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Abstract
Background: Safflower (Carthamus tinctorius L.) is a diploid oilseed crop whose origin is largely
unknown. Safflower is widely believed to have been domesticated over 4,000 years ago somewhere
in the Fertile Crescent. Previous hypotheses regarding the origin of safflower have focused
primarily on two other species from sect. Carthamus – C. oxyacanthus and C. palaestinus – as the
most likely progenitors, although some attention has been paid to a third species (C. persicus) as a
possible candidate. Here, we describe the results of a phylogenetic analysis of the entire section
using data from seven nuclear genes.

Results: Single gene phylogenetic analyses indicated some reticulation or incomplete lineage
sorting. However, the analysis of the combined dataset revealed a close relationship between
safflower and C. palaestinus. In contrast, C. oxyacanthus and C. persicus appear to be more distantly
related to safflower.

Conclusion: Based on our results, we conclude that safflower is most likely derived from the wild
species Carthamus palaestinus. As expected, safflower exhibits somewhat reduced nucleotide
diversity as compared to its progenitor, consistent with the occurrence of a population genetic
bottleneck during domestication. The results of this research set the stage for an investigation of
the genetics of safflower domestication.

Background
Safflower (Carthamus tinctorius L.) is a thistle-like, self-
compatible, annual, diploid (2n = 24) herbaceous crop
that thrives in hot, dry climates, and is capable of surviv-
ing on minimal surface moisture. It is believed to have
been domesticated somewhere in the Fertile Crescent
region over 4,000 years ago [1]. Following its initial
domestication, safflower cultivation is thought to have
expanded to both the east and west [2], with Knowles [3]
ultimately recognizing seven "centers of similarity" (the
Far East, India-Pakistan, the Middle East, Egypt, Sudan,
Ethiopia and Europe). Safflower lines native to each

'center' are remarkably similar in height, branching,
spines, flower color and head size; however, consistent
morphological differences are maintained between the
centers.

For centuries, safflower was grown on a local scale for its
flowers, which served as a source of dye (carthamine) for
textiles and food coloring, as well as for use in religious
ceremonies [4]. Floral extracts were also used to flavor
foods, and have historically been valued for their numer-
ous medicinal properties. Cultivation of safflower in the
New World commenced in 1899, and commercial pro-
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duction of safflower as an oilseed crop began in the 1950s
[5]. More recently, there has been growing interest in saf-
flower for its potential as a large-scale production plat-
form for plant-made pharmaceuticals [6,7].

To date, phylogenetic investigations of Carthamus species
have focused on either delimiting the sections within the
genus [e.g. [8,9]], or on the development of DNA finger-
printing methodologies for investigating relationships
amongst safflower cultivars [e.g. [10]]. Relationships
between closely-related species within each section are,
however, only poorly understood, and details surround-
ing the origin and early evolution of safflower are lacking.
What we currently know is that safflower belongs to a
group of closely related diploid species (sect. Carthamus;
all 2n = 24 chromosomes [11]) whose ranges extend from
central Turkey, Lebanon, and Israel in the west to north-
western India in the east. In addition to C. tinctorius, this
section is composed of C. curdicus Hanelt, C. gypsicola
Iljin, C. oxyacanthus Bieb. (= C. oxyacantha M. Bieb.), C.
palaestinus Eig, and C. persicus Desf. ex Willd. (= C. flaves-
cens Spreng) [8,12]. However, these species all exhibit
some degree of cross-compatibility with one another
[reviewed in [12,13]] and thus reproductive isolation
alone cannot be used to delimit the species. Carthamus
curdicus and C. palaestinus exhibit restricted geographical
distributions (Northern Iran and Southern Israel, respec-

tively), whereas C. persicus, C. gypsicola and C. oxyacanthus
are more widely distributed throughout the Middle East
[12].

Hypotheses regarding the origin of safflower have focused
on C. oxyacanthus or C. palaestinus as the most likely pro-
genitors, although C. persicus has also been suggested as a
possible progenitor [14]. Here we report on levels of
nucleotide diversity within and among species of sect.
Carthamus, and investigate the origin of cultivated saf-
flower using data derived from seven nuclear genes.

Results
DNA sequence diversity
Sequence data were collected from all seven gene regions
for each of the 23 individuals surveyed (Tables 1 and 2),
encompassing all species within sect. Carthamus. All
sequences have been deposited in the Genbank Data
Library and are available under accession nos. EF483951–
EF483974, EF483983–EF484014, EF519712–EF519729,
EF519732–EF519751, EF519754–EF519770, EF519774–
EF519792, EF519795–EF519811, EF519815–EF519834
and EF519838–EF519857. Excluding indels, sequence
lengths varied from 365 to 621 base pairs (bp) per locus,
and all sequences included both exons and introns (Table
3). Thus, we were able to analyze 3239 bp of aligned
sequence per individual with 1317 bp (40%) coming

Table 1: List of accessions surveyed, including information on the source of each sample.

Species Code Cultivar/Accession PI/herbariuma Originb

C. tinctorius L. saffW W6 6730 PI 576995 China*
C. tinctorius L. saffL LESAF 494 PI 603207 Canada
C. tinctorius L. saffE ENANA PI 610263 Spain*
C. tinctorius L. saffU USB PI 560163 USA
C. tinctorius L. saffAZ ARIZ SAFF COMP III PI 572418 USA
C. tinctorius L. saffAC AC SUNSET PI 592391 Canada
C. tinctorius L. saff1063 BJ-1063 PI 250601 India*
C. tinctorius L. saff673 BJ-673 PI 193473 Ethiopia*
C. tinctorius L. saff2701 BJ-2701 PI 253762 Iraq*
C. tinctorius L. saff1067 BJ-1067 PI 250606 Egypt*
C. tinctorius L. saffTS TOZI SPINY PI 271070 Sudan*
C. curdicus Hanelt curd Hanelt W 12361 Iraq
C. gypsicola Iljin gypA UZ99a - Uzbekistan
C. gypsicola Iljin gypB UZ99b - Uzbekistan
C. oxyacanthus Bieb. oxy2 K-2 PI 426428 Pakistan
C. oxyacanthus Bieb. oxy1076 K-1076 PI 426185 Afghanistan
C. oxyacanthus Bieb. oxy604 K-604 PI 426467 Pakistan
C. palaestinus Eig palBJ BJ-1964 PI 235663 Israel
C. palaestinus Eig pal96 Ashri1917 GAT 3796 Israel
C. palaestinus Eig pal97 Ashri1642 GAT 3797 Israel
C. palaestinus Eig pal98 Ashri GAT 3798 Israel
C. persicus Willd. perG Garcia-Jacas 2002 - Turkey
C. persicus Willd. per00 Aydem 157 GAT 3800 Turkey

a Numbers refer to the USDA accession (PI), Vienna Museum of Natural History (W) or Gatersleben herbarium accession (GAT). No number 
indicates a private collection. '-' indicates missing voucher specimens. More seeds are, however, available from these collections.
b Asterisks refers to the seven accessions of safflower from the seven so-called "centers of similarity" (ref. [3]; see text for details)
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from exons and 1922 bp (60%) coming from introns.
Across taxa, the number of indel polymorphisms per
locus varied from four to thirteen, with a total of 53 indels
in the data set. All indels were excluded from the analyses
of nucleotide polymorphism.

Single nucleotide polymorphisms (SNPs) were considera-
bly more common than indels. A total of 220 SNPs were
found across the full data set, resulting in an average of 1
SNP per 15 bp of sequence. Considering just the 11 saf-
flower individuals, there were 34 SNPs, corresponding to
an average of 1 SNP per 95 bp of sequence. Estimates of
nucleotide diversity for C. tinctorius, C. palaestinus and C.
oxyacanthus are presented in Table 4.

While diversity varied across loci, C. tinctorius generally
harbored the lowest levels of diversity with Watterson's θ
(θW) ranging from 0 to 0.0071 (mean = 0.0033), total
nucleotide diversity (πTot) ranging from 0.0008 to 0.0102
(mean = 0.0041), and silent-site diversity (πSil) ranging
from 0.0006 to 0.0175 (mean = 0.0057). Carthamus oxya-
canthus, on the other hand, exhibited the highest levels of

diversity, with θW ranging from 0.0012 to 0.0277 (mean =
0.0101), πTot ranging from 0.0014 to 0.0354 (mean =
0.0105), and πSil ranging from 0 to 0.0601 (mean =
0.0148). Carthamus palaestinus was intermediate to the
other two species with θW ranging from 0 to 0.0078 (mean
= 0.0044), πTot ranging from 0 to 0.0095 (mean = 0.0051),
and πSil ranging from 0 to 0.0180 (mean = 0.0081).

Because of the relatively small amount of exonic sequence
included in each gene fragment (188 bp on average), indi-
vidual estimates of synonymous and non-synonymous
diversity must be viewed with caution. Averaging across
loci, however, revealed that our estimates of non-synony-
mous variability are substantially lower than our esti-
mates of synonymous variability, suggesting that diversity
at these loci is primarily governed by purifying selection
(data not shown). After correcting for multiple compari-
sons, none of the Tajima's D estimates were significantly
different from zero (Table 4).

Table 2: Summary of genes surveyed and primer sequences employed.

Locus Functional Annotation via BLAST Primer Sequences (Forward/Reverse)

A19 At2g21330 5'-CTAGAGAACACSGARGCTAACCG
Putative fructose bisphosphate aldolase 5'-TGGCGAAACGRGCACCYTGTTGG

A25 At2g45740 5'-TTGCATGSTCTTATCAGTCC
Similar to putative peroxisomal membrane 
protein PEX11-1

5'-GAAGABCCCATCCARCAGAAGAG

A25a - Same as A25 Forward
5'-TCTCTCTCATGACACCATGTAAA

A25b - 5'-GCTCCACAGATCAGGCATTT
Same as A25 Reverse

A27 At3g19900 5'-CTTGCAWTGAATGTCATGTGGAAG
Unknown protein 5'-GCTCCCCARCATTTCA

A39 At2g28315 5'-ACTAGTTGGCATYTRATGGTAACA
Putative glucose-6-phosphate/phosphate-
tranlocator

5'-GCCRACAAAATTGAGCTGAAGATC

A39a - Same as A39 Forward
5'-TCATGGACCAGAAATGAYGTT

A39b - 5'-AGCACCCTTCCYTACTGCAT
Same as A39 Reverse

B7 At4g27700 5'-AGAAAAYARCTTTGTGATTCTTGATG
Contains Rhodanese Homology Domain 5'-GAWGARCAAGCTACTATRATCTTTG

B12 At3g55800 5'-CAAGTGGCTGCAGCCATGGG
Sedoheptulose-bisphosphatase precursor 5'-ACATCRGGMACCATTCCWCCGGTGT

B27 At4g33250 5'-AAGGCTCTTATGGCHATGCC
Similar to eukaryotic translation initiation 
factor 3 subunit 11

5'-CGGTTYTTRGCWGCTTCATCCCARAACTG

B27a - Same as B27 Forward
5'-TGATGCAAAATAGTTTGTTGGAA

B27b - 5'-TGGTGMTYCTTTTCCAATTC
Same as B27 Reverse

Primer names followed by 'a' or 'b' were designed to amplify a given locus in two parts. Functional annotations were taken from the Genbank record 
for each Arabidopsis locus. For the unknown protein a BLASTn search failed to yield a putative function
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Phylogenetic relationships
Comparison of the NJ trees produced from the single gene
analyses suggests that reticulate evolution and/or incom-
plete lineage sorting has occurred in Carthamus sect.
Carthamus (Fig. 1). While a number of overall similarities
in tree topology are evident from these analyses, there are
several instances in which the phylogenetic position of an
individual varies depending on the gene analyzed. In
some cases, individuals harbored divergent alleles at one
or more loci, possibly indicating that contemporary
hybridization has played an active role in the evolution of
sect. Carthamus. Of particular note are the positions of the
C. gypsicola alleles which are sometimes found in diver-

gent clades (e.g., for genes A19 and B12). Some C. oxya-
canthus alleles show a similar pattern (e.g., genes A39 and
B27). When comparing the seven trees for the individual
loci, however, some patterns begin to emerge. Overall, C.
oxyacanthus is most often found to be relatively distantly
related to C. tinctorius, and frequently associated with alle-
les from C. gypsicola. Of particular note is the close rela-
tionship between individuals of C. tinctorius and C.
palaestinus, suggesting that the species most closely related
to safflower (and hence its most likely progenitor) is C.
palaestinus (Fig. 1).

Table 4: Estimates of nucleotide variability and Tajima's D.

Locus Taxon θW πTot πSil Tajima's Da

A19 C. tinctorius 0.0041 0.0046 0.0087 0.34
C. palaestinus 0.0078 0.0095 0.0180 1.03
C. oxyacanthus 0.0013 0.0016 0 0.85

A25 C. tinctorius 0.0071 0.0102 0.0109 1.44
C. palaestinus 0.0059 0.0066 0.0089 0.52
C. oxyacanthus 0.0047 0.0036 0.0036 -1.30

A27 C. tinctorius 0.0023 0.0014 0.0006 -0.95
C. palaestinus 0 0 0 n/a
C. oxyacanthus 0.0063 0.0077 0.0087 1.22

A39 C. tinctorius 0 0 0 n/a
C. palaestinus 0.0012 0.0008 0.0010 -1.05
C. oxyacanthus 0.0070 0.0057 0.0084 -1.07

B7 C. tinctorius 0.0016 0.0010 0.0009 -0.84
C. palaestinus 0.0054 0.0071 0.0112 1.43
C. oxyacanthus 0.0012 0.0014 0.0025 0.85

B12 C. tinctorius 0.0062 0.0102 0.0175 2.20
C. palaestinus 0.0067 0.0075 0.0129 0.53
C. oxyacanthus 0.0277 0.0354 0.0601 1.76

B27 C. tinctorius 0.0020 0.0013 0.0014 -1.04
C. palaestinus 0.0035 0.0044 0.0048 1.18
C. oxyacanthus 0.0229 0.0184 0.0202 -1.42

Average C. tinctorius 0.0033 0.0041 0.0057 0.19
C. palaestinus 0.0044 0.0051 0.0081 0.61
C. oxyacanthus 0.0101 0.0105 0.0148 0.13

a None of the estimates of Tajima's D were significant

Table 3: Details regarding gene regions analyzed.

Locus Aligned Lengtha No. Indels N(var)b

A19 365 4 34
A25 486 6 42
A27 395 13 50
A39 578 4 49
B7 386 9 51
B12 408 7 57
B27 621 10 64
Combined 3239 53 267

a Alignment size (bp) after removing primers, indels, and ambiguous regions
b Number of variable characters
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Despite the occurrence of some incongruities between
loci, the NJ, ML and Bayesian trees based on the combined
data (which are nearly identical to each other in topology;
Fig. 2 and data not shown) are in overall agreement with
our interpretations of the single gene analyses. Carthamus
oxyacanthus is resolved as the species most distantly
related to safflower, with high ML bootstrap and Bayesian
posterior probabilities. Within C. oxyacanthus the two
lines from Pakistan are more closely related to each other
than they are to the line from Afghanistan. Carthamus per-
sicus appears to be paraphyletic, perhaps due to recent
gene flow. As predicted from the individual gene trees, C.
palaestinus is the most closely related species to safflower,
and we conclude that this species is the most likely pro-
genitor of safflower. In the Bayesian analysis, all four C.
palaestinus individuals are found in a well-supported clade

along with all of the safflower individuals. Similarly, in
the ML analysis, three of the four individuals of C. palaesti-
nus are found in such a clade (87% BS), with the fourth
resolving at the base of this clade along with individuals
of C. curdicus and C. persicus. Some relationships can also
be resolved among safflower individuals; for example, saf-
fAZ and saffAC form a well-supported clade at the base of
the safflower/C. palaestinus group. Relationships between
the other cultivars are, however, poorly-supported.

Discussion
Origin of safflower
A close relationship between members of sect. Carthamus
has been proposed based on data from crossing studies
[reviewed in [12,13]], the identification of natural hybrids
amongst some species within the section [1,14], and phy-

Phylogenetic relationships among species of Carthamus sect. Carthamus based on single-gene analysesFigure 1
Phylogenetic relationships among species of Carthamus sect. Carthamus based on single-gene analyses. Neigh-
bor-Joining trees were generated for each individual gene. Species names and accession codes are given in Table 1. Accession 
names followed by -1 or -2 denote alleles for a given locus. Alleles followed by a * were determined using haplotype subtrac-
tion by maximum likelihood; the remainder of the alleles were determined by cloning.
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logenetic analyses involving some members of the section
[9]. Prior to the present investigation, however, the phyl-
ogenetic relationships amongst all species within sect.
Carthamus had not been investigated, and the identity of
the progenitor of safflower had only been hypothesized.
While Ashri & Knowles [14] proposed that safflower was
derived from hybridization between C. oxyacanthus and C.
persicus, this hypothesis is clearly not supported by our
results. Rather, Carthamus palaestinus and safflower are
found in the same clade indicating a close relationship
between these species. We thus propose that C. palaestinus,
which is native to the deserts of southern Israel and west-
ern Iraq, is the wild progenitor of safflower. Safflower and
C. palaestinus share a self-compatible breeding system
[12]; thus, the near absence of heterozygous loci in these
species (Fig. 1) is unsurprising. Carthamus persicus and

some populations of C. oxyacanthus are self-incompatible,
and this is evident from the presence of much more heter-
ozygosity in these species (Fig. 1). The cause of the non-
monophyly of C. persicus remains unknown due to the
small sample sizes necessarily employed here; however
the retention of ancestral polymorphism and/or contem-
porary gene flow (C. persicus is self-incompatible) could
be responsible.

As noted in the Introduction, Knowles [3] recognized
seven distinct "centers of similarity" of safflower, includ-
ing the Far East, India-Pakistan, the Middle East, Egypt,
Sudan, Ethiopia and Europe. Interestingly, our data pro-
vide little support for the distinctiveness of safflower
accessions from these disparate geographic locales.
Indeed, while there is a small amount of phylogenetic

Phylogenetic relationships among species of Carthamus sect. Carthamus based on a combined analysis of seven nuclear genesFigure 2
Phylogenetic relationships among species of Carthamus sect. Carthamus based on a combined analysis of seven 
nuclear genes. Maximum likelihood (A) and Bayesian (B) trees generated for the combined dataset. Bootstrap values (> 75%) 
for the ML tree and posterior probabilities (> 0.90) for the Bayesian tree are given alongside branches. Species names and 
accession codes are given in Table 1.
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structure apparent within safflower, it appears that most
of the accessions surveyed herein are highly similar at a
genetic level. Moreover, much of the substructuring
within safflower is not well-supported in either the Baye-
sian or ML analyses. The exceptions to this are a pair of
accessions from the USA and Canada (saffAZ and saffAC,
respectively), and possibly one accession from Egypt
(saff1067). Considering what we know about the history
of safflower cultivation, the North American accessions
(saffAZ, saffAC, and saffU) are presumably recent intro-
ductions, and from our data it appears that they may be
derived from relatively divergent ancestral stocks (Fig. 2).
Further investigation of the 'seven centers' hypothesis, will
require the development and application of more variable
markers to a much more robust sampling of the available
safflower germplasm. While a recent investigation of saf-
flower cultivars using RAPDs, ISSRs and AFLPs revealed
some genetic structuring within the species [10], the
authors did not address the question of whether or not the
seven morphological centers of diversity correspond to
genetic subgroups within safflower.

Levels of nucleotide diversity
The domestication of plant species is typically accompa-
nied by a reduction in genetic diversity resulting from the
population genetic bottleneck that occurs during domes-
tication. Although results vary across species, crops gener-
ally harbor ca. two-thirds of the diversity that is present in
their wild progenitors [15]. We found a similar value here,
with a 20–30% (depending on the measure) reduction in
nucleotide diversity in safflower as compared to C. pal-
aestinus (Table 4). Because θW is roughly proportional to
heterozygosity, we can further conclude that a randomly
selected pair of safflower sequences will differ at an aver-
age of 1 out of every 303 bp (i.e., 1/0.0033 ≅ 303). This
makes safflower considerably less diverse than crops such
as maize (1 out of every 105 bp [16]) and sunflower (1
out of every 140 bp [17]) but far more diverse than crops
such as soybean (1 out of every 1030 bp [18]).

Conclusion
Insights into the origin of crop plants and knowledge of
the identities of their progenitors are of great value in both
basic and applied research programs. For example, the
comparative analysis of crop plants and their wild progen-
itors can shed light on the genetic mechanisms underlying
organismal evolution [19,20]. Similarly, comparative
analyses of this sort can be a powerful tool for identifying
genes underlying agronomically-important traits [21-23].
The identification of C. palaestinus as the wild progenitor
of safflower opens the door for such analyses within the
genus Carthamus. Moreover, because safflower is a mod-
ern-day oilseed crop and a member of the same family as
cultivated sunflower, which has been the subject of a great
deal of recent study [24,25], the initiation of such work in

safflower would create a comparative framework for stud-
ying the evolution of oilseed crops within the Asteraceae.

Methods
Plant materials and DNA extraction
Tissue for DNA extraction was either obtained from live
plants grown from seed or from herbarium specimens
(Table 1). Seeds were obtained from archived collections
held at the USDA Western Regional Plant Introduction
Station in Pullman, WA. These included 11 accessions of
C. tinctorius L., three accessions of C. oxyacanthus and one
accession of C. palaestinus. In addition Dr. R. Vilatersana
(Institut Botànic de Barcelona) kindly provided seeds of
C. gypsicola and C. persicus. Herbarium specimens of C.
palaestinus (three accessions) and C. persicus (one acces-
sion) were provided by the IPK Gatersleben Herbarium
(GAT), and C. curdicus (one accession) was provided by
the Vienna Museum of Natural History (Herbarium W).
All species are presumed to be diploid based on prior
investigations [reviewed in [11]].

For the live plants, seeds were clipped with a razor blade
and germinated on damp filter paper in Petri dishes (48
hours dark/48 hours light). Seedlings were then planted
in soil and grown in the greenhouse. Total genomic DNA
was then isolated from 100 mg of leaf tissue using the
DNeasy plant mini kit (Qiagen, Valencia, CA). For the
herbarium extractions, tissue lysis and extraction followed
the same protocol as the fresh leaf tissue except that only
ca. 20 mg of leaf tissue was used.

Locus selection and sequencing
The seven nuclear genes used in this study (Table 2) were
selected from a set of universal markers that were recently
developed for use in the Asteraceae [26]. The loci selected
for inclusion in this study all produced a single amplicon
that could be sequenced directly (only those individuals
that were heterozygous for insertions/deletions were
cloned). Three of the loci (A25, A39, and B27; Table 2)
did not amplify well in the herbarium material, presuma-
bly due to DNA degradation; internal primers were thus
designed to amplify these loci in two overlapping seg-
ments that were later aligned into a single contig. For A39
the first portion still could not be amplified in the herbar-
ium specimens, and hence was scored as missing data for
those individuals.

PCR was performed in a 20 µl total volume containing 20
ng of template DNA, 30 mM Tricine pH 8.4-KOH, 50 mM
KCl, 2 mM MgCl2, 100 µM of each dNTP, 0.2 µM of each
primer, and 2 units of Taq polymerase. Thermal cycling
followed a 'touchdown' protocol, with a final annealing
temperature of 50° or 55°C, as follows: (1) initial dena-
turing step of 3 minutes at 95°C, (2) ten cycles of 30 s
denaturation at 94°C, 30 s annealing at 60° or 65°C
Page 7 of 9
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(annealing temperature was reduced by one degree per
cycle), 45 s extension time at 72°C, (3) 30 cycles of 30 s
at 94°C, 30 s at 50° or 55°C, 45 s at 72°C, and (4) a final
extension of 20 m at 72°C. Following PCR amplification,
the presence of amplicons was confirmed via agarose gel
electrophoresis.

To prepare for DNA sequencing, 10 µl of each PCR prod-
uct was incubated at 37°C for 45 m with 4 units of Exo-
nuclease I and 0.8 units of Shrimp Alkaline Phosphatase
(USB, Cleveland, OH). Enzymes were subsequently dena-
tured by heating to 80°C for 15 minutes. Purified PCR
amplicons (0.5 – 2 µl depending on approximate concen-
tration) were then sequenced with the primers used for
the initial PCR. DyeNamic (Amersham, Piscataway, NJ) or
BigDye v3.1 (Applied Biosystems, Foster City, CA) chem-
istry was used for the sequencing following the manufac-
turers' protocols with minor modifications.
Unincorporated dyes were removed from the sequencing
reactions via Sephadex (Amersham) clean-up and
sequences were resolved on a Basestation (MJ Research,
San Francisco, CA) or ABI 3730xl (Applied Biosystems)
automated DNA sequencer. For individuals that were het-
erozygous for indels at a particular locus (as evidenced by
the initial sequencing chromatogram), the unpurified
PCR product was cloned using the pDrive (Qiagen) or
TOPO TA (Invitrogen, Carlsbad, CA) cloning vectors fol-
lowing the manufacturers' protocols. In order to protect
against Taq errors, PCR products from five positive clones
per cloning reaction were then prepared and sequenced as
above, except that the T7 and M13 universal vector prim-
ers were used.

Data analyses
DNA sequences were edited using Chromas 2.12 (Techne-
lysium, Helensvale, Australia). Heterozygous bases from
uncloned PCR products were detected by the presence of
double peaks and coded following the conventions of the
International Union of Biochemistry and Molecular Biol-
ogy. From these, haplotypes were resolved using the max-
imum likelihood algorithm PL-EM [27] within the
HapAnalyzer software [28]. Sequences were aligned using
Clustal W2 [29] with the default settings, followed by
manual adjustments. Indels were scored as additional
characters using GapCoder [30], although regions that
could not be aligned unambiguously and length variants
at simple-sequence repeats were excluded from the analy-
sis. Heterozygotes were common, and alleles were kept
separate for the individual gene phylogenetic analyses.
For the combined dataset, however, the phase of alleles
across loci could not be reliably determined. As such, pairs
of cloned alleles were collapsed into a single genotype for
each gene and then the seven genes were concatenated for
each individual.

Estimates of nucleotide diversity (π and θ, calculated on a
per-site basis) as well as Tajima's D [31] were obtained for
the three taxa with three or more samples (C. tinctorius, C.
palaestinus, and C. oxyacanthus) using the software package
DnaSP 4.00.5 [32,33]. Neighbor-Joining trees were gener-
ated separately for each locus and for the combined data-
set using PAUP* ver. 4.0b [34]. The combined dataset was
also subjected to Maximum likelihood (ML) and Bayesian
analyses. ML analysis was carried out using PHYML v2.4.4
[35] under the HKY+Γ model of molecular evolution with
four substitution rate classes with 500 bootstrap repli-
cates. Bayesian analysis was conducted with MrBayes [36]
as implemented in the Geneious package (v3.0.6; Biomat-
ters Ltd., Auckland, New Zealand). MCMC analysis was
run with four chains simultaneously for 1,100,000 gener-
ations, subsampling every 200 generations. Samples prior
to the generation 100,000 were treated as burn-in and dis-
carded.
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