay was then conducted with different
quantities of protein. Control experiments demonstrated
that the amount of *C incorporated into methanol-pre-
cipitable product is linear with respect to the amount of
protein in the assay (data not shown). Enzyme assays for
BE, ADPGPP, a-amylase, -amylase, DE, maltase, pullula-
nase-type DBE, and SP were performed as described previ-
ously [28,53].

Analysis of starch quantity and structure

The methods used for analysis of starch content in leaves,
amylopectin chain length distribution, granule morphol-
ogy, starch phosphate content, and separation of amylose
and amylopectin by GPC on Sepharose CL-2B have all
been described previously [29,43]. Two different sizes of
Sepharose CL-2B column were used, either 1.2 cm i.d. x
50 cm height, or 1.8 cm i.d. x 1 m height. The smaller col-
umn was eluted at a flow rate of 0.26 mL/min and 1.5 mL
fractions were collected. The larger column was eluted at
a flow rate of 0.5 mL/min and 3 mL fractions were col-
lected. The starch granule glucans separated by GPC were
characterized by staining the column fractions with 1/2
volume of L,/KI solution, obtaining a visible spectrum
from 400 nm to 700 nm and then recording the A,
value. Glucan concentration in each fraction was quanti-
fied by determination of glucose units following complete
hydrolysis with amyloglucosidase, using a commercial
assay kit (Catalogue No. 10 207 748 035; R-Biopharm
AG, Darmstadt, Germany)

In order to measure both WSP and insoluble glucans, i.e.,
starch, in the same leaf extracts, the ground leaf material
suspended in 1 ml of water was centrifuged at full speed
in a microfuge for 10 min, and the supernatant and pellet
were both collected. The pellet was washed twice with 1
ml of 80% ethanol, and then suspended in 1 ml of dis-
tilled water. Glucan present in the soluble and granule
fractions was enzymatically quantified as described in the

http://www.biomedcentral.com/1471-2229/8/96

previous paragraph. To quantify sucrose, D-fructose, and
D-glucose, the pooled aqueous supernatant from six
plants were quantified in triplicate with a Sucrose/D-Glu-
cose/D-Fructose assay kit (Catalogue No. 10 716 260 035;
R-Biopharm AG, Darmstadt, Germany).

Statistical analyses

To evaluate the effects of SSII and/or SSIII mutations on
starch and soluble carbohydrate content, and other starch
metabolic enzymes compared to wild type, one-way
ANOVA and two-sample t-tests were used for the compar-
isons. Since most of the experiments involved comparing
single and/or double mutants to the common wild type
control with multiple endpoints, Dunnett's and Bonfer-
roni methods were used to adjust for multiple compari-
sons. Only experiments that had more than two
independent replicates were considered for statistical
analysis.
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