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Abstract

Background: Most transcription factors fulfill their role in complexes and regulate their target
genes upon binding to DNA motifs located in upstream regions or introns. To date, knowledge
about transcription factor target genes and their corresponding transcription factor binding sites
are still very limited. Two related methods that allow in vivo identification of transcription factor
binding sites are chromatin immunoprecipitation (ChlP) and chromatin affinity purification (ChAP).
For ChAP, the protein of interest is tagged with a peptide or protein, which can be used for affinity
purification of the protein-DNA complex and hence, the identification of the target gene.

Results: Here, we present the results of experiments aiming at the development of a generic
tagging approach for the Arabidopsis MADS domain proteins AGAMOUS, SEPALLATA3, and
FRUITFULL. For this, Arabidopsis wild type plants were transformed with constructs containing a
MADS-box gene fused to either a double Strep-tag® II-FLAG-tag, a triple HA-tag, or an eGFP-tag,
all under the control of the constitutive double 35S Cauliflower Mosaic Virus (CaMV) promoter.
Strikingly, in all cases, the number of transformants with loss-of-function phenotypes was much
larger than those with an overexpression phenotype. Using endogenous promoters in stead of the
35S CaMV resulted in a dramatic reduction in the frequency of loss-of-function phenotypes.
Furthermore, pleiotropic defects occasionally caused by an overexpression strategy can be
overcome by using the native promoter of the gene. Finally, a ChAP result is presented using GFP
antibody on plants carrying a genomic fragment of a MADS-box gene fused to GFP.

Conclusion: This study revealed that MADS-box proteins are very sensitive to fusions with small
peptide tags and GFP tags. Furthermore, for the expression of chimeric versions of MADS-box
genes it is favorable to use the entire genomic region in frame to the tag of choice. Interestingly,
though unexpected, it appears that the use of chimeric versions of MADS-box genes under the
control of the strong 35S CaMV promoter is a very efficient method to obtain dominant-negative
mutants, either caused by cosuppression or by alteration of the activity of the recombinant protein.
Finally, we were able to demonstrate AGAMOUS binding to one of its targets by ChAP.

Page 1 of 11

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17868439
http://www.biomedcentral.com/1471-2229/7/47
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Plant Biology 2007, 7:47

Background

During the last 15 years, many studies have been per-
formed aiming at the understanding of MADS-box gene
function in plants using loss- and gain-of-function
approaches, which resulted in a wealth of information
about their role in development [1,2]. Far less is known
about how they act at the molecular level, how they bind
to DNA motifs (cis-elements) and activate down-stream
target genes. It has been shown that MADS domain pro-
teins are able to bind to the DNA motif CC(A/T)GG, the
so-called CArG-box (reviewed in [3]). This motif has also
been found in promoter sequences of a small number of
genes that have been annotated as target genes (e.g. [4-7]).
Nevertheless, the exact requirements for this DNA motif
to be bound by MADS-box transcription factors in vivo are
still unknown. Therefore, methods for the identification
of DNA target sites are needed.

A powerful method to identify target sites is chromatin
immunoprecipitation (ChIP), which allows purification
of in vivo formed complexes of a DNA-binding protein
and associated DNA (reviewed in [8]). In short, the
method involves the fixation of plant tissue and the isola-
tion of the total protein-DNA mixture, followed by an
immunoprecipitation step with an antibody directed
against the protein of interest. Next, the DNA can be puri-
fied, amplified, and finally identified by sequencing.
Alternatively, the amplified DNA can be hybridized to
micro arrays containing promoter elements or the entire
genome as tiled oligonucleotides (ChIP-chip approach,
[9,10]). The identification of target genes from MADS
domain proteins by ChIP has been reported recently
[5,7,11]. A drawback of ChIP is that for each protein of
interest a new specific antibody is required. To overcome
this drawback, a protein tagging approach with a general
tag could be followed, which we refer to as Chromatin
Affinity Purification (ChAP). In this approach, a generic
tag is fused to the protein of interest and subsequently
used to isolate protein-DNA (or protein-protein) com-
plexes based on affinity purification (reviewed in [12-
14]).

In this study we focused on three MADS domain proteins
from  Arabidopsis, namely AGAMOUS (AG),
SEPALLATA3 (SEP3), and FRUITFULL (FUL). AG and
SEP3 are both floral organ identity proteins, and based on
the ABC model [15], represent C- and E-type proteins,
respectively (reviewed in [16]). AG is necessary for the for-
mation of stamens and carpels and is expressed in the
inner two floral whorls [17]. SEP3 is expressed in the
inner three whortls and is essential for the formation of
petals, stamens and carpels in a redundant mode of action
with SEP1 and SEP2 [18-21]. FUL has a function in floral
meristem identity (early function) and in fruit develop-
ment (late function) [22-24], and is expressed in the inflo-
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rescence meristem, inflorescence stem, cauline leaves, and
in developing ovary walls [25]. Here, we report the expres-
sion of these three MADS domain proteins in Arabidopsis
fused with different tags and the analysis of the pheno-
types obtained. Furthermore, the first result obtained with
ChAP using a GFP antibody is presented.

Results

Protein tagging vectors for plant expression

Four different binary vectors were used for the tagging
approach in plants (Figure 1). The first vector (Figure 1A)
contains a double tag, the Strep-tag® I1 [26], followed by
the FLAG-tag [27], located at the C-terminus of the pro-
tein of interest. These peptide tags are both very small,
each only 8 amino acids long. Two other vectors (Figure
1B and 1C) contain the coding region for eGFP (enhanced
GREEN FLUORESCENT PROTEIN, Clonetech) [28,29],
which is either located at the N- or C-terminus of the pro-
tein of interest [30]. The fourth vector (Figure 1D) con-
tains a triple HA-tag (hemagglutinin derived) [31], each
encoding for a 9 amino acids long peptide. Furthermore,
all vectors have a constitutive double 35S CaMV promoter
[32,33] to express the fusion products of AG, SEP3, and
FUL in transgenic Arabidopsis plants.

Phenotypic and expression analyses of Arabidopsis lines
expressing chimeric MADS-box versions

All constructs were introduced into Arabidopsis wild type
plants, ecotype Columbia-0, and the transformants
obtained were analyzed for overexpression phenotypes.
The results are summarized in Table 1 and Figure 2. The
expected overexpression phenotypes for AG are homeotic
changes of floral organs, resembling an apetala2-like

A
gene NOS pARCI113
35S StreplI-FLAG
5 PARC258
eGFP gene 358 | (pK7TWGF2)
35S >
c pARC259
gene eGFP 355 | (pK7FWG2)
P35S
b 5 PARCO64
gene tNOS (Alligator2)
p35S 3xHA

0.5 kb

Figure |

Binary tagging vectors for plant protein expression. (A) C-
terminal fusion expression vector with the Strep-tag® Il and
the FLAG-tag. (B) N-terminal fusion expression vector with
eGFP. (C) C-terminal fusion expression vector with eGFP.
(D) N-terminal fusion expression vector with a triple HA-
tag. All vectors contain the constitutive 35S CaMV promoter
with the double enhancer for expression.

Page 2 of 11

(page number not for citation purposes)



BMC Plant Biology 2007, 7:47

Table I: Summary of tagged MADS domain proteins in
Arabidopsis plants with the observed phenotypes

Construct Expression cassette  Plants (n) Phenotypes (%)

OE LOF  WT

PARCII7  35SFULStrepll- 21 - 57 43
FLAGNOS
PARCII8  35SAG:Strepll- 14 - 29 71
FLAG:NOS
PARC276  35SAG:GFP:135S 42 2 8 -
pARC277  35S:SEP3:GFP135S 60 8 - 92
PARC308  35S:GFPAG:135S 54 7 93 -
PARC309  35S:GFP:SEP3:135S 46 - 100
PARC310  35S:GFPFULt35S 49 o 9% -
PARC346  35S:3xHAAGINOS 12 - 50 50
PARC347  35S:3xHA:SEP3ANOS 15 - - 100
PARC348  35S:3xHAFULINOS 16 - 38 62
PARC422  gAG:GFPNOS 25 - 20 80
PARC423  gSEP3:GFPNOS 46 - - 100
PARC424  gFUL:GFPNOS I8 - 28 7N

n, number of plants; %, percentage of plants; OE, overexpression;
LOF, loss-of-function phenotype; WT, wild-type.

flower, curly leaves, and early flowering as described by
[34]. For ectopic SEP3 expression, curly leaves and early
flowering are characteristics to be expected [35], while
ectopic expression of FUL results in siliques that fail to
shatter, because the dehiscence zone is absent [23,24].

Overexpression phenotypes were only observed in about
10% of the plants when the eGFP protein was fused either
N- or C-terminally (Figure 2B, C, and 2J). Surprisingly,
many plants containing an eGFP fusion construct revealed
a mutant phenotype (Figure 2E, F,H, I, and 2J). Plants
with either an overexpression phenotype or a mutant phe-
notype, obtained with construct pARC276 and pARC277
(Table 1), were analyzed by northern blot hybridization
for the expression of the introduced AG or SEP3 trans-
genes, respectively (Figures 3A and 3B). This revealed a
perfect linkage between plants with an overexpression
phenotype having a high ectopic gene expression in
leaves, while plants with an ag mutant phenotype
(pARC276), showed no expression. In stead, the latter
plants exhibit a smear in the Northern blot, which is often
observed when a gene is cosuppressed [36,37]. Remarka-
bly, for plants containing the SEP3 fusion construct
(pARC277), no loss-of-function phenotypes were
observed, though, the Northern blot showed hallmarks of
cosuppression, suggesting that silencing of SEP3 may have
occurred. Most likely, the paralogs and redundant genes
SEP1 and SEP2 are not affected, which explains that no
mutant phenotype was obtained. Plants carrying the FUL
fusion construct (pARC310) were not molecularly ana-
lyzed, but mutant-like plants in a range of severity were
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observed, which suggest that also cosuppression had
occurred. Furthermore, a few overexpression and mutant
plants with the AG, SEP3, and FUL fused to eGFP were
analyzed for fluorescence (Figures 2K and 2L) and con-
firmed the same linkage between expression and pheno-

type.

Plants transformed with constructs containing either the
Strep-tag® II-FLAG-tag or the triple HA-tag displayed only a
wild-type- or mutant phenotype. Transgenic plants with
construct pARC117, containing the double Strep-tag® I1-
FLAG-tag, were also analyzed by Northern blot for the
expression of the FUL fusion product (Figure 3C).
Remarkably, in contrast to the eGFP fusion constructs, all
plants with a loss-of-function phenotype revealed ectopic
FUL expression, which was lacking in plants with a wild-
type phenotype. This suggests that this mutant phenotype
obtained with the double tag Strep-tag® II-FLAG-tag is
caused by a dominant-negative effect and not by a cosup-
pression mechanism.

The plants with the triple HA-tag fusion constructs were
analyzed by RT-PCR (data not shown). Plants with a
mutant phenotype reminiscent with ag (pARC346) or ful
(pARC348) mutants revealed either no expression, sug-
gesting cosuppression, or overexpression, suggesting a
dominant-negative effect, respectively.

Expression analysis of the SEP3 promoter in Arabidopsis
The constitutive and strong double 35S CaMV promoter
resulted in high expression of the transgene in those
plants that showed an overexpression phenotype. How-
ever, in the case of AG and SEP3, this promoter caused
pleiotropic defects resulting in extremely small and early
flowering plants with only a few flowers were produced
(Figures 2B and 2C). To overcome this problem, the dou-
ble 35S CaMV promoter was replaced by the endogenous
promoter. A 2.6 kb fragment upstream the ATG start
codon of SEP3 was fused to the B-glucuronidase reporter
gene, encoding for GUS [38]. GUS staining in transgenic
Arabidopsis plants was detected in the three inner whorls
of the flower (Additional file 1), where SEP3 is normally
expressed [20]. However, GUS signal was also detected in
the sepals, pedicels, and even in cauline and rosette leaves
(Additional file 1), suggesting that the upstream region of
SEP3 is lacking cis-acting regulatory regions for correct
expression.

Similar misexpression was observed for the MADS-box
genes AG and SEEDSTICK (STK), when only the DNA
region upstream the first intron or the ATG, respectively,
was fused to the GUS reporter gene [39,40]. In the case of
AG, it appeared that the second intron, which contains
various cis-acting regulatory elements [39,41-43] was
essential for the right spatial expression pattern, while for
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Figure 2

Phenotypes of transgenic Arabidopsis plants with different tagging constructs. (A) Wild-type Arabidopsis at the rosette stage,
(D) at the inflorescence stage, and (G) a close-up of a flower. (B) Line with AG-eGFP fusion construct showing an AG overex-
pression phenotype (PARC276). (C) Line with SEP3-eGFP fusion construct showing a SEP3 overexpression phenotype
(PARC277). Rosette stage images (A-C) were taken from plants grown under the same conditions and were of the same age
(bar indicates relative size). (E, H) Line with eGFP-AG fusion construct showing an ag mutant phenotype (pPARC308). (F, I) Line
with eGFP-SEP3 fusion construct showing a partial sep-like mutant phenotype (pARC309). (J) Siliques of lines with GFP-FUL
fusion construct with either a FUL overexpression (FUL), ful mutant (ful) phenotype, or wild-type phenotype (WT) (pPARC310).
(K) Arabidopsis root tip and (L) open silique with an ovule of a line expressing GFP-FUL fusion construct (PARC310) observed
by fluorescence microscopy. dz, dehiscence zone; v, valve; ov, ovule; n, nuclues; ca, carpel wall.
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Northern blot analysis of leaf tissue of different Arabidopsis lines containing various tagging constructs. (A) Expression analysis
of AG-eGFP (pARC276) lines. (B) Expression analysis of SEP3-eGFP (pARC277) lines. (C) Expression analysis of FUL-Strep-tag® II-
FLAG-tag (PARCI 17) lines, ful-like plants are indicated with 'm' and WT-like plants with 'n'. WT, wild-type; +, line with an

overexpression phenotype.

correct STK expression, the first intron should be included
in the reporter constructs [40]. When the SEP3 first intron
sequence was analyzed in detail different motifs were
identified that might act as cis-regulatory elements,
including a perfect CArG-box (data not shown). To inves-
tigate the importance of the SEP3 intron sequences, a 3.5
kb genomic fragment of SEP3, including upstream and
intron sequences, was fused to a GFP tag (pARC423) and
introduced into Arabidopsis plants. In contrast to the
observed misexpression when only the SEP3 upstream
region was used, correct spatial and temporal expression
was obtained when also the SEP3 intron sequences were
included (Figure 4). The gSEP3:GFP (pARC423) expres-
sion is predominantly visible in the nuclei of the floral
meristem cells of floral buds from stage 3 onwards (com-
prising whorl 2, 3, and 4), while there is no or minimal
expression in the rest of the inflorescence (Figure 4B).
Noteworthy, the number of observed loss-of-function
phenotypes with an endogenous MADS-box gene pro-
moter (pARC422 and pARC424) is dramatically less than
in the case with the 35S CaMV promoter (Table 1) or even
absent in the case of SEP3 (pARC423) (Table 1).

In summary, the reported results with AG and STK and
our results with SEP3 indicate that intron regions in

MADS domain genes are important for correct spatial and
temporal expression.

AG protein detection and chromatin dffinity purification
To investigate whether the ChAP procedure using tags is
feasible we used transgenic Arabidopsis plants expressing
8AG:GFP (pARC422) as example. Correct spatial and tem-
poral AG expression was observed, predominantly in the
nuclei of the floral meristem cells of floral buds from stage
3 onwards (comprising whorl 3 and 4) (Figure 4A).

First, we analyzed the gAG:GFP (pARC422) plants by
Western blotting to see whether the chimeric AG protein
is detectable with a polyclonal GFP antibody. For this,
protein was isolated from nuclei extracts from wild type
Arabidopsis (Col-0) plants and compared with extracts
from gAG:GFP plants. The Western blot (Figure 4C) shows
a specific band of the expected size in the gAG:GFP plants,
which was not present in wild type plants.

Finally, a chromatin affinity purification with a GFP anti-
body was performed on a protein extract derived from
8AG:GFP (pARC422) plants. As reported before, AG pro-
tein is able to bind to its own intron sequence for autoreg-
ulation [7]. This regulatory region was analyzed for
enrichment by Real-time PCR, which would demonstrate
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Figure 4

AG and SEP3 expression analysis and chromatin immunoprecipitation (ChIP). Confocal Scanning Laser Microscopical (CSLM)
imaging of (A) gAG:GFP (pARC422) and (B) gSEP3:GFP (pPARCA423) in the inflorescence. Top view (A, B) of an inflorescence with
different floral bud stages (indicated by numbers). The GFP expression (green signal) is predominantly localized in the nuclei of
floral meristem cells of flower buds from stage 3 onwards (comprising whorl 3 and 4 for AG, and whorl 2, 3, and 4 for SEP3,
respectively). Autofluorescence is visible as red signal. (C) Anti-GFP Western blot with material from Arabidopsis WT and
gAG:GFP (pPARC422) plants. Protein product is detectable in transgenic plants only. Bottom panel shows the Coomassie stained
gel serving as loading control. (D) Enrichment of AG target DNA after ChAP with GFP antibody and compared with pre-
immune. Quantification of target DNA was done by Real-time PCR using primers corresponding to sequences in the second
intron of AG. FM, floral meristem, S, sepal, IM, inflorescence meristem, WT, wild-type.
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that the chimeric AG protein is able to bind in vivo to its
target sequence. The target DNA sequence (AG second
intron) was 10 fold enriched after affinity purification
with GFP antibody demonstrating that chimeric AG is
indeed able to bind to its regulatory region (Figure 4D).

Discussion

The use of epitope tags can facilitate the isolation of pro-
tein-DNA or protein-protein complexes. Here, we report a
first attempt of employing a generic tagging approach for
the MADS domain proteins AG, SEP3, and FUL. Different
tags and a combination of tags were used to produce
fusion products expressed in plants. There are two impor-
tant criteria before further steps can be undertaken to
identify target genes by Chromatin Affinity Purification
(ChAP). The first basic and most important aspect is to
obtain stable expression of the fusion protein. Secondly,
an expressed fusion protein should be biologically active.
Both aspects appeared not to be straight forward and
appeared to be dependent on the tags used.

The expression experiments in plants using the constitu-
tive and strong 35S CaMV promoter resulted in mutant
phenotypes with all constructs, though, in many cases,
not the expected overexpression phenotypes. Remarkably,
the percentage of loss-of-function phenotypes obtained
was very high, even up to 100% in the case of GFP:SEP3
(pARC309). The loss-of-function phenotypes were most
likely caused by two phenomena, either by cosuppression
in the case of the eGFP fusions, or by a dominant-negative
effect in the case of the Strep-tag® II-FLAG-tag fusions. With
the triple HA-tag both phenomena could have happened.
These different tags have been used in many organisms
and with many different proteins (e.g. [13,31,44-46]),
however, it has never been reported that they cause these
severe problems related to mRNA expression or activity of
a recombinant protein. The high frequency of silencing
with the eGFP fusions could be related to the 35S CaMV
promoter, causing high expression of the transgene.
Expression of MADS-box cDNAs under the control of the
35S CaMV promoter without the GFP tag (e.g. [47]) or
expression of GFP tags using endogenous MADS-box gene
promoters did not reveal such high percentages of cosup-
pression plants (Table 1), indicating that the combination
of 35S CaMV promoter and the GFP tag may induce
silencing. The silencing efficiencies of MADS-box gene
expression using the GFP tag in combination with the 35S
CaMV promoter appeared to be comparable when using
an RNA interference strategy [48]. The only exception on
this rule is SEP3:GFP (pARC277), which did not result in
any plant with a loss-of-function phenotype. In contrast,
all GFP:SEP3 plants show a mutant phenotype. Although
an intriguing observation, an explanation is missing. The
altered biological activity of the FUL protein fused to short
peptide tags, here referred to as 'dominant-negative' mode
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of action, could be caused by either trapping interacting
proteins and forming non-functional protein complexes,
steric hindrance preventing certain interactions, or altered
folding of the protein. However, functionality of a fusion
product with an epitope tag has to be analyzed case by
case. It depends on the tag used and the effect it may have
on the protein of interest. Our results indicate that the
activity of MADS-box genes and their products can be dra-
matically affected by fusions with small peptide tags and
GFP tags at both N- and C-termini. This high sensitivity to
fusions, however, can also be used as an effective method
to obtain high percentages of dominant loss-of-function
mutants.

A drawback of an overexpression strategy could be the
occurrence of unwanted pleiotropic effects, e.g. early flow-
ering or a reduced number of flowers. Furthermore, over-
expression or ectopic expression does not mimic the
natural situation. The most elegant solution is to express
the genes under their native promoter in a mutant back-
ground, which will directly reveal their biological activity
and eliminate any competition with the untagged endog-
enous protein. For the isolation of the native promoter,
often DNA sequences upstream the ATG start codon are
cloned, although no general rules are available that can
predict the promoter region (reviewed in [49]). This
approach was followed for the SEP3 promoter, however,
it revealed a lack of specificity compared to previously
reported in situ hybridization experiments [20]. As
described previously for the MADS-box genes AG and
STK, intron sequences are important for correct expres-
sion [39,40]. This appears also to be the case for SEP3,
because fusion of GFP to a 3.5 kb genomic fragment of
SEP3 including upstream and intron sequences revealed
correct expression patterns. Finally and most importantly,
it appeared possible to perform ChAP using a GFP anti-
body on plants that carried a genomic AG fragment
(including upstream and intron sequences) fused to GFP
(PARC422).

Conclusion

A powerful method to identify target genes is ChIP or
related ChAP. ChAP makes use of an epitope tag fused to
the protein of interest and this study revealed that the
activities of MADS-box proteins are very sensitive to
fusions with small peptide and GFP tags. Furthermore, for
the expression of chimeric versions of MADS-box genes it
is favorable to use the entire genomic region in frame with
the tag of choice. Interestingly, though unexpected, it
appears that the use of chimeric versions of MADS-box
genes under the control of the strong 35S CaMV promoter
is a very effective method to obtain loss-of-function
mutants, either caused by cosuppression or by alteration
of the activity of the recombinant protein. Finally, ChAP
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is possible with a chimeric MADS-box protein using a GFP
antibody.

Methods

Plant growth

Arabidopsis thaliana, ecotype Columbia-0 (Col-0) plants
were grown under normal greenhouse or growth chamber
conditions (22°C, long day light regime).

Construction of binary vectors and plant transformation
The vector with the C-terminal double tag Strep-tag® Il
(WSHPQEFEK) and the FLAG-tag (DYKDDDDK) is called
PARC113. The double tag is constructed with two forward
and three reverse complementary primers resulting in,
with Arabidopsis codon usage, 5'-
CTCGAGTIGGTCTCATCCTCAATTTGAAAAGTCTITCTGAT
TACAAGGATGATGATGATAAGTAACTCGAG-3' (nucle-
otides coding for the tags are underlined). Between the
two tags are two serine amino acid residues functioning as
linker and after the FLAG-tag a stop codon is introduced.
In brief, 1 ul of each primer (100 pmol/ul) were pooled
together, incubated for 10 min at 96 °C and slowly cooled
down to room temperature to create double stranded frag-
ments. The fragments were phosphorylated with 2 ul T4
kinase (10 U/ul) and incubated for 30 min at 37°C. Next,
the 69 nucleotides double stranded fragments were iso-
lated from a 12% polyacrylamide gel. Subsequently, the
fragment was cloned into an Xhol digested binary
pGD121 vector [50], containing a double 35S CaMV pro-
moter (derived from pGD120; [51]). Full length open
reading frames for AG (At4g18960; encoding 252 amino
acids), SEP3 (At1g24260; encoding 251 amino acids),
and FUL (At5g60910; encoding 242 amino acids) were
amplified with gene specific primers from the start to the
stop codon, clones for C-terminal fusions lack the stop
codon, and were subcloned in pGEM-T® Easy (Promega,
Madison, WI) and/or subcloned with the Gateway™ Tech-
nology (Invitrogen, Carlsbad, CA). After sequence con-
trol, all genes were cloned (in pARC113) and/or
recombined (in pARC064, pARC258, and pARC259) in
the appropriate vectors to make the fusion constructs.

A 2.6 kb SEP3 region upstream of the ATG was amplified
with  specific ~ primers (PRO117 5'-CACCG-
GCGCGCCATCCATCCATCCAAATGGGACC-3' and
PRO118 5'-GAAGCTITTTCTITITCTTTCTCCTCTCCC-3')
and recombined with the Gateway™ Technology in
pENTR/D-TOPO (Invitrogen), followed by recombina-
tion in the binary vector pBGWES7 [30], resulting in a
transcriptional eGFP-GUS fusion construct (pARC213).

Genomic fragments for AG (6882 bp), SEP3 (3489 bp),
and FUL (5298 bp) were amplified with gene specific
primers, a forward primer located in the upstream region,
PRO433 AG-5'- CACCGATCAAAGACTACACATCAC-3',
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PRO407 SEP3-5'- CACCCATACCTTTGTGTCCATCAC-3',
and PRO429 FUL-5'- CACCTCGATCAGAATITGAGCTG-
3', and a reverse primer in the 3'-region lacking the stop
codon for each gene, PRO431 AG-5'-CACTAACTGGA-
GAGCGGTITG-3', PRO408 SEP3-5'- AATAGAGTTGGT-
GTCATAAGGTAACC-3', and PRO430 FUL-5'-
CTCGITCGTAGTGGTAGGAC-3', and recombined in
PENTR/D-TOPO. After sequence control, all genomic
fragments were recombined in the binary vector
pMDC204 [52], resulting in translational GFP6 fusion
constructs (pARC422, pARC423, and pARC424, respec-
tively).

Arabidopsis plants were transformed with Agrobacterium
tumefaciens strain GV3101 using the floral dip method
[53].

RNA gel blot analysis

Total RNA was isolated from frozen plant tissue with the
RNeasy plant RNA extraction kit (Qiagen). Five micro-
grams of each RNA sample was denaturated by 1.5 M gly-
oxal, separated on a 1.2% agarose gel in 15 mM Na-
phosphate buffer pH 6.5, checked for equal loading, and
followed by blotting onto Hybond-N + membrane (Amer-
sham Biosciences, Piscataway, NJ) in 25 mM Na-phos-
phate buffer pH 6.5. Probes were labeled with the
RadPrime DNA Labeling System (Invitrogen) and blots
were hybridized as described by Angenent et al. (1992)
[54]. Gene specific probes were amplified by PCR with the
following primers: PRO383 AG-5-GGGTCAATGTCTC-
CCAAAGA-3' and PRO384 AG-5'-CTAACTGGAGAGCG-
GITTGG-3', PRO105 SEP3-5'-
GTCTAGAATGGGAAGAGGGAGAGTAG-3' and PRO106
SEP3-5'-CGGATCCAATAGAGTTGGTGTCATAAGG-
TAACC-3'. The FUL fragment was derived from a pGEM-
T® Easy (Promega) clone digested with Xbal-Kpnl.

GUS assay

To detect B-glucuronidase (GUS) activity [38], plant tissue
was fixed in 90% ice-cold acetone for 1 h at -20°C, fol-
lowed by three rinses with 0.1 M Na-phosphate buffer pH
7.0 containing 1 mM potassium ferrocyanide. The three
rinse steps in total took 1 h and during the first rinse step
vacuum was applied for ~ 15 min. Finally, the substrate
was added to the samples, containing 50 mM Na-phos-
phate buffer pH 7.0, 1 mM EDTA, 0.1% (v/v) Triton x-
100, 1 mM potassium ferrocyanide, and 1 mM X-Gluc
(Duchefa, Haarlem, The Netherlands), and vacuum was
applied for 5 min, followed by overnight incubation at
37°C in the dark. Chlorophyll was removed by, first, 1 h
incubation in 96% ethanol and then transference to 70%
ethanol.
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Microscopy

Plant tissue was observed for GFP expression with a Zeiss
Axioskop UV-microscope, equipped with filter set 13
(excitation BP 470/20, beamsplitter FT 493, emission BP
505-530). Images were taken with a Leica DFC320 digital
camera and an exposure time of 18 seconds was used.
Confocal Scanning Laser Microscopical (CSLM) imaging
of plant tissue was performed with a Zeiss LSM 510
inverted confocal microscope using a 40x C-Apochromat
(NA 1,2 W Korr) lens. The tissue was embedded in the
wells of a Silicone Isolator (Grace Bio-Labs, Bend, OR)
with 0.8% agar 0.5x MS. GFP was excited with the 488
line of an argon ion laser. The emission of GFP was fil-
tered with a 505-530 nm bandpassfilter, while the red
autofluorescence of the plant tissue was filtered with a
650 nm long-pass filter. 3D projections of the obtained
confocal z-stacks were made with the Zeiss LSM Image
Browser Version 4.

Chromatin Affinity Purification (ChAP)

The procedure was performed as previously described [7]
with some modifications. Fixed (15-30 min) inflores-
cence tissue (~ 0.8 g) was used of transgenic Arabidopsis
plants containing construct pARC422 that carries a
genomic AG fragment fused with GFP. Chromatin was
solubilized on ice with a probe sonicator (MSE, Soniprep
150) by 3 cycles of 15 sec pulses of half maximal power
with 30 sec cooling time between pulses. GFP antibody
was used for the affinity purification (ab290; Abcam,
Cambridge, UK) and for the negative control complete
rabbit serum. For pre-clearing and affinity purification
Protein A-Agarose beads were used (sc-2001; Santa Cruz
Biotechnology, Santa Cruz, CA). After elution of the
beads, samples were treated with proteinase K, followed
by precipitation. The precipitated DNA was dissolved in
100 ul water, purified with a PCR purification kit (Qiagen,
Valencia, CA), and eluted with 30 ul EB (water containing
10 mM Tris, pH 8). Enrichment of the target region was
determined using a real-time PCR detection system
(MyiQ, Bio-Rad Laboratories, Hercules, CA) by compar-
ing the affinity purified sample (anti-GFP) with the nega-
tive control (rabbit serum). The results between the two
samples were normalized using sequences of Heat Shock
Factorl (HSF1; At4g17750). The following primers were
used, PRO469 AG-5'- TGGTCTGCCITCTACGATCC-3'
and PRO470 AG-5'-CAACAACCCATTAACACATTGG-3/,
PDS1045 HSFI1-5'- GCTATCCACAGGTITAGATAAAG-
GAG-3' and PDS1046 HSF1-5'- GAGAAAGATTGTGTGA-
GAATGAAA-3'.

Protein isolation and detection

Nuclei extraction from 0.5 g of Arabidopsis inflorescences
was performed according to the protocol used for ChIP
experiments [7]. The nuclei pellet was resuspended in 120
ul 2x SDS sample buffer, incubated on ice and centrifuged

http://www.biomedcentral.com/1471-2229/7/47

at 20800 x g for 10 min at 4°C. The supernatant was
boiled for 5 min. Western blotting was performed essen-
tially as described previously [55]. The GFP antibody
(ab290; Abcam) was used in a 1:5000 dilution.
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