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Abstract
Background: The effective functional analysis of male gametophyte development requires new
tools enabling the spatially and temporally controlled expression of both marker genes and
modified genes of interest. In particular, promoters driving expression at earlier developmental
stages including microspores are required.

Results: Transcriptomic datasets covering four progressive stages of male gametophyte
development in Arabidopsis were used to select candidate genes showing early expression profiles
that were male gametophyte-specific. Promoter-GUS reporter analysis of candidate genes
identified three promoters (MSP1, MSP2, and MSP3) that are active in microspores and are
otherwise specific to the male gametophyte and tapetum. The MSP1 and MSP2 promoters were
used to successfully complement and restore the male transmission of the gametophytic two-in-one
(tio) mutant that is cytokinesis-defective at first microspore division.

Conclusion: We demonstrate the effective application of MSP promoters as tools that can be
used to elucidate gametophytic gene functions in microspores in a male-specific manner.

Background
The male gametophyte of flowering plants displays a
highly reduced structure of two or three cells at maturity
and its development provides an excellent system to study
many fundamentally important biological processes such
as cell polarity, cell division and cell fate determination
(reviewed by [1]). An increasing collection of mutations

and genes have been characterized that act gametophyti-
cally and have been shown to be important for post-mei-
otic cell division during pollen development in
Arabidopsis. These include MOR1/GEM1 [2] and TIO [3],
whose functions are essential for regular cell polarity and
cytokinesis at first microspore division, termed pollen
mitosis I. However, mutations in such essential genes
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cause gametophytic embryo sac defects and sporophytic
lethality [2,3]. This prevents the analysis of homozygous
mutations and hinders the functional analysis of their
role(s) in specific cell types such as microspores. The
native promoters of essential genes such as TIO are not
useful tools to examine effects of mis-expression of gene
or protein domains during pollen development since
their broad activities in other sporophytic tissues can be
detrimental to early vegetative development prior to
gametophytic development. Moreover the use of well
characterized male-gametophyte-specific promoters such
as LAT52 enables targeted manipulation of gene expres-
sion that is restricted to the vegetative cell during pollen
maturation after pollen mitosis I ([4]. Therefore we have
faced a practical challenge to identify promoters that
allow the targeted manipulation of gene expression in
microspores.

A number of male-gametophyte-specific promoters that
are active at different developmental stages are known.
Most data are available for late pollen promoters. These
include petunia chiA [5], tomato LAT52 and LAT59 [4,6],
rapeseed Bp10 [7], maize Zm13 [8,9] and tobacco NTP303
[10]. In Arabidopsis these include the TUA1 [11], AtPTEN1
[12], AtSTP6 [13], AtSTP9 [14] and the late vegetative cell-
specific AtVEX1 [15] promoters. Among these, the tomato
LAT52 promoter with demonstrated vegetative-cell-spe-
cific expression [4,6] was shown to be highly active in
number of plant species and has become widely used as a
tool to drive pollen-specific expression [16-20]. More
recently, promoters active in generative or sperm cells
have been identified from lily [21] and Arabidopsis
[15,22,23].

On the other hand, very few promoters have been identi-
fied that are active or specifically active at microspore
stage. The tobacco NTM19 promoter is the only well char-
acterized promoter that exhibits strict microspore-specific
expression with no activity in mature pollen [24,25].
From rapeseed, Bp4 mRNA was described as microspore-
specific [26], but the Bp4 promoter was later shown to be
active only after PMI [24]. However the BnM3.4 promoter
was active in tetrads and in free microspores [27]. The
potato invGF promoter is initiated in late microspores and
is restricted to the male gametophyte [28]. In Arabidopsis
available microspore expressed promoters are also lim-
ited. The Arabidopsis BCP1 promoter is active in micro-
spores and the tapetum [29] while the AtSTP2 promoter
shows a pattern of activity similar to that of NTM19, but
is initiated at tetrad stage [30].

Transcriptomic analyses based on various microarray
experiments including those from isolated microspores
and developing pollen now provide genome-wide expres-
sion profiles throughout plant development [31-33]. Tak-

ing advantage of these public databases, we have asked
whether microarray data can be directly exploited in order
to identify novel and potentially specific promoters that
are first active in Arabidopsis microspores. In this study, we
have selected and characterized the activity of three pro-
moters, MSP1, MSP2, and MSP3 that were predicted to be
specifically active in microspores and developing pollen.
We demonstrate that the MSP1 and MSP2 promoters can
drive functional protein expression in microspores in
complementation experiments and the utility of MSP pro-
moters as novel male-specific microspore expression tools
in Arabidopsis.

Results
Identification of candidate genes
To identify regulatory sequences that direct preferential or
specific expression in Arabidopsis microspores we analyzed
normalized transcriptomic datasets. We compared the
expression profiles of all gametophytically expressed
genes with those expressed in the sporophyte. The male
gametophyte microarray data set was obtained from our
previous experiments involving analysis of four develop-
mental stages; microspore, bicellular, tricellular and
mature pollen [33]. Sporophytic datasets were obtained
from publicly available resources (NASC). We selected for
genes exhibiting strict expression patterns at early stages of
male gametophyte development with no or low signals in
mature pollen. Genes with expression in inflorescences,
flower buds [31,34] and developing flowers [32] were
retained as candidate genes, but genes with reliable sig-
nals in other sporophytic dataset(s) were excluded. Genes
were further selected to retain those encoded as single
copy genes and that showed a range of expression levels in
microspores. This approach led to the identification of
seven potential target genes (At5g40040, At5g59040,
At5g46795, At4g26440, At2g03170, At3g14450 and
At1g53650; Fig. 1).

The direct comparison of gene expression levels obtained
from independent microarray datasets for male gameto-
phytic cells and for sporophytic tissues is difficult [1,35].
Therefore, the putative specificity of gene expression from
microarray analyses was verified by RT-PCR analysis using
RNA samples isolated from four stages of male gameto-
phyte development, unicellular, bicellular, tricellular and
mature pollen, and four sporophytic tissues and organs
(flowers, leaves, stems and roots). Four genes showed
expression in one or more sporophytic tissues and were
eliminated from further characterization. The remaining
three genes showed microspore-specific expression by RT-
PCR analysis (Fig. 2). During selection we did not exclude
genes from further analysis that also showed weak expres-
sion in open flowers since these contain mature pollen
grains.
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The putative microspore-specific promoter sequences of
these genes, At5g59040, At5g46795, At4g26440, were
termed MSP1, MSP2 and MSP3 respectively. Selected
genes encoded proteins with quite distinct cellular func-
tions. At5g59040 encodes COPT3, a putative pollen-spe-
cific member of a copper transporter family [36].
At4g26440 encodes AtWRKY34, a group I WRKY family
transcription factor [37]. On the contrary, At5g46795
encodes an expressed protein of unknown function.

Histochemical analysis of promoter specificity
To test the activity of the selected MSP regulatory
sequences in vivo, approximately 1 kb upstream genomic
fragments were amplified for each of the genes and cloned
into the GATEWAY-compatible destination vector,
pKGWFS7 [38]. Three MSP-GFP::GUS constructs, MSP1
(At5g59040), MSP2 (At5g46795) and MSP3
(At4g26440), were introduced into wild type Arabidopsis
plants and ~40 T1 transformants were analyzed histo-
chemically for GUS activity in inflorescences, bud clusters
and flowers. We found that 38/40 MSP1, 36/38 MSP2 and
18/34 MSP3 plants showed GUS expression in flower
buds and/or in open flowers. GUS staining in MSP1
plants was clearly detectable in anthers of younger buds
than those from MSP2 and MSP3, but gradually became
weaker towards anthesis, while GUS expression from
MSP2 and MSP3 remained high at later stages including in
mature pollen grains.

Segregation analysis revealed that the majority of lines
segregated 3:1 for kanamycin-resistant and kanamycin-
sensitive plants. Plants that were hemizygous for MSP
constructs showed 1:1 segregation of GUS staining and
non-staining spores consistent with gametophytic expres-
sion (data not shown). We examined gametophytic
expression in detail by staining isolated spores at different
developmental stages and by sectioning stained flower
buds. For all three promoters, GUS expression was first
detectable in uninucleate microspores (Fig. 3P–R).
Another common feature was that anther transverse sec-
tions clearly showed GUS staining in the tapetum (Fig
3D–F). Differences in expression profiles were noted
between MSP1 and the other two promoters. While MSP1
showed earlier staining in microspores then a strong
decline in mature flowers, MSP2 and MSP3 initiate
expression in microspores, but GUS expression peaks later
and accumulates in mature pollen.

We also examined GUS expression in seedlings using ~20
lines of T2 generation plants for each construct and found
no expression from all three MSP promoters, apart from
5–10% of anomalous lines that showed patchy expression
in leaves and roots, or weak expression in stamen vascular
tissues. None of the lines examined showed GUS activity
in 5 day old seedlings. However interestingly, we consist-
ently observed GUS activity at the distal tip of cotyledons
and leaves in 10 day old MSP1-GUS seedlings (Fig. 3V). In
summary all 3 MSP promoters were found to be specifi-
cally or highly preferentially expressed in microspores,
developing pollen and the tapetum (Fig. 3)

Complementation analysis
To evaluate MSP promoters as tools for the manipulation
of microspore gene expression in planta, we examined
whether gene expression driven by MSP1 and MSP2 could

Verification of microarray gene expression data by RT-PCRFigure 2
Verification of microarray gene expression data by RT-PCR. 
The expression of three genes selected for further GUS 
expression assays was examined in microspores (MS); bicel-
lular (BC), tricellular (TC) and mature pollen (MP); whole 
flowers (FW); leaves (LF); stems (ST) and roots (RT).

Expression profiles of candidate genes selected for promoter analysesFigure 1
Expression profiles of candidate genes selected for promoter 
analyses. Expression profiles of seven genes were compared 
in available male gametophytic and sporophytic transcrip-
tomic datasets. Individual transcriptomic experiments are 
described in Material and methods.
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In situ GUS expression driven by three promoters, MSP1 (A, D, G, J, M, P, S and V), MSP2 (B, E, H, K, N, Q, T and W) and MSP3 (C, F, I, L, O, R, U and X)Figure 3
In situ GUS expression driven by three promoters, MSP1 (A, D, G, J, M, P, S and V), MSP2 (B, E, H, K, N, Q, T and W) and 
MSP3 (C, F, I, L, O, R, U and X). GUS staining in whole inflorescences (A, B, C); transverse sections of whole anthers (D, E, F); 
five-day (S, T, U) and ten-day old (V, W, X) seedlings. Light and DAPI-stained fluorescence images of mature pollen (G, H, I), 
immature tricellular pollen (J, K, L) bicellular pollen (M, N, O) and uninucleate microspores (P, Q, R) are shown.
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complement a gametophytic mutant phenotype caused
by defects that are known to depend upon gametophytic
expression in developing microspores. Mutations in the
Arabidopsis TWO-IN-ONE (TIO) protein kinase result in
binucleate pollen grains due to the failure of cytokinesis
in microspores at pollen mitosis I. Plants that are hetero-
zygous for the T-DNA insertion allele, tio-3, show 50 %
mutant pollen that results in a 2:2 segregation of wild type
and mutant pollen in tetrads (Fig. 4A). Moreover cytoki-
nesis defects in mutant tio-3 pollen completely block
genetic transmission of tio-3 through pollen [3].

Test vectors were built in which MSP1 or MSP2 promoters
drive the expression of full length TIO cDNA. pMSP1-TIO
and pMSP2-TIO. Both vectors were transformed into tio-3
plants by floral dipping. Double selection for tio-3 (ppt)
and pMSP-TIO (kanamycin) constructs led to the isola-
tion of 19 nineteen transformants containing pMSP1-TIO
and 10 containing pMSP2-TIO. Plants were screened for
the frequency of wild type and mutant spores in mature
pollen tetrads after DAPI staining. 18/19 lines from
pMSP1-TIO and 4/10 from pMSP2-TIO showed an
increase in the frequency of wild type pollen compared to
heterozygous tio-3 plants (data not shown). This resulted
in the frequent appearance of mature tetrads with three
wild type spores and one mutant member, compared with
heterozygous tio-3 plants that always showed a 2:2 segre-
gation (Fig. 4).

We further tested genetic transmission of the tio-3 mutant
allele in 15 complementing pMSP1-TIO lines and all of
four complementing lines from pMSP2-TIO. In the F1
progenies generated from test crosses in which the pollen
donor carried tio-3 and pMSP-TIO we observed approxi-
mately 30 to 50 % pptR progeny for pMSP1-TIO and 8 to

33 % for pMSP2-TIO. Table 1 shows the results for four
representative lines for each construct. These results
clearly demonstrate that gametophytic expression of the
full-length TIO cDNA under the control of MSP1 and
MSP2 promoters is sufficient to complement the tio pol-
len phenotype. Moreover, our results indicate that MSP1
is more effective than MSP2 in this complementation
assay.

Discussion
We developed a strategy to identify promoters expressed
specifically in Arabidopsis microspores by exploiting in sil-
ico analyses and in vivo functional analysis. We tested the
specificity and timing of three candidate promoters by
promoter-GUS fusion analysis. All three promoters were
specifically expressed in anthers with the exception of
MSP1 that also showed limited expression in the distal
tips of cotyledons and true leaves. Within developing
flowers their expression was restricted to microspores,
developing pollen and tapetal cells. Furthermore, success-
ful use of the MSP1 and MSP2 promoters for complemen-
tation of the tio-3 mutation demonstrated that both
promoters directed functional expression in uninucleate
microspores before pollen mitosis I. These promoters
therefore provide new tools for the functional analysis of
genes and proteins expressed during microspore develop-
ment. Differences in expression profiles were observed
between MSP1, that showed earlier expression and a
decline in mature pollen, and MSP2 and MSP3, in which
expression increased during pollen maturation. These dif-
ferences in GUS expression profiles were not predicted by
the MSP microarray expression profiles that were very
similar. This result and the minor expression patterns
observed in MSP1 seedlings highlights the need for exper-
imental verification of specificity prior to further practical
analyses.

In developing stamens, cell lineages that lead to male
gametophytes and tapetal cells can both be traced to
archesporial cells derived from the L2 layer of anther pri-
mordial [39]. Moreover, there is strong dependence of
microspore development on tapetal cell function. In this
regard the co-regulation of gene expression in both micro-
spores and tapetum that occurs at early stages of anther
development is not surprising. In tobacco, a chalcone-syn-
thase-like gene ([40] and a chimeric Ca2+calmodulin-
dependent protein kinase [41]) follow this expression pat-
tern. The Brassica campestris Bcp1 gene is also co-expressed
in tapetum and microspores [29]. However the corre-
sponding Bgp1 upstream sequences that were active in
both tapetum and microspores in B. campestris and Arabi-
dopsis exhibited pollen-specific expression in tobacco.
Therefore different cis-acting sequence elements appear to
be responsible for coordinated gene expression in tape-
tum and microspores in Brassicaceae and Solanaceae fami-

Mature pollen tetrad phenotype after DAPI stainingFigure 4
Mature pollen tetrad phenotype after DAPI staining. (A) Tet-
rad from +/tio-3;qrt1/qrt1 plant showing 2:2 segregation of 
wild type and tio mutant pollen. (B) Tetrad from a transform-
ant containing MSP1-TIO in the +/tio-3;qrt1/qrt1 background, 
showing three pollen grains with a wild type phenotype and a 
single mutant tio pollen grain.
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lies [29]. In Arabidopsis, the ABORTED
MICROSPOROGENESIS (AMS) gene encodes a MYC-class
transcription factor from the basic helix-loop-helix gene
family. AMS is coordinately expressed in tapetum and
microspores [42]. Interestingly, the MSP3 gene encodes a
member of the WRKY transcription factor family that
could also have a role in coordinated gene expression in
tapetum and microspores.

Conclusion
Taken together, we have characterized three Arabidopsis
microspore-expressed promoters MSP1, MSP2 and MSP3
with early expression profiles specific to the male gameto-
phyte and tapetum. The MSP1 and MSP2 promoters were
used successfully to complement cytokinesis functions
required to complete microspore development. These
tools can be applied to manipulate gene expression in
microspores and tapetum without detrimental effects that
may arise from undesirable gene expression in other spo-
rophytic tissues.

Methods
Plant material and spore isolation
Arabidopsis plants were grown in controlled-environment
cabinets at 21°C under illumination of 150 mmol m-2 s-1

with a 16-h photoperiod. For spore isolation, Arabidopsis
ecotype Landsberg erecta (Ler) plants were used. Isolation
of spores and pollen was described [33]. Information on
the purity of isolated fractions determined by light micro-
scopy and 4,6-diamino-phenylindole staining and vital
staining of isolated spore populations assessed by fluores-
cein-3,6-diacetate treatment were also described in [33].
Roots were grown from plants in liquid cultures as previ-
ously described [33]. Wild-type and transgenic seeds were
sterilized according to published procedures [43,44].
Plants were transformed by floral dipping [45].

DNA Chip Hybridization and data normalisation and 
selection of potential target genes
RNA isolation and hybridization of Affymetrix ATH1
genome arrays was described in [33]. Twelve mixed and
seventy-five sporophytic datasets used for comparison
with the pollen transcriptome were obtained from the
NASCArray database [46] through AffyWatch service [31].
Sporophytic datasets represented seven vegetative tissues
(seedlings, leaves, petioles, stems, roots, root hair zone
and suspension cell cultures; [33]. Mixed datasets origi-
nated from three experiments covering whole inflores-
cences and flower buds [31,34] and whole flower
development [32].

All gametophytic and sporophytic datasets were normal-
ized using DNA-Chip Analyzer 1.3 (dChip) [47] as
described previously [33]. All raw and dChip-normalized
transcriptomic datasets can be accessed and downloaded
through the Arabidopsis Gene Family Profiler (aGFP)
database [48].

RT-PCR analysis
Total RNA from 50 mg of leaves, stems, roots, inflores-
cences and isolated spores at each developmental stage
was extracted using the RNeasy plant kit (Qiagen, Valen-
cia, CA) according to the manufacturer's instructions. The
yield and RNA purity were determined spectrophotomet-
rically. Pollen, stem, leaf, and inflorescence samples were
isolated from plants grown as described. Pollen RNA used
for RT-PCR analyses was obtained from plants that were
grown independently from those used to isolate RNA for
microarray analysis. Samples of 1 μg total RNA were
reverse transcribed in a 20-μL reaction using the ImProm-
II Reverse Transcription System (Promega, Madison, WI)
following the manufacturer's instructions with the excep-
tion that the oligo(dT)15 primer was replaced with a cus-

Table 1: Complementation analysis

% mutant pollen KmR:KmS
T2

pptR:pptS
F1

% pptR
F1

pMSP1-TIO-3 28.7 48:12 30:61 32.96
pMSP1-TIO-9 14.5 103:5 284:294 49.13
pMSP1-TIO-10 11.9 91:10 193:237 44.88
pMSP1-TIO-18 27.9 56:18 43:90 32.33

pMSP2-TIO-1 40.3 323:67 41:145 22.04
pMSP2-TIO-2 43.3 91:15 29:156 15.68
pMSP2-TIO-5 29.2 88:3 29:60 32.58
pMSP2-TIO-8 46.6 85:31 11:131 7.75

+/tio-3 50.6 - 0:215 0

Four lines harbouring each construct were compared to the heterozygous parent plant, tio-3. The % of mutant pollen was scored after DAPI 
staining and the T2 segregation of the complementing T-DNA (MSP-TIO) was analysed on kanamycin media. The extent of male transmission (% 
pptR) of tio-3 was determined on ppt media in F1 progenies from test-crosses.
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tom-synthesized 3'-RACE primer (Tab. 2). The use of
intron-spanning primer sets or nested reverse primers in
cases where primers spanned no intron ensured that only
cDNA was amplified. For PCR amplification, 1 μL of 50×
diluted RT mix was used. The PCR reaction was carried out
in 25 μL with 0.5 unit of Taq DNA polymerase (MBI Fer-
mentas, Vilnius, Latvia), 1.2 mM MgCl2, and 20 pmol of
each primer. The PCR program was as follows: 2 min at
95°C, 33 cycles of 15 s at 94°C, 15 s at the optimal
annealing temperature (63°C to 67°C), and 30 s at 72°C,
followed by 10 min at 72°C. As a reverse primer, NESTED
primer (Tab. 2) overlapping the 3'-RACE primer was used
to eliminate genomic DNA amplification. The gene-spe-
cific forward primers were designed using Primer3 soft-
ware [49] (Tab. 2).:

Construction of promoter::GUS reporters
To examine the precise gene expression, each tested gene
promoter region was fused with GUS to generate the
MSP::GUS reporter using GATEWAY cloning system
according to manufacturer's instructions (Invitrogen,
Carlsbad, CA). Promoter fragments were amplified by
two-step PCR from Col-0 genomic DNA isolated from 3-
week-old seedlings using the KOD HiFi DNA Polymerase
(Novagen, Darmstadt, Germany). For the first step, spe-
cific primers with appended adapters complementary to
AttB1 and AttB2 sequences were used to generate 1000-bp
promoter regions of tested genes (Tab. 2). Purified PCR

products were cloned via pDONR201 donor vector (Invit-
rogen, Carlsbad, CA) into pKGWFS7 destination vector
(VIB, Gent, Belgium; [38] to generate recombinant desti-
nation clones pMSP1, pMSP2 and pMSP3. All the recom-
binant plasmids were transformed into Agrobacterium
tumefaciens GV3101 [50]. These strains were used to trans-
form Arabidopsis thaliana ecotype Columbia using the flo-
ral dip method [45]. Transgenic progenies were selected
either on one-half strength Murashige and Skoog standard
medium, supplemented with 50 mg/l kanamycin on 1-
week-old seedlings.

Histochemical staining of GUS activity
Histochemical assays for GUS activity in T2 generation of
Arabidopsis transgenic plants were performed according
to the protocol described previously [44,51]. Seedlings
and inflorescences incubated for 48 h at 37°C in GUS
buffer (100 mM Na-phosphate, pH 7.2; 10 mM EDTA, pH
8.0; 0.1% Triton X-100; 2 mM K3Fe [CN]6) supplemented
with 1 mM 5-bromo-4-chloro-3-indolyl b-D-glucuronide
(X-gluc). GUS stained floral buds were fixed in 70% FAA
(Formaldehyde/Acetic acid/Ethanol/water, 5/5/63/27, v/
v/v/v) for at least 24 h. After washing with 70% ethanol,
samples were dehydrated gradually in the ethanol-buta-
nol series and infiltrated with paraffin. 10 μm thin cross
sections were prepared with a microtome (Finesse ME,
Shandon). GUS staining patterns were recorded using a
Nikon Eclipse E600 microscope (Nikon Instruments,

Table 2: PCR primers used

Primer Primer sequence

cDNA construction
3'-RACE 5'-AAGCAGTGGTAACAACGCAGAGTAC(T)30VN-3'

RT-PCR reverse primer
NESTED 5'-AAGCAGTGGTAACAACGCAGAGT-3'

RT-PCR forward primers
At5g40040 5'-CTTATCGCTGTTGGACGAGAGAAGA-3'
At5g59040 5'-TCTGTCTCGCCGTCATTTTTGTTAT-3'
At5g46795 5'-GGCTTTGGAGACCAGACTTTTTCAG-3'
At4g26440 5'-TGGAGAGGTAGAAGAGTCCGAATCA-3'
At2g03170 5'-AGAAACACGTCGTTGACGAAGAAAG-3'
At3g14450 5'-GGCCAAGGAGTTTTTCCCTTCTTA-3'
At1g53650 5'-CTCGATCATTGAGCTCAGAAGCTGT-3'.

Construction of promoter::GUS reporters
MSP1-F 5'-AAAAAGCAGGCTTGTCAGTTAGCATGAAAAATTGTATGTTAG-3'
MSP1-R 5'-AGAAAGCTGGGTTTGTTGTGTATACTTGTGTGTGTGTATTTA-3'
MSP2-F 5'-AAAAAGCAGGCTATGTCCTACGATCAGAAGGAGGAG-3'
MSP2-R 5'-AGAAAGCTGGGTAACATGTGATATTATTTTTTTGGTTTATATAGTGG-3'
MSP3-F 5'-AAAAAGCAGGCTTTGTGATATAATAGGTATATATGGTAGAAC-3'
MSP3-R 5'-AGAAAGCTGGGTTGCAAACCCAAGTTTCAGCTTTAAC-3'

Primers used for cDNA synthesis, RT-PCR analyses and construction of promoter::GUS reporters. Where appropriate, appended adapters 
complementary to AttB1 and AttB2 primers are underlined.
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Melville, NY). Images were processed using Adobe Pho-
toshop software (version CS2; Adobe Systems, San Jose,
CA).

Complementation analysis
The full-length TIO cDNA clone, pKS-TIONC19, was
modified to insert the ~1 kb MSP1 or MSP2 promoter
fragments upstream of the TIO coding sequence using AscI
and NotI. MSP promoter-TIO cDNA fusion fragments
were subcloned into the binary vector pER10 [52] using
AscI and PacI to produce pMSP1-TIO and pMSP2-TIO.
Before transformation into Agrobacterium tumefaciens
strain GV3101, constructs were verified by restriction
enzyme digestion and sequencing. Individual phosphi-
nothricin (ppt) resistant heterozygous tio-3 mutants were
transformed by floral dipping [45]. Transformants con-
taining both tio-3 and MSP promoter-TIO T-DNA con-
structs were selected on 15 cm MS agar plates
supplemented with 10 mg/l ppt, 50 mg/l kanamycin, and
200 mg/l cefotaxime. Complementation was analyzed by
scoring tio-3 pollen phenotype after 4'-6-Diamidino-2-
phenylindole (DAPI) staining and also by scoring the
genetic transmission of tio-3 allele through male after test
crosses to Col-0 or ms1-1 as described by [2,53].
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