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Abstract

Background: The effects of viral infection involve concomitant plant gene variations and cellular changes.
A simple system is required to assess the complexity of host responses to viral infection. The genome of
the Rice yellow mottle virus (RYMV) is a single-stranded RNA with a simple organisation. It is the most
well-known monocotyledon virus model. Several studies on its biology, structure and phylogeography
have provided a suitable background for further genetic studies. 12 rice chromosome sequences are now
available and provide strong support for genomic studies, particularly physical mapping and gene
identification.

Results: The present data, obtained through the cDNA-AFLP technique, demonstrate differential
responses to RYMV of two different rice cultivars, i.e. susceptible IR64 (Oryza sativa indica), and partially
resistant Azucena (O. s. japonica). This RNA profiling provides a new original dataset that will enable us to
gain greater insight into the RYMV/rice interaction and the specificity of the host response. Using the SIM4
subroutine, we took the intron/exon structure of the gene into account and mapped 281 RYMV stress
responsive (RSR) transcripts on 12 rice chromosomes corresponding to 234 RSR genes. We also mapped
previously identified deregulated proteins and genes involved in partial resistance and thus constructed the
first global physical map of the RYMV/rice interaction. RSR transcripts on rice chromosomes 4 and 10
were found to be not randomly distributed. Seven genes were identified in the susceptible and partially
resistant cultivars, and transcripts were colocalized for these seven genes in both cultivars. During virus
infection, many concomitant plant gene expression changes may be associated with host changes caused
by the infection process, general stress or defence responses. We noted that some genes (e.g. ABC
transporters) were regulated throughout the kinetics of infection and differentiated susceptible and
partially resistant hosts.

Conclusion: We enhanced the first RYMV/rice interaction map by combining information from the
present study and previous studies on proteins and ESTs regulated during RYMV infection, thus providing
a more comprehensive view on genes related to plant responses. This combined map provides a new tool
for exploring molecular mechanisms underlying the RYMV/rice interaction.
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Background

Numerous analyses of the virus-induced transcriptome in
different host plants have been reported. These studies
generally catalogued a set of induced changes to virus
infection (reviewed in [1]). The most consistent observa-
tion is that viruses, in compatible host-virus interactions,
trigger a range of stress responses, including defence
response genes. Perturbations of different signalling path-
ways in the host are induced by change in gene expression
involved in some specific interactions between virus and
host proteins, as well as gene expression that are not
directly involved in these interactions.

The Rice yellow mottle virus (RYMV, Sobemovirus) is the
most damaging pathogen of rice, endemic to the Africa
where it is widespread. It has a simple genomic organisa-
tion with a single-stranded RNA encoding four open read-
ing frames (ORF). Its biology and structure are well
known [2,3]. The diversification as well as the phylogeog-
raphy of this virus are well documented [4,5]. Different
levels of resistance against the RYMV have been described
in the cultivated Asian and African rice species, O. sativa
and O. glaberrima [6], and a partial resistance has been
observed in some upland japonica rice cultivars [7]. A
major recessive resistance gene located on chromosome 4,
coding for an elF(is0)4G protein, has been recently char-
acterized [8]. Genetic basis of RYMV partial resistance has
been studied using a doubled haploid population (IR64
(O. s. indica, highly susceptible to RYMV) x Azucena (O. s.
japonica, partially resistant to RYMV) and showed seven
quantitative trait loci involved in this partial resistance
[7,9]. This virus is thus a very attractive model since
genomic studies on this pathogen give a well-known
background, and open up horizon for other rice viruses.

The rice genome has been both well mapped genetically
and physically [10,11]. Genomes of the varieties Nippon-
bare (O. sativa japonica) and 93-11 (O. s. indica) have been
integrally sequenced [12-20], and these 12 rice chromo-
somes are available online [21]. A large number of pre-
dicted genes correspond to putative proteins with
unknown function and a portion of the genome corre-
sponds to repetitive sequences [22,23]. Nevertheless, it
appears interesting to predict putative function of a gene
based on homology searches, thus enabling the identifica-
tion of candidate genes involved in a particular biochem-
ical pathway, like virus resistance genes involved in the
mechanisms developed by plant to resist virus infection.

We have already published a global protein profiling in
rice cell suspension infected with RYMV, using 2-D gel
electrophoresis. We also identified proteins (defence and
stress related proteins, translation and protein turnover,
and metabolic proteins) with altered accumulation in
response to the virus in susceptible and partially resistant
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rice cultivars [24]. Moreover our first study on transcrip-
tome of both susceptible and partially resistant rice culti-
vars infected with RYMV identified variations of gene
expression in defence, metabolic and photosynthesis
pathways [25]. These results, compared to others studies,
indicate that similar events are happening at the protein
and the mRNA levels. In this article, we proceed to a fine
study of the transcriptome and report the location of 281
RYMV stress responsive sequences (RSR sequences identi-
fied by cDNA-AFLP). These RSR genes belong to different
functional classes notably defence, photosynthesis path-
way, and metabolism and have been mapped onto rice
chromosomes using SIM4 subroutine that aligns cDNA
fragment against genomic sequence. We present here the
first compiled physical map for virus/Rice interaction with
the model RYMV/Rice.

Results

Using cDNA-AFLP to discover genes induced or repressed
during virus infection

We analyzed the transcript profiling using the cDNA-AFLP
technique on two different rice cultivars: IR64 (O. s.
indica) highly susceptible to the RYMV, and Azucena (O.
s. japonica) tolerant to the RYMV. We looked at different
time points after infection: 2, 5, 7 days post inoculation
(dpi) for IR64 and 3, 5, 7 dpi for Azucena. The kinetics
gave a similar pattern of virus content in infected leaves of
both cultivars (Figure 1). Non infected IR64 and Azucena
leaves were used as control at the first point of the kinetic
for the both cultivars, and IR64 and Azucena wounded
leaves without RYMV were harvested at the first point of
the kinetic for internal control since the virus infection
was mechanically done. A section of a typical AFLP gel is
shown on Figure 2. Changing patterns of gene expression
were revealed using more than 20 000 cDNA fragments
from both IR64 and Azucena cultivars. The resulting AFLP
products ranged in length from 40 base pairs (bp) to 500
bp, and 60 to 100 bands were observed for each of the 256
primer combinations on the gel. Only bands with a
present-absent pattern were considered. The cDNA-AFLP
screen identified 353 cDNA fragments corresponding to
differentially accumulated transcripts during the first
week of RYMV infection for Azucena, and 232 cDNA frag-
ments for IR64. One hundred sixty two (46%) of the
AFLP-cDNA fragments corresponded to up-regulated tran-
scripts and 78 (22%) to down-regulated transcripts for
Azucena, and 74 (21%) to wound-regulated and RYMV-
regulated transcripts (transcripts with a variation of accu-
mulation observed in wounded leaves and an opposite
variation observed in infected leaves). On the contrary, 88
(38%) of cDNA fragments corresponded to up-regulated
transcripts for IR64, 91 (39%) to down-regulated tran-
scripts, and only 23 (10%) to wound-regulated and
RYMV-regulated transcripts (Figure 3).
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Quantification of RYMV RNA by RT-PCR in IR64 and
Azucena inoculated leaves. The size of the amplified frag-
ments has been predicted at 439 bp. The lanes on the agar-
ose gel were loaded with: reaction products from RNAs of
IR64 infected leaves harvested at 2, 5, and 7 dpi, RNAs of
Azucena infected leaves harvested at 3, 5, and 7 dpi, | kb lad-
der (Promega).

Figure 2

Azucena (A.) and IR64 (B.) cDNA-AFLP display from
non-stressed leaves (lane |), wounded leaves (lane 2),
and RYMY inoculated leaves harvested at 3 dpi for
Azucenal/2 dpi for IR64 (lane 3), 5 dpi (lane 4) and 7
dpi (lane 5). This five lanes set represented amplification by
one particular primer combination. Arrows represented dif-
ferential bands.
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Compilation of sequences from induced and altered AFLP
fragments

The recovery from the acrymalide gel and the reamplifica-
tion were tricky steps and thus we were not able to get a
clean sequence for all cDNA fragments. We obtained 113
(49% out of the 232 fragments) and 222 clean sequences
(63% out of the 353 fragments) for IR64 and Azucena
respectively. These sequences were designated RYMV
Stress Responsive (RSR) transcripts. After cutting off adap-
tators and vector sequences, all the sequences showed a
length between 20 and 300 bp. All the 335 RSR sequences
(113 for IR64 and 222 for Azucena) have been referenced
in GenBank (the GenBank accession numbers are from
DQ883824 to DQ884159) and have been blasted against
each other. Eighty seven IR64 and 169 Azucena RSR
sequences match only once in GenBank Database and
were named IR64 or Azucena unique sequences, respec-
tively. Fifty three Azucena sequences matched more than
once and were named Azucena redundant sequences.
Twenty six IR64 and Azucena sequences matched among
each other and are named IR64 and Azucena redundant
sequences (in this case one IR64 sequences matched to
one or more Azucena sequences, and vice versa) (Figure
3B). These 79 RSR redundant sequences actually corre-
sponded to 34 unique genes. This redundancy is directly
due to the technique used: since cDNA-AFLP is based on
amplification of fragments of cDNA, we expected to iden-
tify several fragments of a single cDNA.

All the 335 RSR sequences were blasted against the NR
database (All non-redundant GenBank CDS translations +
RefSeq Proteins + PDB + SwissProt + PIR + PRF). Sixty-
seven (59%) IR64 and 109 (49%) Azucena sequences
matched with an accession. We used a low strengency, an
E-value < 104, as lengths of the sequences were small.
Forty-six (41%) IR64 and 113 (51%) Azucena sequences
did not match or were similar to sequences with unknown
function (Table 1, Figure 3C). A large part of the AFLP
sequences did not have an allocated function, and this
might be due to the short size of the AFLP sequences and
the quality of the NR database. Among these unclassified
sequences, 29 were redundant within 12 clusters of
sequences.

All the RSR sequences were classified into functional cate-
gories (see additional file 1). We observed some variation
of mRNA accumulation in each functional class for the
both cultivars. Our results revealed important changes in
transcript underlying that viral infection generated
numerous changes in both susceptible and partially resist-
ant cultivars. The major deregulated functional classes
were defence, signalling, metabolism and photosynthesis.
We also noticed 5 different RSR sequences encoding trans-
posons/retroelements negatively regulated during the
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progress of infection in Azucena (DQ884156,
DQ883989, DO883835, DQ883911, and DQ883916).

RSR sequences mapped onto rice chromosomes

All cDNA-AFLP fragments were mapped and aligned
against the release 5 of the twelve chromosomes of Oryza
sativa [21,26]. The map is available on the IRD platform
website [see Availabilities section]. Two hundred eighty
four RSR sequences (183 from Azucena and 101 from
IR64) were physically mapped. Fifty-one RSR sequences
have not been mapped since the score was too low to map
them with enough confidence. Multiple RSR sequences
mapped at more than one location and multiple RSR
sequences mapped at the same localisation and thus cor-
responded to the same gene. We mapped respectively 46,
40, 54, 38, 25, 30, 35, 26, 20, 32, 26, and 26 RSR
sequences onto the 12 rice chromosomes. We identified
20 RSR sequences from the both cultivars mapped at the
same location and 27 and 22 positions were characterized
with more than one Azucena RSR sequences and IR64 RSR
sequences, respectively (Table 2). These redundant
sequences corresponded to the same gene and were not
used to perform the statistical test to study the distribution
of RSR genes along the chromosomes. In order to study
whether the RSR gene distribution along each chromo-
some corresponded to the distribution of genes, we com-
pared the distribution of RSR sequences and the
distribution of ATG codon corresponding to the gene dis-
tribution. Then we used the contingency test performed
for each chromosome with an alpha error of 0.5%. The
distribution of RSR sequences on the chromosomes 4 and
10 were significantly different from the ATG codon distri-
bution.

Validation of variation of gene expression by quantitative
RT-PCR

cDNA-AFLP results were confirmed by quantitative RT-
PCR using a subset of 10 genes as probes (Figure 4). All
the corresponding genes showed a variation of expression
using RT-PCR and thus confirming that they were not
some false positives. We did not observe exactly the same
pattern of variation of gene expression; nevertheless the
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quantitative RT-PCR always confirmed that genes identi-
fied by cDNA-AFLP were actually deregulated during
RYMV infection. The quantitative RT-PCR also gave a
more precise picture of the time course of changing. Thus,
we identified a short-lived up-expression at 2 dpi of the
gene gb|DQ884155 which encodes for a putative S-recep-
tor kinase. Moreover, the quantitative RT-PCR analysis
revealed that the susceptible cultivar seemed to have a
higher degree of response to the injury than the tolerant
cultivar: variations of gene expression (up- or down-regu-
lation) were more important for the wounded leaves of
the susceptible cultivar.

Discussion

Viruses use a variety of strategies to promote their infec-
tion in plant. Large studies have already mentioned the
various impacts of virus infection [27]. Well-documented
modifications of host cells have already been reported [[1]
for review]. Suppression of post-transcriptional gene
silencing is one of the strategies to promote their infection
[28]. Under viral infection, there are many concomitant
plant gene variations and cellular changes [29]. The effects
of virus infection remain complex and causal relation-
ships are still difficult to establish. Moreover, major traits
of host responses and the specificity of a susceptible com-
pared to a tolerant response remain still unclear.

As the response to virus infection involves biological
quantitative traits and has multi-factorial inheritance, a
global analysis of the multiple genes that are affected dur-
ing the RYMV infection appears to be a straightforward
approach for the study of interactions between virus and
host. Using two dimensional electrophoresis and ESTs
analysis, we have already established a complex pattern of
protein and gene regulations, and identified numerous
changes in cell balance involved in host response
(]25,24]; data not shown). We identified at both tran-
scriptional and post transcriptional levels some variations
in the photosynthesis pathway and metabolism as poten-
tial clues of the susceptible response. Here we analyzed
the transcript profiling using the cDNA-AFLP technique
on the same two rice cultivars: IR64 (O. s. indica) highly

Table I: RSR sequences were blasted against the public database Swissprot using blast subroutine [39] and mapped onto rice

chromosomes.

IR64 Azucena
Total number of RSR 232 353
RSR sequences (% compared to total number of RSR) 113 (49%) 222 (63%)
Non-redundant RSR sequences (% compared to RSR sequences) 105 (93%) 196 (88%)
RSR sequences with no match (% compared to RSR sequences) 46 (41%) 113 (51%)
RSR sequences with a match E-value < 104 (% compared to RSR sequences) 67 (59%) 109 (49%)
Mapped onto rice chromosomes
RSR sequences mapped onto rice chromosomes 101 183
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Figure 4

Quantitative RT-PCR results. Mean of the 3 replicates, and standard error. (NI: non inoculated; BI2: buffer inoculation,
harvest at 2dpi; BI5: buffer inoculation, harvest at 5dpi; VI2: virus inoculation, harvest at 2dpi; VI5: virus inoculation, harvest at
5dpi — grey diagram: IR64; black diagram: Azucena). Aé: IR64-gb|DQ884097/Azucena-gb|DQ883871. A7: Azucena-
gb|DQ884155. A8: IR64-gb|DQ884049. A9: IR64-gb|DOQ884066. Al3: Azucena-gb|DQ883861. Al4: IR64-gb|DQ884107/
Azucena-gb|DQ883961. A2: IR64-gb|DQ884 1 18/Azucena-gb|DQ883962. RSR sequences from IR64 and Azucena which co
localized: Al: IR64-gb|DQ884103/Azucena-gb|DQ883886. A3: IR64-gb|DQ884067/Azucena-gb|DQ883887. A4: IR64-

gb|DQ884124/Azucena-gb|DQ884005.

susceptible to the RYMV, and Azucena (O. s. japonica) tol-
erant to the RYMV. This technique has been shown to be
a powerful gel-based genome-scaled transcript profiling
[30] and allowed us to identify a large number of genes
involved in rice-RYMV interaction during the first week of
infection.

We observed more regulations of host gene expression for
the tolerant cultivar than for the susceptible one (Figure
3A). We noticed an up-regulation of expression of a gene
encoding a photosystem II stability assembly factor (RSR
sequences DQ884135 and DQ884136) for the cultivar
IR64 during the kinetic of RYMV infection, and a down
regulation of expression of gene encoding a photosystem
II phosphoprotein for the cultivar Azucena under RYMV
infection (DQ884058). These results were consistent with
our previous study on ESTs which mentioned down-regu-
lations in photosynthesis pathway for the partially resist-
ant cultivar and an up-regulation for the susceptible
cultivar [25]. Nevertheless, these two approaches (ESTs
analysis and cDNA-AFLP technique) were too different for
a complete overlapping of the results, and our different
experiments did not underline same aspects of the proc-

esses. The ESTs approach was based on large data sets
analysis and revealed global patterns, whereas cDNA-
AFLP technique allowed fine analysis of genes, even with
low expression, and variations of expression can be vali-
dated by RT-PCR. Moreover, the experiments were not car-
ried out at the same time, and variations in the conditions
of experiments could have thus occurred. A general prop-
erty of viral infections might cause increasing accumula-
tion of host gene products as part of a stress response,
especially HSPs genes. [1]. We observed an up regulation
of the expression of HSP70 protein (gb|DQ883891) in
wounded leaves and virus infected Azucena leaves har-
vested at 3 dpi. Many viruses elicit the expression of
HSP70 genes (and other heat shock genes) and in some
case HSPs have been shown to facilitate viral infection
[31]. It seems that most viruses trigger these generic stress-
like or defence responses which occur in the absence of
typical gene-for-gene or resistance gene-avirulence gene
interactions. RYMV infection also induced the expression
of WRKY DNA binding protein (gb|DQ884128) in virus
infected IR64 leaves at 7dpi. WRKY6, a member of the
WRKY family, has been identified by Whitham as elicited
by viruses and other pathogen infections [1]. The RYMV
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A. Overall results of cDNA-AFLP analysis, representing the variation of mMRNA accumulation in both IR64 (1)
and Azucena (2) rice cultivars under RYMYV infection.B. RSR sequences redundancy. C. RSR sequences annotation.

Page 6 of 12

(page number not for citation purposes)



BMC Plant Biology 2008, 8:26 http://www.biomedcentral.com/1471-2229/8/26

Table 2: Azucena and IR64 RSR sequences mapped at the same location. a: cDNA-AFLP fragment GenBank accession.

ID2 Cultivar Variation of gene expression® Description¢© Chromosome Start position (bp)
gb|DQ883945 Azucena (7dpi)+ sphingosine- |-phosphate lyase | 37379
gb|DQ883961 Azucena (2dpi)+ sphingosine- |-phosphate lyase | 37386
gb|DQ884107 IR64 (BI)-(2,5,7dpi)- sphingosine- | -phosphate lyase | 37386
gb|DO884097 IR64 (BI)-(2dpi)+ ATP-binding cassette | 661520
gb|DQ883934 Azucena  (5,7dpi)- ABC transporter | 661520
gb|DQ883962 Azucena  (Bl)+(3dpi)+ ABC transporter | 7762693
gb|DO884118 IR64 (2dpi)+ ABC transporter | 7762700
gb|DQ883963 Azucena  (5,7dpi)+ ABC transporter | 7762703
gb|DQ884067 IR64 (5,7dpi)- OsTATC | 25926035
gb|DO883887 Azucena  (5,7dpi)- OsTATC | 25926035
gb|DQ883980 Azucena (Bl)+ transcription factor EREBP| 2 2730720
gb|DQ883981 Azucena (Bl)+ transcription factor EREBP| 2 2730722
gb|DQ883986 Azucena  (3dpi)+ transcription factor EREBPI 2 2730722
gb|DO884016 Azucena (5,7dpi)- potassium transporter HAKIp 2 5509064
gb|DQ884017 Azucena (7dpi)+ potassium transporter HAK | p 2 5509070
gb|DQ883933 Azucena  (5,7dpi)- peroxisomal targeting signal 2 receptor 2 8205239
gb|DQ883935 Azucena  (5dpi)+ peroxisomal targeting signal 2 receptor 2 8205240
gb|DO883937 Azucena  (5dpi)+ - 2 22063567
gb|DQ884129 IR64 (5dpi)+ - 2 22063567
gb|DQ884022 [R64 (BI)-(2,5)- senescence-associated protein 2 28710373
gb|DQ884021 IR64 (5,7dpi)- senescence-associated protein 2 28710376
gb|DQ884026 IR64 (7dpi)+ - 3 8112599
gb|DQ884027 IR64 (5dpi)+ - 3 8112604
gb|DO883936 Azucena  (3dpi)+ - 3 19981332
gb|DO884126 IR64 (5,7dpi)+ - 3 19981332
gb|DQ883998 Azucena  (Bl)+(3,5,7dpi)+ splicing factor 3 28989563
gb|DQ883999 Azucena  (Bl)-(3,5,7dpi)- splicing factor 3 28989563
gb|DQ883950 Azucena  (3,5,7dpi)+ inositol phosphate kinase 3 29491859
gb|DQ883952 Azucena (Bl)+ inositol phosphate kinase 3 29491859
gb|DQ884093 IR64 (5,7dpi)- inositol phosphate kinase 3 29492176
gb|DQO884005 Azucena (Bl)+(3,5,7dpi)+ receptor kinase 3 34628274
gb|DQ884006 Azucena (5dpi)+ receptor kinase 3 34628277
gb|DQ884124 [R64 (2,5,7dpi)+ receptor kinase 3 34628284
gb|DQ884032 IR64 (5,7dpi)- - 4 4985354
gb|DO884031 IR64 (5,7dpi)- - 4 4985360
gb|DQ883901 Azucena (3,5,7dpi)- large ribosomal protein 23 4 9131675
gb|DQ883900 Azucena  (Bl)-(3dpi)- large ribosomal protein 23 4 9131683
gb|DO883941 Azucena  (5dpi)+ - 4 25607867
gb|DO883946 Azucena  (5dpi)+ - 4 25607880
gb|DQ884135 [R64 (BI)+(2,5dpi)+ photosystem Il stability/assembly factor 6 156408
gb|DQ884136 IR64 (Bl)+(2dpi)+ photosystem |l stability/assembly factor 6 156408
gb|DQ883985 Azucena (B)- - 6 294284
gb|DQ883988 Azucena  (3,5,7dpi)- - 6 294284
gb|DQ884103 [R64 (BN)+(2,5,7dpi)+ NADH dehydrogenase subunit 4 6 3064929
gb|DQ884104 [R64 (BI)+(2,5,7dpi)+ NADH dehydrogenase subunit 4 6 3064929
gb|DQ883896 Azucena (7dpi)+ - 7 8998816
gb|DQ883909 Azucena  (5,7dpi)+ - 7 8998816
gb|DO884103 IR64 (Bl)+(2,5,7dpi)+ NADH dehydrogenase subunit 4 7 12659627
gb|DQ884104 [R64 (Bl)+(2,5,7dpi)+ NADH dehydrogenase subunit 4 7 12659627
gb|DQ883901 Azucena (3,5,7dpi)- large ribosomal protein 23 7 14240632
gb|DQ883900 Azucena  (Bl)-(3dpi)- large ribosomal protein 23 7 14240640
gb|DO884133 IR64 (5,7dpi)+ - 8 501007
gb|DQ884134 IR64 (7dpi)+ - 8 501007
gb|DQ883901 Azucena (3,5,7dpi)- large ribosomal protein 23 8 9254046
gb|DQ883900 Azucena  (Bl)-(3dpi)- large ribosomal protein 23 8 9254054
gb|DO884076 IR64 (5,7dpi)+ OSHA45 8 11757217
gb|DQ884077 IR64 (5dpi)- OSH45 8 11757217
gb|DQ884022 [R64 (BI)-(2,5dpi)- senescence-associated protein 9 7658
gb|DQ884021 [R64 (5,7dpi)- senescence-associated protein 9 7661
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Table 2: Azucena and IR64 RSR sequences mapped at the same location. a: cDNA-AFLP fragment GenBank accession. (Continued)

gb|DQ883901 Azucena (3,5,7dpi)- large ribosomal protein 23 9 14504325
gb|DQ883900 Azucena  (Bl)-(3dpi)- large ribosomal protein 23 9 14504333
gb|DQ884103 [R64 (BI)+(2,5,7dpi)+ NADH dehydrogenase subunit 4 10 10583266
gb|DQ884104 IR64 (Bl)+(2,5,7dpi)+ NADH dehydrogenase subunit 4 10 10583266
gb|DO883842 Azucena  (5,7dpi)+ - I 1188582
gb|DQ884055 Azucena  (5,7dpi)+ - I 1188589
gb|DQ884103 IR64 (Bl)+(2,5,7dpi)+ NADH dehydrogenase subunit 4 12 21873723
gb|DO884104 IR64 (Bl)+(2,5,7dpi)+ NADH dehydrogenase subunit 4 12 21873723
gb|DQ883842 Azucena  (5,7dpi)+ - 12 26262316
gb|DQ884055 Azucena  (5,7dpi)+ - 12 26262323

b: pattern of deregulation, inside brackets Bl for buffer inoculated control or n dpi (n days post inoculation), + for up regulation, - for down

regulation. c: putative function as found after blasting against NR database.

caused both specific and general changes in host gene
expression and such examples show that this virus elicits
expression of common genes induced by other viruses.

This study is the first compiled map on RYMV/Rice inter-
action. We physically mapped 281 RSR genes using Sim4
[32] on the rice physical map, with respect to intron/exon
structure. The map is available, (see Availability and
requirements section). We also mapped the ESTs and pro-
teins previously identified [24,25] and the position of the
7 QTLs involved in the partial resistance [7]. The ESTs or
cDNA-AFLP analysis revealed changes in host gene expres-
sion as a consequence of the infection, whereas the QTLs
are involved in a direct response of the tolerance of the
host. We did not expect to find any adding up, as the ESTs
analysis revealed largely expressed genes, and cDNA-AFLP
technique showed up some genes with weak expression
level, moreover we do not know if the QTLs involved in
partially resistance or tolerance are induced or repressed.

The statistical analysis of the distribution of the RSR
sequences showed non uniform distribution of RSR
sequences on chromosomes 4 and 10 and thus might
underline the hypothesis of RSR sequences clusters of
deregulation. We did not observe any cluster regrouping
RSR sequences with a similar function ("functional clus-
ter"). But we did not identify all the genes involved in the
response to RYMV infection and a deeper study could
identify more clusters (especially functional ones) at a
microlevel.

Some sequences from IR64 and Azucena colocalized
(Table 2). The pattern of gene expression under RYMV
infection has been confirmed by quantitative RT-PCR for
some RSR genes and showed some differences between
the two cultivars. Such RSR genes might be involved in the
specificity of the host response. One of these genes
encodes an ABC transporter (DQ883962 and DQ884118
RSR sequences). This gene is highly repressed at 5 dpi in
the susceptible cultivar and over expressed in wounded
leaves of the partially resistant cultivar (Figure 4, A2). ABC
transporter genes were the most predominant genes iden-

tified by cDNA-AFLP (6 RSR sequences for Azucena and 4
RSR sequences for IR64) and thus might play an impor-
tant role in plant response to RYMV infection. Such trans-
porters are involved in the membrane transport of a wide
range of structurally and functionally unrelated com-
pounds, such as glutathione conjugates, lipids, inorganic
acids, peptides, secondary metabolism, toxin and drugs
[33]. It has been shown that some ABC transporter, like
the AtPDRS8, could be a key factor controlling the extent of
cell death in the defence response [34], and conferring
heavy metal resistance [35]. We also observed a variation
of gene expression of a sphingosine-1-phosphate lyase in
the two cultivars (Table 2, DQ883945 and DQ884107
RSR sequences). We observed an important decrease of
gene expression in RYMV infected leaves of the susceptible
cultivar as soon as 2 dpi (Figure 4, A14). Lipids influence
pathogenesis and resistance mechanisms associated with
plant-microbe interactions, and sphingolipids act as elici-
tors of defence response [36]. Such families of genes with
a down regulation of expression during the kinetic might
be targets of small RNAs and deeper study should be
undertaken to analyze the potential effects of small RNAs
on their regulation of expression. Finally, we noticed the
down regulation of 5 different RSR sequences encoding
retroelements (DQ884156, DQ883989, DQO883835,
DQ883911, and DQ883916). This negative regulation
occurred during the whole kinetic in Azucena infected
leaves. A deeper transcriptomic analysis is now carried on
to determine the relation between the virus infection and
such down regulation of retroelement.

Conclusion

This study presents for the first time a compiled physical
map on rice/virus interaction. It gives a strong basis for
future studies on RYMV/Rice interaction and for other rice
pathogens, as CMAP tool allows the combination of
maps. We identified variations of host responses to RYMV
infection in susceptible and partially resistant cultivars
and we showed that the phenomenon of tolerance to the
RYMV involves regulations at different cellular levels.
Some genes appeared to be potentially important during
the response of partially resistant and susceptible cultivars
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and it would be interesting to study the variation of their
expression in a near isogenic line with only the major
QTLs of resistance, this would allow avoiding any bias due
to the difference of the genetic background of the 2 culti-
vars. Moreover, it could be interesting to analyze the vari-
ation of expression (using quantitative RT-PCR) of such
genes in O. glaberrima species with different levels of
resistance assuming that the sequencing is available. This
would free further studies from inter-species variations of
response to virus infection.

Methods

Plant materials

Two cultivars were used: IR64 (O. s. indica) and Azucena
(O. s. japonica). IR64 is a high-yielding cultivar developed
at the International Rice Research Institute (IRRI) and
Azucena is a traditional upland cultivar from the Philip-
pines. Seeds of both cultivars were sown individually and
60 plants were grown in a growth chamber with 12 h of
light at 28°C and 12 h of dark at 24°C, 70% relative
humidity. For each cultivar, 20 two-leaf stage plants were
inoculated with buffer (20 mM phosphate buffer, pH 7),
or purified RYMV particles at a concentration of 100 pg/
ml. This experiment was repeated twice, in the same con-
ditions. Carborundum was added to the buffer in order to
facilitate mechanical inoculation of the leaves. All the
plants were grown together and were harvested at the
same time in order to minimize potential problems due to
factors such as circadian rhythm or harvest time in rela-
tion to illumination time. Non-stressed, wounded (buffer
inoculated) and RYMV inoculated leaves were harvested
2, 5 and 7 days post inoculation (dpi) for IR64 leaves and
3, 5, 7 dpi for Azucena leaves. These harvest dates were
chosen as appropriate times for a well established viral
multiplication and corresponded to an equivalent virus
accumulation in both cultivars based on RT-PCR analysis
(Figure 1).

RNA extraction and ds-cDNA synthesis

Total RNA was extracted using Qiagen RNeasy Plant mini
kit (Qiagen, Germany) and poly A+ RNA was purified
from 200 pg of total RNA using Qiagen Oligotex mRNA
purification kit (Qiagen, Germany) according to the man-
ufacturer's instructions. The amount and quality of total
RNA, poly A+ RNA were checked on 1% agarose non-dena-
turing gel and by UV illumination. Double-stranded
cDNA was synthesized from 3 pg of poly A+ RNA using
Stratagene cDNA synthesis kit (Stratagene Inc., La Jolla,
CA) according to the manufacturer's instructions.

RYMV accumulation in rice was investigated by RT-PCR
following the method described by [37] and according to
the manufacturer's instruction (Life Technology). 439 bp
fragment was amplified using primers R18: 5'-GGTGT-

http://www.biomedcentral.com/1471-2229/8/26

CAGCATAGTCGTAGAG-3' (3839-3819) and R17: 5'-
CACACGTGCGGGGTGTGGAG-3' (3380-3400) [38].

cDNA-AFLP procedure

cDNA-AFLP was performed using RNA extracted from
non-stressed and wounded leaves harvested at the first
time point (2 dpi for IR64 and 3 dpi for Azucena) and
RYMV-infected leaves harvested at 2, 5, and 7 dpi for IR64
and 3, 5, and 7 dpi for Azucena. One microgram of each
double strand cDNA sample was digested with 5 U of Eco
RI and Mse I (Gibco Invitrogen, Cergy Pontoise, France)
and 266 ng of Eco RI- and Mse I-adapters were ligated
onto digested cDNA ends. The sequences of adapters were
as follow: Eco Rl-adapter top strand, 5'-CTCGTAGACT-
GCGTACC-3'; Eco RlI-adapter bottom strand, 5'-AATTGG-
TACGCAGTC-3'; Mse I-adapter top strand, 5'-
GACGATGAGTCCTGAG-3'; Mse I-adapter bottom strand,
5'-TACTCAGGACTCAT-3'". The core sequences of primers
for pre-amplification and selective amplification were as
follow: Eco RI primer, 5'-GACTGCGTACCAATTC-3'; Mse
I primer, 5-GATGAGTCCTGAGTAA-3'". Selective nucle-
otides were added to the 3'-end of each primer as follow:
zero nucleotide for pre-amplification and two nucleotides
(A/T/G/C and A/T/G/C) for selective amplification (256
different primer combinations). The 5'-end of Eco RI
primers for selective amplification was radiolabelled
using [y-33P]ATP (Amersham Pharmacia Biotech, UK) and
T4 polynucleotide kinase (Appligene, Pleasanton, CA)
according to the manufacturer's instructions. Pre-amplifi-
cation and selective amplification were carried out in 50
pl final volume, which contained 20 ng of ligated ds-
DNA, 75 ng of both Eco RI and Mse I primers, dNTPs in
final concentration of 200 uM, 5 ul of 10 x Promega
buffer (Promega, Madison, USA), MgCl, in final concen-
tration of 2.5 mM, and 1 U Taq polymerase (Promega,
Madison, USA). PCR was performed on a PTC-200™ ther-
mocycler using the following cycling conditions: initial
denaturation at 94°C (30 s); 13 "touchdown" cycles:
0.7°C drop per cycle to a final annealing temperature of
56°C (30 s), 72°C (1 min); followed by 33 cycles: 94°C
(30 s); 56°C (30 s); 72°C (1 min). The resulting PCR
products were separated by polyacrylamide gel electro-
phoresis under denaturing conditions, and then the gels
were dried on 3 mm (Whatman, Maidstone, UK) paper
and exposed to Biomax-MS X-ray film (Kodak).

Isolation and sequencing of amplified cDNA products

The bands of interest were marked on the films, excised
from the gels and placed in sterile tubes. DNA fragments
were extracted from the denaturing gel by immerging the
gel bands in 50 pl of sterile water, and allowed to stand
overnight at +4°C in order to allow the DNA fragments to
diffuse. After centrifugation, the extracts were re-amplified
using AFLP selective primers under the same PCR condi-
tions as AFLP. The DNA fragments were then cloned into
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pGEM®-T Easy vector (Promega, Madison, USA) according
to manufacturer's instructions. Three individual clones
were isolated and maintained for each AFLP band.

Sequencing and analysis

Plasmid DNA was prepared using Qiagen R.E.A.L. kit.
Sequencing reactions were carried out with Applied Bio-
systems BigDye terminator kits and analyzed on an
Applied Biosystems (Courtaboeuf France) 3100
sequencer. The nucleotide sequences were analyzed for
homology against GenBank non-redundant database and
rice ESTs using the Basic Local Alignment Search Tool
(BLAST) program [39].

Quantitative PCR

We ran two independent sets of experiments comprising
10 healthy plants, 10 wounded plants, and 10 plants
infected by the RYMV. Total RNA were extracted from 14
days-old leaves harvested at 2 and 5 days post inoculation.
We used RNeasy kit (Qiagen). Poly(dT) cDNA was pre-
pared out of three times 400 ng total RNA using Super-
script III (Invitrogen). Quantification was performed on a
Stratagene Mx3005P apparatus with the FullVelocity SYBR
Green QPCR Master Mix (Stratagene) upon recommenda-
tions of the manufacturer. PCR was carried out in 96-well
optical reaction plates heated for 5 minutes to 95°C, fol-
lowed by 40 cycles of 10 seconds at 95°C and annealing-
extension for 30 seconds at 60°C. Target quantifications
were performed with specific primer pairs designed using
Beacon Designer 4.0 (Premier Biosoft International, Palo
Alto, USA). Expression levels were normalized to ACTIN2
(At3g18780). For each experiment, all the RT-PCR was
performed in triplicates and the presented values repre-
sent means plus/minus standard deviation.

Mapping

This step was not entirely straightforward since we aligned
our cDNA to genomic sequences. We used the fifth release
of the 12 rice chromosomes [21]. We used SIM4 for align-
ment comparison which considers intron/exon structure
and can map expressed sequence tags (EST) or cDNA
sequence to a genome. Because the cDNA sequences are
derived from two Oryza sativa ecotypes (IR64, O. s. indica
and Azucena, O. s. japonica) that differ from the genome's
ecotype (Nipponbare, O. s. japonica), we expected to find
some minor polymorphisms when we compared the IR64
cDNAs to the genome sequence of Nipponbare. Some
molecular analyses have consistently shown a difference
between indica and japonica in the quantification of
genomic DNA and repetitive sequence [40]. Nevertheless,
a recent comparative approach on fine physical map of
chromosome 4 [41] reveals that the indica and japonica
physical maps showed an overall synteny even with some
intraspecific DNA-sequence polymorphisms: insertion/
deletion (indel) and single nucleotide polymorphism

http://www.biomedcentral.com/1471-2229/8/26

(SNP) [16]. A comparative genomics program entitled
"Oryza Map Alignment Project" (OMAP) has been started
to study evolution, genome organization, domestication,
gene regulatory network, and crop improvement [42,43].
Moreover, the average of numbers of introns and exons
per gene, gene content, and order are highly conserved in
indica and japonica sequences [44], and thus it appears rea-
sonable to use the Nipponbare sequence as a reference to
map and analyse rice gene sequences.

A first filter was the global percentage of identity: all RSR
sequences with more than 80% of identity were selected.
All RSR sequences with less than 98% of homology for
more than 50% of the sequence were deleted. Then, all
sequences with more than 95% of identity for each exon
(except the last one which may contain large number of
N) were kept. Thus, these sequences were mapped onto
the chromosomes and referenced by the position of the
first exon.

We also mapped the ESTs previously identified as
involved in this interaction rice/RYMV [25] using the
same approach. The proteins shown as involved in the
interaction were positioned using a blastx subroutine to
compare the sequence of each peptide to the chromosome
[24]. These ESTs and proteins are mentioned on the right
of the map.

Statistical analysis

The distribution of RSR sequences per megabase was com-
pared to the distribution of ATG observed per megabase
along the chromosomes using the sub-program STRUC
from GENEPOP version 3.1c [45]. This program uses
Markov chain method to estimate without bias the exact
P-value of the probability test (or Fisher exact test) on con-
tingency tables of any sizes. The contingency test was per-
formed for each chromosome with an alpha error < 0.05.

Availability and requirements

http://cmap.bioinfo.mpl.ird.fr/cmap/: Physical map of
281 RSR sequences. On the left of each chromosome, start
positions of RSR sequences were in bp *100000, and the
ESTs and proteins identified as candidates involved in
host response [24,25]. On the left, we mentioned the
position of the 7 QTLs involved in the partial resistance

[7].
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