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Abstract
Background: Plant cells respond to the presence of potential fungal or oomycete pathogens by
mounting a basal defence response that involves aggregation of cytoplasm, reorganization of
cytoskeletal, endomembrane and other cell components and development of cell wall appositions
beneath the infection site. This response is induced by non-adapted, avirulent and virulent
pathogens alike, and in the majority of cases achieves penetration resistance against the
microorganism on the plant surface. To explore the nature of signals that trigger this subcellular
response and to determine the timing of its induction, we have monitored the reorganization of
GFP-tagged actin, microtubules, endoplasmic reticulum (ER) and peroxisomes in Arabidopsis plants
– after touching the epidermal surface with a microneedle.

Results: Within 3 to 5 minutes of touching the surface of Arabidopsis cotyledon epidermal cells
with fine glass or tungsten needles, actin microfilaments, ER and peroxisomes began to accumulate
beneath the point of contact with the needle. Formation of a dense patch of actin was followed by
focusing of actin cables on the site of contact. Touching the cell surface induced localized
depolymerization of microtubules to form a microtubule-depleted zone surrounding a dense patch
of GFP-tubulin beneath the needle tip. The concentration of actin, GFP-tubulin, ER and
peroxisomes remained focused on the contact site as the needle moved across the cell surface and
quickly dispersed when the needle was removed.

Conclusion: Our results show that plant cells can detect the gentle pressure of a microneedle on
the epidermal cell surface and respond by reorganizing subcellular components in a manner similar
to that induced during attack by potential fungal or oomycete pathogens. The results of our study
indicate that during plant-pathogen interactions, the basal defence response may be induced by the
plant's perception of the physical force exerted by the pathogen as it attempts to invade the
epidermal cell surface.
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Background
Early studies of plant-pathogen interactions documented
an increase in the activity of cytoplasmic streaming and
accumulation of cytoplasm beneath the invading patho-
gen cell as the first structural manifestation of the
response of plants to microorganisms on their surface [1-
4]. Cytoplasmic aggregation is accompanied by reorgani-
zation of cytoskeletal and endomembrane components
which become focused on the infection site [5-8]. This
cytoplasmic reorganization is followed by thickening and
strengthening of the cell wall to form wall appositions, or
papillae, beneath the invading pathogen [9]. Wall apposi-
tions develop as the result of localized deposition of cal-
lose and site-directed secretion of other cell wall
components and anti-microbial compounds including
phenolics, silicon, H2O2 and pathogenesis-related pro-
teins [10-12]. Once formed, wall appositions constitute
an enhanced physical and chemical barrier against invad-
ing pathogens and are a central component of the basal
defence response [9,13,14]. This basal defence response is
non-specific in that it is mounted at the onset of non-host,
incompatible or compatible interactions. The penetration
resistance that is achieved successfully thwarts attack by
most eukaryotic microorganisms.

Localized secretion of wall materials and toxins depends
on the actin cytoskeleton which is believed to be respon-
sible for the distribution of ER and for transport of dicty-
osomes, secretory vesicles and other cell components to
the infection site [15-19]. The dynamics of cytoskeleton
and endomembrane reorganization during pathogen
attack have been explored in living cells through studies of
GFP-tagged cell components [20-24]. These studies indi-
cate that, having been initiated, rearrangement of plant
cell components can occur rapidly. For example, extensive
changes in the distribution and morphology of the ER
have been followed during a 15-minute period from the
onset of reorganization beneath a Phytophthora sojae
hypha growing across the outer epidermal cell wall [20].
It is, however, difficult to determine the timing of induc-
tion of subcellular response in relation to the stage of
infection.

In light of the lack of specificity in induction of subcellular
reorganization following inoculation with non-adapted,
avirulent and virulent fungi or oomycetes, we hypothe-
sized that the response could be triggered by physical
detection of pressure exerted by the pathogen as it
attempts to penetrate the plant epidermis. In the study
reported here, we have tested this hypothesis by monitor-
ing the response of GFP-tagged components in epidermal
cells of Arabidopsis thaliana cotyledons when they are
touched gently with a fine microneedle. Our results show
that within 3 to 5 minutes, plant cells respond to this
mechanical stimulation, displaying similar subcellular

reorganization to that observed during pathogen inva-
sion.

Results
Image collection
The organization of GFP-tagged cell components was
imaged by collecting z-series of optical sections through
the cortical cytoplasm underlying the outer epidermal cell
wall before and after touching the cotyledon surface with
a microneedle. The depth of the cortical cytoplasm and
the number of optical sections required to scan through it
were determined before bringing the needle into contact
with the outer surface of the cell wall. In preliminary trials,
it was found that z-series comprised of 5–7 sections were
optimal as this meant that optical sections were taken at
intervals of 0.8–1.0 μm and the time between z-series was
only 20–40 seconds.

After imaging the arrangement of GFP-tagged compo-
nents in the epidermal cell before needle contact (Fig. 1),
the needle was brought into contact with the cotyledon
surface and z-series were collected continuously for the
next 20–60 minutes. Image collection much beyond
about an hour was hampered by quenching of GFP fluo-
rescence. The needle was judged to have made contact
with the outer surface of the cell wall by comparing the
focal planes of the needle tip and the fluorescent
organelles within the cortical cytoplasm and by noting a
slight change in the focus of the wall and underlying cyto-
plasm as the needle was slowly advanced. If the needle
were advanced too far, it punctured the cell, leading to
sudden and widespread disruption of cell contents and,
often, to cell death. In most cases snapshots, i.e. maximal
projections of the images collected in each z-series, were
generated for analysis of the data. In the longer sequences,
there were sufficient snapshot images to compile them
into a movie using Premier (Adobe). In some cases, single
optical sections in the same focal plane were collected
continuously to monitor rapid dynamics of GFP-tagged
organelles.

No differences in cell behaviour in response to being
touched by either glass or tungsten microneedles were evi-
dent. In most cases, GFP-tagged components could be
seen through the glass needle, although in some cases flu-
orescence intensity behind the needle was reduced (e.g.
Figs. 2F–J). On the other hand, the tungsten needle
blocked view of organelles behind it and the position of
the tip of the needle could be visualized by a line of
reflected light (e.g. Figs. 3, 4, 5).

Aggregation of actin microfilaments underneath the 
contact site
Before being touched by the microneedle, actin microfila-
ments in the cortical cytoplasm underlying the outer epi-
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The organization of GFP-tagged cell components in untreated cellsFigure 1
The organization of GFP-tagged cell components in 
untreated cells. The distribution of actin (A), microtubules 
(B), endoplasmic reticulum (ER) (C) and peroxisomes (D) in 
Arabidopsis thaliana expressing hTalin-GFP [20], TUA6-GFP 
[70], KKXX-GFP [71] and PTS-GFP [46], respectively. 
Images are maximum projections of z-series optical sections 
taken through the cortical cytoplasm underlying the outer 
wall of cotyledon epidermal cells before being touched with 
the microneedle. Bars = 10 μm.

Formation of an actin patch beneath the contact siteFigure 2
Formation of an actin patch beneath the contact site. 
Actin microfilaments visualized in the cortical cytoplasm 
underlying the outer epidermal cell wall in a cotyledon of A. 
thaliana expressing hTalin-GFP. The surface of the epidermal 
cell was touched with a glass microneedle at time 0:00 at the 
site indicated by the asterisk in A. Images A-J are projections 
of six optical sections taken at the times indicated in minutes 
and seconds. Actin microfilaments began to concentrate 
beneath the needle contact site 1 minute 58 seconds after 
touching the epidermal cell surface. The patch of actin con-
tinued to enlarge over the ensuing hour. The arrows in A and 
J indicate a thick actin cable that remains in the same position 
throughout the 51-minute sequence. A movie composed of 
images from 94 time points taken during this time is shown in 
Additional File 1. Bar = 10 μm.



BMC Plant Biology 2008, 8:63 http://www.biomedcentral.com/1471-2229/8/63

Page 4 of 14
(page number not for citation purposes)

Focusing of actin cables at the contact siteFigure 3
Focusing of actin cables at the contact site. Actin 
microfilaments visualized in the cortical cytoplasm underlying 
the outer epidermal cell wall in a cotyledon of A. thaliana 
expressing hTalin-GFP. The surface of the epidermal cell was 
touched with a tungsten microneedle at time 0:00. The posi-
tion of the needle is indicated by the shadow outlined by the 
V-shaped lines. The position of the tip of the needle is shown 
by a line of reflected light in many images. Images A-F are 
projections of six optical sections taken at the times indi-
cated in minutes and seconds. Actin microfilaments began to 
concentrate beneath the needle contact site 3 minutes 23 
seconds after touching the epidermal cell surface. The den-
sity of the actin patch fluctuated over the ensuing 20 minutes. 
Between 11–23 minutes after contact, actin cables became 
focused on the contact site. A movie showing focusing of the 
actin cables in this experiment is shown in Additional File 3. 
Bar = 10 μm

Changes in the microtubule network beneath the point of contactFigure 4
Changes in the microtubule network beneath the 
point of contact. Microtubules visualized in the cortical 
cytoplasm underlying the outer epidermal cell wall in a coty-
ledon of A. thaliana expressing TUA6-GFP [70]. The surface 
of the epidermal cell was touched with a tungsten micronee-
dle at time 0:00. The position of the needle is indicated by 
the shadow outlined by the V-shaped lines. The position of 
the tip of the needle is shown by a line of reflected light. 
Images A-L are projections of five optical sections taken at 
the times indicated in minutes and seconds. The first sign of a 
reaction in the array occurs at 3 minutes 16 seconds when a 
linear region of diffuse fluorescence appears to the left of the 
needle tip (small arrow in C). A more intense cloud of diffuse 
fluorescence subsequently forms at the needle tip (F-L). At 
the same time, a microtubule-depleted zone about 20 μm in 
diameter forms around the needle tip as indicated by the 
arrows in I. A movie showing the dynamics of microtubule 
rearrangement in this experiment is shown in Additional File 
5. Bar = 10 μm.
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dermal cell wall in the A. thaliana cotyledons formed a
lattice of thick and thin cables surrounding a dispersed
network of fine filaments (Fig. 1A). Touching the surface
of the cotyledon with the microneedle led to rapid
changes in the arrangement of actin filaments within the
cell. The first changes were observed about 3 minutes after
needle contact (range = 118–246 s; mean = 177 ± 51 s, n
= 6) and consisted of the appearance of a patch of fine fil-
aments at the contact site (Fig. 2). The meshwork of actin
filaments quickly assembled into a roughly circular,
brightly fluorescent patch about 10 μm in diameter. The
arrangement of the filaments and the morphology of the
patch changed between consecutive images taken 20–30 s

apart, indicating movement, polymerization and/or
depolymerization of the actin microfilaments in the array.
Actin in other regions of the cell was generally more sta-
ble, with actin cables in particular showing only minor
alterations over 10–20 minute periods (Fig. 2; Additional
Files 1, 2). The position of the thick actin cable indicated
by the arrow in Fig. 2, for example, was maintained
throughout the 51-minute observation period. If the
microneedle were lifted off the cell surface, the actin patch
dispersed (Additional File 2). When the microneedle was
again brought into contact with the epidermal cell surface,
the patch reformed within 4 minutes (Additional File 2).

In three of four sequences that documented changes dur-
ing needle contact for more than 15 minutes, actin cables
become focused on the point of contact 15–20 minutes
after the surface was touched (Fig. 3; Additional File 3). In
one sequence, the fluorescence beneath the needle tip was
extremely bright and individual microfilaments could not
be distinguished within it (Additional File 4). The shape
and position of this cloud of bright diffuse fluorescence
changed continuously during the 27 minutes of observa-
tion.

Changes to the cortical microtubule arrays beneath the 
contact site
Before touching the surface of the cotyledon, the organi-
zation of microtubules in the cortical cytoplasm of the
epidermal pavement cells differed depending on the
region of the cell. In the neck region between lobed exten-
sions, microtubules formed parallel arrays aligned trans-
versely to the direction of extension (Fig. 1B). Within the
lobes, the cortical microtubules were less well organized
and displayed no predominant orientation.

The first changes in the cortical microtubule arrays were
detected about 3 minutes (range = 129 – 259 s; mean =
196 ± 56 s; n = 4) after contact of the microneedle with the
outer epidermal cell wall. Three main responses were
observed within the microtubule arrays. (1) Linear
regions of diffuse fluorescence appeared, often where a
microtubule strand had previously occurred (Fig. 4A–E).
(2) A dense cloud of bright fluorescence appeared close to
the needle tip (Fig. 4F–L; Additional File 5). (3) A ring of
cytoplasm containing a reduced density of microtubules
developed around the fluorescent cloud at the needle tip,
thus forming a microtubule-depleted zone about 20 μm
in diameter around the contact site (Figs. 4, 5A, 5B; Addi-
tional File 5). Formation of this microtubule-depleted
zone accompanied early development of the cloud of dif-
fuse fluorescence until about 10 minutes after needle con-
tact. With continued expansion of the cloud of diffuse
fluorescence, the microtubule-depleted zone was no
longer discernible (Figs. 5C–F; Additional File 5).

Alterations in microtubule arrays underlying the point of contactFigure 5
Alterations in microtubule arrays underlying the 
point of contact. Images in A and B are from two different 
experiments to that shown in Figure 4 and illustrate the 
localized microtubule depolymerization and formation of the 
microtubule-depleted zone (arrows) beneath the point of 
contact with the needle (outlined by the V-shaped lines). C-F 
are selected images taken at later time points in the same 
experiment shown in Figure 4. In C and D, taken 23–28 min-
utes after contact, the diffuse cloud of fluorescence fills the 
region previously occupied by the microtubule-depleted 
zone. In E and F, taken 1 hour after contact, the cloud of dif-
fuse fluorescence has diminished and a subset of microtu-
bules forms a circumferential array around the needle tip. 
Bar = 10 μm.
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When the snapshots (maximum projections) of each z-
series of optical sections are compiled into a movie, the
dynamics of the alterations within the microtubule arrays
surrounding the contact site are evident (Additional Files
5, 6). The three responses described above are seen to
occur within a framework of microtubule strands that are
relatively stable, undergoing only minor changes during
much of the hour of observation. The size and shape of
the cloud of bright fluorescence at the needle tip changes
between consecutive z-series taken at intervals of about 30
s and the cloud appears as a swirling region of locally con-
centrated GFP-tubulin. If the needle moved across the cot-
yledon surface, the dense cloud of diffuse fluorescence
moved with it to remain beneath the contact site (Addi-
tional Files 5, 6). The linear regions of diffuse fluorescence
fluctuate rapidly. Some appear to radiate out from the
central fluorescent cloud, others come and go, often
appearing to move laterally before disappearing. Analysis
of individual optical sections indicates that the linear dif-
fuse fluorescent strands lie below the cortical array, i.e.
they are further from the plasma membrane than the
more stable cortical array. In the experiment illustrated in
Figs. 4, 5C–F and Additional File 5, about 1 hour after
touching the cotyledon surface with the needle, the den-
sity of the cloud of diffuse fluorescence diminished and
the cortical array of microtubules could be seen to form a
roughly circumferential arrangement surrounding the
point of contact with the needle (Figs. 5E, 5F; Additional
File 5).

Observations of microtubule arrays in control A. thaliana
cotyledons that had not been touched with a microneedle
revealed that neither the dense cloud of fluorescence nor
the circumferential arrangement of cortical microtubules
was seen in these cells. However, mobile linear regions of
diffuse fluorescence were present at different locations
from time to time (Additional File 7). As in the cells that
had been touched with the needle, the diffuse strands lay
beneath the stable cortical array of well-defined microtu-
bules.

Reorganization of the ER beneath the contact site
Before touching the epidermal cells with the needle, the
ER formed a lace-like network in the cortical cytoplasm
(Figs. 1C, 6A; Additional File 8). After bringing the needle
into contact with the outer epidermal cell wall, there was
often a rapid, sometimes transient response in which the
ER lattice in the vicinity of the needle took on a beaded
appearance as the fluorescence of the tubular sections of
ER diminished and the interstices of the lattice became
more prominent (Fig. 6B). More extensive changes in ER
distribution were detected within about 4 minutes (range
= 146–289 s; mean =227 ± 73 s; n = 3) of touching the cot-
yledon surface. At this time, strands of diffuse fluores-
cence formed near the contact site although they were not

necessarily focused on the site of needle contact (Figs.
6D–H). At the same time, a circular zone of bright diffuse
fluorescence accumulated at the contact site. The size and
intensity of this brightly fluorescent region increased with
time (Figs. 6D–H; Additional File 9). If the needle were
lifted from the cotyledon surface, the brightly fluorescent
aggregation dispersed; if the needle were moved across the
cotyledon surface, the fluorescent aggregation moved to
remain beneath the contact zone (data not shown).

Accumulation of ER at the point of contactFigure 6
Accumulation of ER at the point of contact. ER visual-
ized in the cortical cytoplasm underlying the outer epidermal 
cell wall in a cotyledon of A. thaliana expressing GFP-KKXX 
[71]. The surface of the epidermal cell was touched with a 
glass microneedle at time 0:00 at the position marked by the 
asterisk in B. Images A-F are projections of five optical sec-
tions taken at the times indicated, with the image in A being 
collected about 2 minutes before the cotyledon was touched 
with the needle. ER began to aggregate beneath the tip of the 
needle 3–4 minutes after touching the epidermal cell surface. 
Strands of diffuse fluorescence form near the contact sites 
and a cloud of bright fluorescence forms and expands. Bar = 
10 μm
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In order to determine if all the changes observed after
touching the cotyledon with the needle, as described
above, were directly associated with a touch response, the
structure of the ER was also observed in cotyledons that
were not touched with the microneedle (Additional File
8). Imaging of the ER network in these control, untouched
cells revealed that while the transient beading and forma-
tion of the circular fluorescent zone were not observed,
strands of diffuse fluorescence similar to those seen in the
cells that had been touched sometimes formed (Addi-
tional File 8, images A-C, E and F). These strands of diffuse
fluorescence in the control cells were formed less fre-
quently and were more transient than those seen in the
cells that were touched with the needle.

Clustering of peroxisomes beneath the site of contact
Before touching the surface of the epidermal cell with the
microneedle, peroxisomes were distributed throughout
the cytoplasm and most were highly mobile, moving rap-
idly across the field of view (Fig. 1D; Additional File 10).
About 5 minutes after touching the surface of the cotyle-
don with the needle (range = 266–324 s; mean =297 ± 29
s; n = 3), peroxisomes began to accumulate beneath the
needle tip (Fig. 7Q; Additional File 10). In general, once a
peroxisome had moved into the cluster at the needle tip,
apart from a small jiggling motion, it remained there
throughout the remainder of the observation period. Even
after a cluster of peroxisomes had formed beneath the
needle, other peroxisomes that were more than about 20–
30 μm away from the point of contact continued to move
around the cell. With time, however, the local area
became depleted of peroxisomes that were not associated
with the cluster at the needle tip.

Discussion
Plant cells are able to respond rapidly to potential fungal
or oomycete pathogens on their surface. As the pathogen
infection structures develop and attempt to penetrate the
epidermis, basal resistance mechanisms are mobilized
and in most cases succeed in inhibiting the establishment
of disease by non-adapted pathogens. Within the plant
cell in contact with the pathogen, cytoplasmic streaming
accelerates, cytoplasmic strands become focused on the
infection site and a cytoplasmic aggregate forms under the
pathogen cell [1,13,25]. Immunofluorescence labelling,
GFP-tagging of cell components and pharmacological
studies have shown that these changes in the distribution
and behaviour of the cytoplasm are associated with and
dependent upon reorganization of the actin cytoskeleton
which becomes focused on the infection site [6,20,21,26-
30]. Reorganization of the actin cytoskeleton is also
accompanied by rearrangement of ER and aggregation of
dictyosomes and peroxisomes at the infection site
[20,31]. These changes are believed to facilitate localized
secretion of cell wall material and antimicrobial com-

pounds at the infection site [15,16]. In addition to normal
wall constituents, the thickened regions of cell wall,
referred to as wall appositions, contain callose, phenolics,
phytoalexins and H2O2 that together strengthen the wall
to make it a more effective barrier against pathogen
ingress and provide localized concentrations of toxins
that inhibit and kill the invading pathogen [11,13,16,32].
Basal resistance is induced in response to non-adapted,
avirulent and virulent fungal and oomycete pathogens
alike [20], suggesting the existence of a triggering factor
common to all these potential pathogens that can be
detected by the plant. One such trigger could be the pres-
sure exerted by the pathogen as it attempts to penetrate
the plant surface.

Plants can respond rapidly to mechanical stimulation.
Within 30 minutes, touching a plant induces wide-rang-
ing changes in gene expression, including the up-regula-
tion of disease resistance genes [33-35]. It also leads to
rapid changes in intracellular organization. Touching the
cell surface with a glass or tungsten microneedle or capil-
lary can cause chloroplast movement away from, or
nuclear and cytoplasmic migration towards, the contact
site [36-38]. Removal of the stimulus results in disappear-
ance of the cytoplasmic aggregation and a return of the
nucleus to its former position [37,38]. The present study
of Arabidopsis plants containing GFP-tagged cell compo-
nents demonstrates that touching the plant surface also
induces a reorganization of subcellular components simi-
lar to that observed during attempted infection. Within 3
to 5 minutes of touching the cotyledon surface, actin, ER
and GFP-tubulin begin to form dense patches under the
contact site and peroxisomes begin to cluster in the cyto-
plasm beneath the needle tip. The subcellular responses
are highly dynamic, with the morphology of the patches
of actin, ER and GFP-tubulin changing continuously,
including tracking the needle tip when it moves across the
surface and dispersing within minutes of removal of the
needle's pressure.

Studies of actin arrays in transgenic plants expressing a
number of different constructs encoding GFP-tagged actin
binding domains have indicated that in some cases not all
components of the actin cytoskeleton are visualized and/or
that the dynamics and organization of the actin array may
be disturbed [39-44]. There is, however, no evidence to
indicate that these problems occur in the GFP-hTalin plants
used in the present study. Indeed the rapidity with which
the actin array becomes focused on the contact site, the sim-
ilar rapidity with which it disperses on removal of the pres-
sure and the fact that this response time is similar to that of
the microtubule array, all suggest that actin dynamics are
not hampered in this line of GFP-hTalin plants. In the
experiment that generated the GFP-hTalin plants, individ-
ual lines exhibited a range of GFP fluorescence intensities
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Clustering of peroxisomes at the point of contactFigure 7
Clustering of peroxisomes at the point of contact. Peroxisomes visualized in the cortical cytoplasm underlying the outer 
epidermal cell wall in a cotyledon of A. thaliana expressing PTS-GFP [46]. The surface of the epidermal cell was touched with a 
tungsten microneedle at time 0:00. The position of the needle is indicated by the white V-shaped lines at the top of the image. 
Images A-DD are projections of three optical sections taken at the times indicated in minutes and seconds. The peroxisome 
labeled "1" becomes immobilized about 10 μm to the left of the needle tip 1 minute after touching the cotyledon surface. 
About 3 minutes later, this peroxisome moves to the very tip of the needle. Other peroxisomes accumulate in the vicinity of 
the needle tip before becoming clustered there after about 7 minutes. A movie showing peroxisome aggregation in this exper-
iment is shown in Additional File 10. Bar = 10 μm.
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[20]. The line chosen for subsequent use was selected for
having moderate levels of transgene expression, as indi-
cated by the levels of GFP fluorescence, and no phenotypic
abnormalities [20]. In addition to the absence of any indi-
cation of disturbance of the actin arrays in these plants in
our experiments, this Arabidopsis GFP-hTalin line has also
been used in investigations of the role of actin in regulating
the dynamics of plastid stromule morphology and behav-
iour [45]. Stromule formation is a highly delicate process
that is easily perturbed, however, no differences in the mor-
phology or movement of the plastids or stromules between
wild-type and the GFP-hTalin plants were found. Together,
these results give evidence of the integrity and normal
dynamics of the actin cytoskeleton in the transgenic plants
used in the current study.

With time, the initial concentrations of actin, ER and GFP-
tubulin continue to consolidate. Some existing actin
cables in the region surrounding the contact site are dis-
mantled before new, or reoriented, cables become focused
on the contact site. Much accumulated evidence indicates
that the radial actin array is responsible for delivery of var-
ious cell components, including peroxisomes, dictyo-
somes and secretory vesicles, to the site of attack
[15,17,46-48]. In addition to achieving localized secre-
tion of cell wall materials and toxins, proximity of perox-
isomes to the site of infection is thought to facilitate their
anti-microbial functions [49-51].

Continued response to touch included the development
of a microtubule-depleted zone around the contact site.
Similar localized regions of microtubule depolymeriza-
tion have been reported during infection of parsley, soy-
bean and barley by Phytophthora infestans, P. sojae and
Erysiphe graminis f. sp.hordei, respectively [52-54]. Wide-
spread microtubule depolymerization has also been
reported to occur several hours after treatment of tobacco
and Arabidopsis suspension-cultured cells with cryptogein
elicitin and Verticillium toxin, respectively [55-57]. Micro-
tubule depolymerization is likely to increase the level of
tubulin monomers, dimers or oligomers in the cytoplasm,
giving rise to the dense cloud of diffuse fluorescence seen
below the contact site (e.g. Figs. 4H–L, 5B–E). The
dynamic behaviour of the GFP-tubulin and ER clouds is
likely to arise through continued actin-driven cytoplasmic
motility, as indicated by peroxisome movement through-
out much of the observation periods. In our study, distur-
bance of the ER network and microtubule cytoskeleton
through mechanical stimulation also led to the appear-
ance of diffuse strands of ER or microtubules that moved
within the cortical cytoplasm. Similar strands were seen in
control cells that had not been touched with the micro-
needle but they were much less frequent and were not
confined to any particular location in the cell. The diffuse
strands observed in the GFP-tubulin-expressing plants
were similar to the blurry microtubules described by Cyr

and colleagues in their studies of the dynamics of cortical
microtubule arrays in tobacco cells expressing MDB-
DsRed or YFP-TUA6 [58]. These authors propose that the
blurry images of microtubules are due to movement of
microtubules that are not anchored to the plasma mem-
brane. The diffuse microtubule strands observed in the
present study were at a greater distance from the plasma
membrane than the array of sharply-focused microtu-
bules and are thus unlikely to be attached to the plasma
membrane. In our studies of microtubule arrays in cells
responding to mechanical stimulation, in most cases
these diffuse microtubule strands subsequently disap-
peared. One interpretation of these data is that, having
detached from the plasma membrane, the microtubules
or microtubule bundles are less stable and depolymerize.
This phenomenon may be part of the normal dynamics of
microtubule arrays but may also be an important mecha-
nism for remodeling microtubule arrays following
mechanical stimulation by biotic or abiotic factors.

One might question whether or not a fungal hypha or
other infection structure is capable of exerting a pressure
or force sufficiently large to be perceived by the plant cell.
In fact, there is little doubt that it can. A variety of techni-
cal approaches have now been used to calculate or meas-
ure the force exerted by fungal and oomycete hyphae and
appressorial penetration pegs and the values obtained
typically lie within the range of 5–100 μN [59-63]. Given
the diminutive size of the structures involved, it is difficult
to fully appreciate the magnitude of these forces but to put
them in perspective, if we could exert the same force per
unit area with a finger, we could hold a 25–500 kg weight
against gravity!

The force exerted by an invading pathogen will depend on
the pathogen cell's turgor pressure and the area and prop-
erties of its cell wall in contact with the underlying plant
cell. Turgor pressure provides the basis of the invasive
force although the actual pressure applied to the host cell
will be decreased by the resistance of the pathogen wall to
extension [64]. The force (in μN) is equal to the pressure
(in MPa, i.e. μN μm-2) multiplied by the contact area (in
μm2). Thus, if the wall exerts minimal yield resistance, a
hypha with a cross-sectional area of 300 μm2 (about 20
μm in diameter) and a turgor of 0.4 MPa would exert a
force of 120 μN [59]. In most cases, the forces that have
been measured are less than those maximally possible for
a given turgor pressure and it appears, at least for hyphae,
that the mechanical strength of the wall results in only
about 10% of the available force actually being applied by
the fungal hypha [59]. However, this may not be the case
for appressorial penetration pegs, as discussed below.

Fungal and oomycete hyphae typically generate turgor
pressures of 0.2–0.7 MPa [59]. With a cross-sectional area
of 80–500 μm2, these hyphae have a contact area of up to
Page 9 of 14
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500 times that of the penetration peg produced by appres-
soria of Colletotrichum graminicola or Magnaporthe grisea.
Thus, in order to generate an invasive force within the
range cited above, these fungal appressoria accumulate
high concentrations of glycerol that generate turgor pres-
sures of the order of 6–8 MPa, a pressure 30–40 times
greater than an average car tire [64-66]. Evidence suggests
that the yield threshold of the penetration peg is minimal
such that essentially all the turgor pressure is applied in
the generation of the invasive force by the penetration peg
[62,64]. Thus, the localized forces exerted by invading
fungi and oomycetes are substantial and, like the mechan-
ical stimulation used in the study, may be detected by the
plant cell and used to trigger basal defence.

A number of studies have shown that cytoplasmic aggre-
gation and actin reorganization can occur in the plant cell
below hyphae or beneath appressoria before a penetra-
tion peg is discernible, suggesting that, at least in some
cases, the plant cell can detect the presence of hyphae or
appressoria on their surface before invasion begins
[1,7,13,21,25]. However, given the difficulties of knowing
when the pathogen has strengthened its attachment to the
plant surface sufficiently to maintain contact during inva-
sion, when an appressorium has gained full turgor or
when penetration is first initiated, it is difficult to assess
how quickly the plant can respond to the presence of the
pathogen. In addition to demonstrating that touching the
cotyledon surface with a microneedle induces similar sub-
cellular reorganization to that observed during pathogen
infection, this form of mechanical stimulation allows a
more precise determination of the dynamics of the
response than is possible during plant-pathogen interac-
tions. Thus, while cytoplasmic aggregation, actin rear-
rangement or microtubule depolymerization have been
observed to occur 15 minutes after inoculation or 20–30
minutes before a penetration peg becomes visible [1,25],
the studies reported here indicate that these subcellular
responses can occur within 3–4 minutes of stimulation.
Touch can induce a transient increase in cytoplasmic cal-
cium in a similar or even shorter timeframe [67,68]. As
proposed for the mechano-response of chloroplasts [69],
these observations are consistent with stretch-activated
channels in the plant plasma membrane having a role in
recognition of the pathogen's presence and induction of a
signal transduction cascade involving transient calcium
elevation that quickly results in the subcellular reorgani-
zation employed during the basal plant defence response.

Conclusion
Our study shows that mechanical stimulation applied by
gently touching the surface of a plant cell with a glass or
tungsten needle induces the same subcellular reorganiza-
tion observed following inoculation of a wide range of
plant species with non-adapted, avirulent and virulent

fungal or oomycete pathogens. Actin microfilaments and
cables become focused on the site of contact, and ER and
peroxisomes accumulate beneath the needle tip. A sub-
population of the cortical microtubules surrounding the
point of contact depolymerizes, generating a microtubule-
depleted zone around a patch of concentrated GFP-tubu-
lin subunits. Reorganization of all four cell components
begins within 3 to 5 minutes of touching the cell surface
with the needle, demonstrating the rapidity with which
the plant cell can respond to mechanical stimulation. Our
study provides strong evidence indicating that plant cells
can detect the force exerted by fungal or oomycete cells as
they attempt to invade the plant epidermis, thus triggering
the basal defence response that culminates in site-directed
secretion and the development of wall appositions which
successfully inhibit ingress of most potential pathogens.

Methods
Plants
Transgenic A. thaliana (Columbia ecotype) expressing
GFP-tagged components were as follows: GFP-TUA6 (α-
tubulin), kindly supplied by Dr T. Hashimoto [70]; GFP-
PTS1 (peroxisome targeting sequence), kindly supplied by
Dr S. Mano [46]; GFP-tm-KKXX (GFP with Cf-9 trans-
membrane domain and cytosolic tail with C-terminal
dilysine motif that confers ER localization) [71]; and GFP-
hTalin [20]. Seeds were surface sterilized and grown at
25°C (16 h light per day) on nutrient agar plates as
described previously [20].

Microscopy
Arabidopsis cotyledons expressing GFP-tagged compo-
nents were placed adaxial side up on a smear of vaseline
on a microscope slide and held in place by partially cov-
ering the cotyledon with a coverslip. The exposed portion
of the cotyledon was viewed using a 63×, NA 0.9 dipping
objective on a TCS SP2 confocal microscope (Leica, Ger-
many). GFP fluorescence was excited by an argon-ion
laser at 488 nm and emission of GFP-tagged components
in the epidermal cells captured between 495 and 520 nm.
Images shown in the majority of figures are maximal pro-
jections of z-series of optical sections through the cortical
cytoplasm underlying the outer epidermal cell wall. The
images were generated using Leica Lite software, stored as
TIF files and processed with Adobe Photoshop 7.0 soft-
ware (Adobe Systems Inc., USA).

Gentle mechanical pressure was applied to the outer epi-
dermal cell wall by bringing a fine glass (1.0 mm diameter
glass capillaries, 1–5 μm diameter at tip) or tungsten (0.25
mm diameter tungsten dissecting probes, World Precision
Instruments Inc., USA, 1–2 μm diameter at tip) micronee-
dle into contact with the cotyledon surface using a
hydraulic micromanipulator (Narashige, Japan). The dis-
tance of the tip of the needle from the cotyledon surface
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was determined by comparing the focal plane of GFP-
tagged components in the cortical cytoplasm with that of
the needle tip.
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Additional material

Additional file 1
Rapid development of a patch of actin microfilaments at the contact 
site. Movie composed of 94 images of the actin array underneath the point 
of contact with a glass microneedle in A. thaliana expressing hTalin-GFP. 
Each image in the movie is a projection of six optical sections through the 
cortical cytoplasm underlying the outer epidermal cell wall. The movie 
commences at the time of touching the cell surface with the needle and 
ends 1 hour and 5 minutes later. The time between most images is about 
40 seconds. Selected images from the movie are illustrated in Fig. 1. The 
movie plays at about 200 times real-time.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2229-8-63-S1.mov]

Additional file 2
Formation, dispersal and re-formation of an actin patch at the contact 
site. Actin microfilaments visualized in the cortical cytoplasm underlying 
the outer epidermal cell wall in a cotyledon of A. thaliana expressing hTa-
lin-GFP. The surface of the epidermal cell was touched with a glass micro-
needle at the site indicated by the asterisk in A. Times in minutes and 
seconds show elapsed time after the image in A. Images A-C show forma-
tion of a patch of actin microfilaments about 6 minutes after touching the 
cell surface. Needle contact was made about 10 minutes after the image 
in A was taken. Images D-F show dispersal of the actin patch after the nee-
dle lifted off the cotyledon. Images G-I show reformation of the actin patch 
when the needle was again brought into contact with the cell at the same 
location. The image in G was taken 1 minute after re-positioning the nee-
dle to touch the surface again. Images are projections of 7 (B, G-I), 8 (C, 
E), 9 (D), 12 (F) or 13 (A) optical sections. Bar = 10 μm.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2229-8-63-S2.tiff]

Additional file 3
Focusing of actin cables on the contact site. Movie composed of 53 
images of the actin array underneath the point of contact with a tungsten 
microneedle in A. thaliana expressing hTalin-GFP. Each image in the 
movie is a projection of six optical sections through the cortical cytoplasm 
underlying the outer epidermal cell wall. The position of the needle tip is 
indicated by the vertical line of reflected light. The movie commences just 
before touching the cell surface with the needle and ends 28 min later. The 
time between most images is 20–25 s. During the second half of the movie 
sequence, actin cables become focused on the contact site. The movie plays 
at about 150 times real-time. Selected images from the sequence are illus-
trated in Fig. 2.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2229-8-63-S3.mov]

Additional file 4
Dynamics of a bright cloud of actin at the point of contact. Movie com-
posed of 73 images of the actin array underneath the point of contact with 
a tungsten microneedle in A. thaliana expressing hTalin-GFP. Each image 
in the movie is a projection of five optical sections through the cortical cyto-
plasm underlying the outer epidermal cell wall. The position of the needle is 
indicated by the V-shaped shadow. The movie commences just before touch-
ing the cell surface with the needle and ends 28 minutes later. The time 
between most images is about 20 seconds. Accumulation of actin below the 
point of contact forms a bright patch of fluorescence that appears to swirl 
around the needle tip. The movie plays at about 150 times real-time.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2229-8-63-S4.mov]

Additional file 5
Changes in the microtubule array beneath the point of contact. Movie 
composed of 115 images of the microtubule array underneath the point of 
contact with a tungsten needle in A. thaliana expressing TUA6-GFP 
[70]. Each image in the movie is a projection of five optical sections 
through the cortical cytoplasm underlying the outer epidermal cell wall. 
The position of the needle is indicated by the V-shaped shadow (top cen-
tre). The movie commences just before touching the cell surface with the 
needle and ends 1 hour 17 minutes later. The time between most images 
is about 30–40 seconds. A bright diffuse cloud of GFP-tubulin begins to 
accumulate at the point of contact about 4 min after touching the cell with 
the needle. Linear arrays of diffuse fluorescence appear to sweep below the 
cortical microtubule array. The movie plays at about 200 times real-time.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2229-8-63-S5.mov]

Additional file 6
Dynamic changes in the microtubule array as the contact point moves 
across the cell wall. Movie composed of 95 images of the microtubule 
array underneath the point of contact with a tungsten needle in A. thal-
iana expressing TUA6-GFP. Each image in the movie is a projection of 
five optical sections through the cortical cytoplasm underlying the outer 
epidermal cell wall. The position of the needle is indicated by the V-shaped 
shadow (top centre). The movie commences just before touching the cell 
surface with the needle and ends 1 hour 11 minutes later. The time 
between most images is about 30–40 seconds. A bright diffuse cloud of 
GFP-tubulin begins to accumulate at the point of contact about 3.5 min-
utes after touching the cell with the needle. As the needle drifts across the 
cotyledon surface, the cloud of concentrated GFP-tubulin moves with it to 
remain beneath the point of contact. When the needle tip moves from one 
cell to an adjacent cell the fluorescent cloud dissipates in the first cell and 
forms in the second. The movie plays at about 200 times real-time.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2229-8-63-S6.mov]

Additional file 7
Dynamics of the microtubule array in a control cotyledon. Movie com-
posed of 100 images of the microtubule array underneath the point of con-
tact with a tungsten needle in A. thaliana expressing TUA6-GFP. All 
images in the movie are single optical sections in the same focal plane 
taken at intervals of 3–4 seconds for a period of 6 minutes. Against a 
framework of stable microtubules in the cell cortex just below the cell wall, 
mobile, linear strands of diffuse fluorescence sweep through the cell 
beneath the cortical array. The movie plays at about 18 times real-time.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2229-8-63-S7.mov]
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Additional file 8
Dynamics of the ER in epidermal cells in control cotyledons. ER in the 
cortical cytoplasm underlying the outer epidermal cell wall in a cotyledon 
of Arabidopsis thaliana expressing GFP-KKXX [71]. The cotyledon has 
been mounted onto a microscope slide but had not been touched with a 
microprobe. In general, the network of ER is stable and its organization 
does not change during the observation period. However, some transient 
flaring of strands of diffuse fluorescence occurs in the top right hand cor-
ner of the cell in the first three images (arrowheads) and near the left 
hand side of the cell in the images taken at 4 minutes 18 seconds and 5 
minutes 12 seconds (arrows). Bar = 10 μm.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2229-8-63-S8.tiff]

Additional file 9
Dynamic changes in the organization of the cortical ER beneath the 
contact site. Movie composed of 77 images of the ER in an epidermal cell 
touched with a tungsten needle in A. thaliana expressing GFP-KKXX. 
Each image in the movie is a projection of five optical sections; the interval 
between each z-series is about 35 seconds. The movie begins when the cell 
is touched with the needle and shows images collected over the next 52 
minutes. Bright fluorescence indicative of aggregated ER accumulates 
beneath the contact site. The movie plays at about 200 times real-time.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2229-8-63-S9.mov]

Additional file 10
Clustering of peroxisomes at the site of contact with the microneedle. 
Movie composed of 43 images of peroxisomes in an epidermal cell touched 
with a tungsten needle in A. thaliana expressing PTS-GFP [46]. Each 
image in the movie is a projection of three optical sections and the interval 
between each z-series is about 15 seconds. The movie begins when the cell 
is touched with the needle and shows images collected over the next 14 
minutes. About 5 minutes after touching the cotyledon, peroxisomes begin 
to cluster beneath the tip of the needle. Selected images from the first 8 
minutes of observation are shown in Fig. 6. The movie plays at about 100 
times real-time. Selected images from this sequence are shown in Fig. 7.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2229-8-63-S10.mov]
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