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Abstract

Background: Floral scent is one of the important strategies for ensuring fertilization and for determining seed or fruit
set. Research on plant scents has hampered mainly by the invisibility of this character, its dynamic nature, and complex
mixtures of components that are present in very small quantities. Most progress in scent research, as in other areas of
plant biology, has come from the use of molecular and biochemical techniques. Although volatile components have been
identified in several orchid species, the biosynthetic pathways of orchid flower fragrance are far from understood. We
investigated how flower fragrance was generated in certain Phalaenopsis orchids by determining the chemical components
of the floral scent, identifying floral expressed-sequence-tags (ESTs), and deducing the pathways of floral scent
biosynthesis in Phalaneopsis bellina by bioinformatics analysis.

Results: The main chemical components in the P. bellina flower were shown by gas chromatography-mass spectrometry
to be monoterpenoids, benzenoids and phenylpropanoids. The set of floral scent producing enzymes in the biosynthetic
pathway from glyceraldehyde-3-phosphate (G3P) to geraniol and linalool were recognized through data mining of the P.
bellina floral EST database (dbEST). Transcripts preferentially expressed in P. bellina were distinguished by comparing the
scent floral dbEST to that of a scentless species, P. equestris, and included those encoding lipoxygenase, epimerase,
diacylglycerol kinase and geranyl diphosphate synthase. In addition, EST filtering results showed that transcripts encoding
signal transduction and Myb transcription factors and methyltransferase, in addition to those for scent biosynthesis, were
detected by in silico hybridization of the P. bellina unigene database against those of the scentless species, rice and
Arabidopsis. Altogether, we pinpointed 66% of the biosynthetic steps from G3P to geraniol, linalool and their derivatives.

Conclusion: This systems biology program combined chemical analysis, genomics and bioinformatics to elucidate the
scent biosynthesis pathway and identify the relevant genes. It integrates the forward and reverse genetic approaches to
knowledge discovery by which researchers can study non-model plants.
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Background

Floral scent is a key modulating factor in plant-insect
interactions and thus plays a central role in successful pol-
lination. Closely related plant species that rely on differ-
ent insects for pollination produce different odors [1,2].
The floral scent is of paramount importance to plant
reproduction and evolution [3]. Orchidaceae is one of the
largest monocotyledon families, containing more than
25,000 species. In orchids, large quantities of pollen are
formed in masses spread by animals (bees, moths, flies
and birds) and the floral scents serve as attractants for spe-
cies-specific pollinators [4]. These pollinators have played
a major role in orchid evolution. The range of odors pro-
duced by orchids is enormous, providing an inexhaustible
basis for specificity. Such diversity is advantageous in the
evolution of an obviously successful family.

The floral scent is determined by a specific complex mix-
ture of volatile low-molecular-mass molecules dominated
by monoterpenoid, sesquiterpenoid, phenylpropanoid
and benzenoid compounds and fatty acid derivatives [5].
Although the complete pathways leading to the final
products have not been characterized, common modifica-
tions such as hydroxylation, acetylation and methylation
have been described [6]. These terpenes are synthesized
from isopentenyl diphosphate by different mono and ses-
quiterpene synthases [7] and via two alternative path-
ways: the mevalonate pathway from acetyl-CoA, and the
methylerythritol phosphate pathway from pyruvate and
glyceraldehyde-3-phosphate, G3P [8]. Recently, the
chemical structures of many floral scent compounds have
been determined and several investigations into their bio-
synthesis have been described, [9]. The genes encoding
enzymes such as linalool synthase, benzylalcohol acetyl-
transferase and 2 methyltransferases, involved in the bio-
synthesis of Clarkia breweri scent volatiles, have been
isolated and characterized [10]. Similar results were
obtained on a methyltransferase that catalyzes methyl
benzoate formation in the petals of the snapdragon, Antir-
rhinum majus [11], and sesquiterpene synthase in rose pet-
als [9]. In general, expression of these genes is highest in
petals and is restricted to the epidermal cell layers of floral
tissues [10].

Recently, expressed sequence tag (EST) has appeared as a
powerful tool for genomics research. ESTs have developed
into a useful way of discovering the genes for metabolic
pathway enzymes in general [12-14]. These high-through-
put technologies have therefore helped in identifying new
fragrance genes in vegetative tissues and flowers, includ-
ing three new genes from the deoxyxylulose-5-phosphate
(DXP) pathway of isoprenoid biosynthesis in pepper-
mint, Mentha x Piperita [15,16], phenylpropene metabo-
lism in sweet basil, Ocimum basilicum [17], diterpene
synthesis in Stevia rivaudiana of Asteraceae [18], terpene

http://www.biomedcentral.com/1471-2229/6/14

synthase in Arabidopsis [19,20], and rose scent-related
genes [18]. However, the metabolic pathways of volatiles
in monocotyledons have not been studied exhaustively
and may differ from those in dicotyledons.

Orchidaceae have sophisticated flower morphologies
including two whorls of perianth segments, three sepals
and three petals, one of which is highly evolved as a label-
lum (lip) and serves as a landing platform for pollinators.
The Orchidaceae species pollinated by bees, wasps and
bumble bees cover a wide range of scents, from rosy- and
ionone-floral to aromatic- and spicy-floral. Many volatile
components have been identified in Orchidaceae flowers
from the American tropics, African tropics, Australian
tropics and parts of Europe [21]. However, the biosyn-
thetic pathways of orchid flower fragrance are not well
understood. Little is known about the enzymes and genes
controlling scent production in monocotyledons such as
orchids, and the problem of understanding the molecular
mechanisms involved is perhaps insurmountable without
genomics.

In this report, we describe the combined use of chemical
analysis, genomics and bioinformatics to uncover the
scent biosynthesis pathway and the relevant genes. Vola-
tiles from the flower of a scented Phalaenopsis species, P.
bellina, were compared with those from a scentless species
by detailed chemical analysis and by identifying second-
ary metabolism-related genes using EST. We also gener-
ated scent-related ESTs by data mining as well as by EST
filtering of the P. bellina unigenes database against those
of scentless Phalaenopsis, rice and Arabidopsis to identify
relevant genes. We characterized genes encoding enzymes
in the biosynthetic pathway from pyruvate and G3P to
geraniol, linalool and their derivatives. Expression of the
scent-related genes was confirmed using RNA blot hybrid-
ization. This is the first attempt to deduce the scent bio-
synthesis pathway in Phalaenopsis orchids through systems
biology, and the results give biochemical insights into
monoterpene biosynthesis in these species.

Results

Major classes of volatiles emitted from P. bellina and P.
equestris flowers

Taxonomically, the genus Phalaenopsis belongs to the fam-
ily Orchidaceae, sub-family Epidendroideae, tribe Vandeae
and subtribe Aeridinae. The genus Phalaenopsis is subdi-
vided into five subgenera, namely Proboscidioides, Aphyllae,
Parishianae, Polychilos and Phalaenopsis, and comprises
approximately 66 species according to the latest classifica-
tion of Christenson [22]. P. bellina (Figure 1a-1c), classi-
fied in subgenus Polychilos, is native to Malaysia and
numerous commercial varieties have been bred because of
its pleasant fragrance. It has no linesof scentless varieties,
so P. equestris (Figure 1d-1f) was used for comparison. P.
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Figure |

P. bellina (a-c) and P. equestris (d-f) flowers at differ-
ent developmental stages. a, d: Day 3 pre-anthesis; b, e:
Flowering day; c, f: Day 7 post-anthesis.

equestris, subgenus Phalaenopsis, is a scentless species
native to Taiwan with a colorful perianth. The subgenera
Polychilos and Phalaenopsis diverged more than 21 Mya
[23].

All species of Phalaenopsis display a remarkably uniform
diploid chromosome number of 38 (2n = 2x = 38); how-
ever, their chromosome sizes and centrosome positions
vary considerably [24,25]. Although the P. bellina karyo-
type shows large chromosomes with a 2C value of 15.03
pg and that of P. equestris shows small chromosomes with
a 2C value of 3.37 pg [24,25], the two species can be
crossed to yield progeny (personal communication from
research members at Taiwan Sugar Research Institute).

Qualitative and quantitative analyses of volatile com-
pounds from P. bellina flowers were performed using GC-
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MS. Monoterpenoids, phenylpropanoids, benzenoids
and fatty acid derivatives were detected (Table 1). Monot-
erpenoids including geraniol, linalool and their deriva-
tives (Table 1; see Additional file 1) accounted for more
than 80% of the total volatiles collected from the P. bellina
flowers. They included geraniol, nerol, 2,6-dimethyl-octa-
3,7-diene-2,6-diol, 2,6-dimethyl-octa-1,7-diene-3,6-diol,
3,7-dimethyl-2,6-octadienal, geranic acid and 2,6-dime-
thyl-octa-2,6-diene-1,8-diol (see Additional file 1). In
contrast, no monoterpenoid derivatives were emitted in
the scentless P. equestris flowers; fatty acid derivatives,
phenylpropanoids, and benzenoids were the major vola-
tiles (Table 1; see Additional file 1). These compounds are
barely detectable by the human nose.

Characterization of P. bellina floral dbEST

Previously, we found that the scent-emitting structures of
P. bellina were mostly in its perianth but not in its column
(data not shown). The column of an orchid flower is a
specialized organ comprising fused stamen and carpel,
and many genes are involved in regulating its develop-
ment. To reduce the complexity, we constructed a cDNA
library from P. bellina flower buds with the columns
removed immediately before blooming.

A total of 2,359 individual 5'-ESTs was retained for the P.
bellina flower bud with an average length of 916 bp, and
the confidence level of the sequences called using PHRED
was 22.8 per base. After 247 cDNA clones were analyzed
by restriction enzyme digestion, the average insert size
was 1.2 + 0.32 kb. For better quality annotation, the ESTs
were first refined and then the related genes were assem-
bled as unigenes. The assembly program, Sequencher V.
4.1.2, was used to organize the redundant ESTs into uni-
genes of overlapping contigs at a stringency of 95% iden-
tity, with a minimum of 40 bases overlap. This process
generated 1,187 unigenes: 499 contigs and 688 single-
tons. In the P. bellina floral dbEST, 1,748 (74.1%) of the
2,359 ESTs showed similarities to known sequences in the
Uniprot database. The sequences in the flower bud dbEST
were functionally characterized using a Gene Ontology
(GO) scheme [26]. Details of the gene species included in
each group are given in Figure 2. GO allowed 45.6% of the
total ESTs to be placed in the molecular function category,
18.5% in the biological process category and 1.8% in the
cellular component category. The remaining 34% either
showed insufficient similarities to any proteins (no hits,
25.9%) or hit proteins without a GO identifier (unclassi-
fied, 8.1%). Among the molecular functions, the catego-
ries most highly represented were the transferases (9.4%),
other enzymes excluding hydrolases, kinases and trans-
ferases (8.7%), and hydrolases (5.9%). Among the bio-
logical processes, the largest proportion (10.9%) of
functionally assigned ESTs fell into cellular processes
excluding signal transduction, cell organization and bio-
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Table I: Major classes of volatiles emitted by P. bellina and P. equestris

Amount (ng/flower/h)

Class of Volatiles

P. bellina (scent)

P. equestris (scentless)

Monoterpenes 382.8 £ 16.1 ND2
Linalool 1054 £ |53 ND2
Linalool derivaties 39.6 £20.0 ND2
trans-Geraniol 1634+ 1.6 ND2
Geraniol derivaties 345+54 ND2
Phenylpropanoid 386 17.1 109.0 + 14.0
Benzenoid 40.2 + 20.8 33270
Fatty acid derivatives 33+ 1.8 330.5 +35.0

aND: undetected

genesis and transport; other metabolic processes (exclud-
ing protein metabolism, DNA metabolism, RNA
metabolism, electron transport, energy pathways and
transcription) accounted for 4.1%. Together, these two
classes of molecular functions and biological processes
accounted for 64.1% of the assignable ESTs (Figure 2).

Identification of scent biosynthesis pathway using the
Pathway and Literature finder (Pal)

Analysis of the volatiles showed that monoterpenoids,
including geraniol, linalool and their derivatives, are
major compounds of P. bellina flower scent (Table 1), so
it is reasonable to speculate that monoterpenoids are bio-
synthesized in these flowers. To identify candidate genes
in the DXP-geraniol-linalool pathway of Phalaenopsis, we
developed a Pathway and Literature finder system [27].
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Functional classification of P. bellina flower bud dbEST.
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Five deoxyxylulose-5-phosphate synthase (DXPS) and
one deoxyxylulose-5-phosphate reductase (DXPR) related
ESTs were mapped to the methylerythritol phosphate
(MEP) pathway, which was included in the Biosynthesis
of Steroid pathway in KEGG database. No ESTs were
mapped to the Terpenoid Biosynthesis or Monoterpenoid
Biosynthesis pathways in KEGG. Possible reasons why
only two types of ESTs were identified corresponding to
the MEP pathway might include sequence diversification
in different species and incompleteness of the KEGG col-
lection of pathways. To extract further ESTs related to the
DXP-geraniol-linalool pathway, EST annotations, the vol-
atile components identified by GC-MS and the relevant
PubMed literature were combined.

In the PaL system, we used 'plant terpene biosynthesis
pathway and linalool' or 'plant linalool compound and
scent' or 'plant geraniol' as background set keywords to
collect literature from PubMed, and 'geranyl diphospate
synthase' as functional keywords to search EST annota-
tions. The program then connected the chosen keywords,
ESTs and literature (see Additional file 3). Other sets of

keywords were also applied to repeat the process (see
Additional file 3).

On this basis, we elucidated the floral scent biosynthesis
pathway in P. bellina further in accordance with the GC-
MS data on geraniol, 2,6-dimethyl-octa-2,6-dien-1,8-diol
and citronellol (Figure 4). We identified major steps in the
pathway from pyruvate and G3P to geraniol, linalool and
their derivatives (Figure 4). These included genes encod-
ing deoxyxylulose-5-phosphate synthase (DXPS), deoxyx-
ylulose-5-phosphate reductase (DXPR), 4-
diphosphocytidyl-2-C-methyl-D-erythritol-2-phosphate
cyclase (DMEC), EPI, GDPS and cytochrome P450. The
biosynthetic pathway for linalool and its derivatives,
including linalool oxide, was also deduced (Figure 4).

ESTs differentially expressed between the floral dbESTs of
P. bellina and P. equestris

Comparisons of the most abundant ESTs by calculating
the enrichment factor (defined below) for different tran-
scripts in the floral dbESTs of P. bellina and P. equestris
[28,29] facilitate the provisional identification of scent
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Figure 4

Putative metabolic pathway from pyruvate and glyceraldehyde-3-phosphate to secent synthesis, and its
related enzymes, in P. bellina. DXPS: deoxyxylulose-5-phosphate synthase; DXPR: deoxyxylulose-5-phosphate reductoi-
somerase; DMEC: 4-diphosphocytidyl-2-C-methyl-D-erythritol 2- phosphate cyclase; EPI: epimerase; GDPS: geranyl diphos-
phate synthase; NADPHDH: NADPH dehydrogenase.
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Table 2: Differential expressed transcripts between P. bellina (scent) and P. equestris (scentless) species in the floral cDNA libraries.

Putative functions

Abundance in floral dbESTs

Enrichment factor<

P. bellina (%)?

Geranyl diphosphate synthase 0.30
Epimerase/dehydratase 1.6l
Lipoxygenase 2.12
Diacylglycerol kinase 0.34
Expansin 0.68
Peroxidase 1.36
Elongation factor I.19
O-methyltransferase 0.78
Cytochrome P450 0.97
Heat shock protein 1.10
Class | chitinase 0.38
Molybdopterin biosynthesis 0.20
cofactors

P. equestris (%)P

0.02 16.6
0.16 10.0
0.21 9.9
0.04 9.5
0.16 42
0.39 35
0.37 32
0.30 2.6
0.48 2.0
0.66 1.7
0.27 1.4
0.0 NDd

aNumber of EST divided by 2359 ESTs of P. bellina floral dbESTs.
bNumber of EST divided by 5593 ESTs of P. equestris floral dbESTs.

Proportion (%) of ESTs in P. bellina an P. equestris floral bud libraries and the enrichment factor in the scent floral bud library (proportion of P.

bellina flower).
dND: undetermined

metabolism genes. The enrichment factor was obtained by
dividing the proportion of a certain transcript in the
scented species by that in the scentless species. Statistical
significance was determined using the simple Monte
Carlo Test (o0 < 0.05). Geranyl diphosphate synthase
(GDPS), EPI, LOX and diacylglycerol kinase (DAK)
showed 16.6, 10.0, 9.9 and 9.5-fold enrichments, respec-
tively (Table 2). GDPS was significantly differentially
expressed in the scented species (0.30% in P. bellina vs.
0.02% in P. equestris, Table 3). GDPS participates in the
biosynthesis of monoterpenes in plastids [30] primarily
by supplying the essential precursor, suggesting that P.
bellina may produce scent molecules in the plastids rather
than the cytoplasm. Among the ESTs of the P. bellina
flower bud, EPI (1.61% in P. bellina vs. 0.16% in P. eques-
tris, Table 2) is a multi-functional protein with hydratase,
dehydrogenase, epimerase and isomerase activities
involved in fatty acid beta-oxidation in plant peroxisomes
and glyoxysomes [31,32]. DAK, enriched in the scented
species (0.34% in P. bellina vs. 0.04% in P. equestris, Table
2), converts diacylglycerol to phosphatidic acid, which
has been shown to accumulate rapidly in plant cells in
response to stimuli and may function as a signal molecule
[33-35]. If so, DAK may serve as a signal molecule for day-
fragrance in P. bellina rather than being involved in scent
biosynthesis directly.

In addition, expansin showed a 4.2-fold higher abun-
dance in the scented species (0.68% in P. bellina vs. 0.16%
in P. equestris, Table 2). Expansin loosens plant cell walls
and thereby stimulates cell enlargement [36]. In orchids,

expansin may burst the cell walls in the epithelium to
release scent components. Indeed, transmission electron
microscopy shows that bulges extend from the outer epi-
dermis cell walls during flowering of P. bellina (unpub-
lished results). Interestingly, our results show that
peroxidase (1.36% in P. bellina vs. 0.39% in P. equestris, a
3.5-fold enrichment) might be related to scent metabo-
lism.

More than 2-fold increases of O-methyltransferase tran-
scripts (0.78% in P. bellina vs. 0.30% in P. equestris, a 2.6-
fold enrichment) and cytochrome P450 transcripts
(0.97% in P. bellina vs. 0.48% in P. equestris, a 2-fold
enrichment) were also observed in P. bellina flowers. Pre-
vious research has shown that O-methyltransferase is
involved in many reactions in volatile biosynthesis [37].
O-methyltransferase methylates a wide range of substrates
such as catechols, phenylpropanoids, orcinol and isoqui-
noline, all of which are involved in modifying scent mol-
ecules upon induction [38]. Cytochrome P450 can act as
a hydroperoxide lyase and catalyze the cleavage of lipoxy-
genase products (fatty acid hydroperoxides), forming
omega-oxoacids and volatile C6- and C9-aldehydes and
alcohols [39]. However, in some cases, fewer enzymes
than expected are required to synthesize the various
hydroxylated structures, such as cytochrome P450 mono-
oxygenase in Mentha species [40] and geraniol 10-hydrox-
ylase in Catharanthus roseus [41]. Molybdopterin biosyn-
thesis cofactors (0.21% in P. bellina vs. 0.0% in P. equestris,
Table 1) are involved in various types of oxidative metab-
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Table 3: EST filtering results using unigenes of P. bellina against those of P. equestris, Arabidopsis and rice.

Annotation Scent_Scentless(820)2

Scent_At+Os (365)P Scent_Scentless_ At+Os

(330)
NADPH dehydrogenase 6 6 6
Molybdopterin biosynthesis cofactors 3 3 3
Membrane protein 6 5 3
Sensor protein 2 2 2
Geranyl diphosphate synthase 2 2 2
Ferrochelatase | | |
Epimerase/dehydratase | | |
Mitogen-activated protein kinases | | |
Photosystem protein | | |
Myb family protein 3 | |
O-methyltransferase | | |
vNo hits found 120 87 69
Hypothetical protein 8l 49 43
Unknow protein 93 35 25

aThe number of unigenes obtained in the EST filtering result at an E-value < e.
bThe number of unigenes obtained in the EST filtering result at an E-value < e7.
<The number of unigenes that were simultaneously present in previous two EST

olism, including nitrogen metabolism and phytohor-
mone biosynthesis [42].

Lipoxygenase (LOX) EST was the most abundant
transcript in the P. bellina flower bud dbEST

It has been proposed that LOX may be involved in plant
growth and development; biosynthesis of regulatory mol-
ecules such as jasmonic acid and traumatin; and biosyn-
thesis of volatile compounds such as hexanal, hexenal and
hexenol, which are involved in flavor, insect attraction
and defense [43,44]. LOX enzymes can be grouped into
two types: 9-LOX, which specifically forms 9- hydroper-
oxy derivatives of fatty acids (9-HPOs), and 13-LOX,
which specifically forms 13-HPOs [44]. Interestingly, we
discovered that three different kinds of 9-LOX-like ESTs
(see Additional file 2) accounted for 2.12% of the P. bell-
ina flower dbEST (Table 2). One of them (PLOX3) was
specific to the P. bellina flower. However, no 13-LOX-like
ESTs were observed in such flowers. In contrast, only
0.21% of the floral dbEST of P. equestris encoded LOX, and
both 9-LOX and 13-LOX were detected (Tables 2 and see
Additional file 2). In addition, four cytochrome P450
enzymes of the CYP74 subfamily-related ESTs represented
as one gene were mined in the P. bellina flower dbEST.
This contig comprised 1,115 nucleotides and showed
75% similarity at the amino acid level to rice allene oxide
synthase (OsAOS, accession no: AAL17675) and 72%
similarity to Cucumis melo 9-hydroperoxide lyase
(CmHPL, accession no: AAK54282) [45,46] The high per-
centage of 9-LOX-related ESTs, and the existence of ESTs
associated with the AOS or HPL pathway, together suggest
that the 9-LOX pathway for linoleic or linolenic acid
metabolism is executed in the P. bellina flower.

Identification of scent-related genes by EST filtering

By adopting previous approaches, we could have identi-
fied those scent-related genes that have already been
reported in the literature. However, novel scent-related
genes that have not been reported, or their sequences are
too divergent from known ones, would not be identified
by using the PaL finder. In addition, genes with low
expression levels would not easily be identified by enrich-
ment factor analysis. To detect still more scent-related
genes, we performed EST filtering using less stringent con-
ditions to remove genes homologous between P. bellina
and P. equestris. The 1,187 P. bellina unigenes were filtered
against the 3,555 floral unigenes of P. equestris using
TBLASTX at an E-value < 10-5. The ESTs left over after fil-
tering with the minimum acceptable threshold (E-value <
105) could plausibly represent non-homologous tran-
scripts in P. bellina.

The results showed that 820 unigenes of P. bellina did not
match the P. equestris unigene database (Table 3). The EST
filtering results revealed genes involved in the biosyn-
thetic pathway from pyruvate and G3P to linalool, gera-
niol and their derivatives in floral unigenes of P. bellina,
consistent with the chemical analysis results showing that
no linalool and geraniol were emitted from the floral
organs of P. equestris. However, the filtered results may not
account only for fragrance genes; some filtered unigenes
may be involved in morphogenetic networks. Interest-
ingly, P. bellina (colored from red to orange in petal and
lip) and P. equestris (red petal, orange lip) have similar
color spectra, so EST filtering eliminated the genes
involved in the biosynthesis pathways for flower colors
and reduced the complexity of analysis. Indeed, the fact
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P. bellina
P. equestris

PLOX I - B 2.3kb
PEPI 3 | 1.4 kb
PGDPS L0 kb

1.3 kb

PNADPHDH 1 ‘ .
Figure 5

RNA gel-blot analysis of mMRNA transcripts at day 3
pre-anthesis. RNA was extracted from day 3 pre-anthesis
flower buds of P. bellina (lane I) and P. equestris (lane 2) and
analyzed for PLOX|, PEPI3, PGTPS and PNADPH-dehydrogenase
I (PNADPHDH ) expression. The blots contained 10 ug of
total RNA extracted from the different mature floral buds.
The ribosomal RNA signals showed that the same amounts
of total RNA were loaded on each individual lane.

rRNA

that no anthocyanin biosynthesis genes were identified in
the EST filtering results is evidence for the efficacy of EST
filtering.

Further EST filtering by use of TBLASTX against the col-
lected floral unigenes of rice and Arabidopsis, which both
lack fragrance, removed the genes involved in morpho-
genesis. An E-value < 107 was applied for the TBLASTX
program, and the matched results with fewer ribosomal
proteins and housekeeping genes were accepted. Uni-
genes with significant BLAST search results were classified
as homologous genes among rice, Arabidopsis and P. bell-
ina. Altogether, 365 unigenes remained unmatched and
included fewer housekeeping genes at E-value < 10-7, and
thus were defined as P. bellina scent-related genes (Table
3).

A total of 330 unigenes common to the above two EST fil-
tering results constituted a more refined set of scent-
related genes in P. bellina (Table 3). These transcripts
included genes for NADPHDH, EPI, molybdopterin bio-
synthesis cofactors and GDPS (Table 3). Concomitantly,
EPI and GDPS were among the highly expressed tran-
scripts, and molybdopterin biosynthesis cofactors were
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only expressed in the P. bellina flower buds (Table 2). Our
results also suggest that NADPHDH and cytochrome
P450 are required for the formation of linalool and gera-
niol derivatives (Figure 4). From the chemical and bioin-
formatic analyses, we deduced a monoterpene
biosynthesis pathway of 15 steps in the P. bellina flower,
leading from G3P to geraniol, linalool and their deriva-
tives. ESTs corresponding to 10 of these steps (66 %) were
identified (Figure 4).

Transcripts encoding signal transduction factors such as
sensor proteins, membrane proteins and mitogen-acti-
vated protein kinase were also identified (Table 3), sug-
gesting that scent emission may be related to stimuli that
elicit a series of signal transduction processes leading to
gene expression and scent production. We also detected
ferrochelatase, as well as Myb family protein (Table 3),
which has been shown to regulate the biosynthesis of
petunia flower fragrance [47]. However, we could not rule
out the possibility that the ESTs identified by enrichment
factor analysis were merely the results of incompleteness
and bias in the dataset used in this analysis.

Confirmation of scent-related genes by RNA blot
hybridization

Differential expression of several of the identified scent-
related genes was confirmed by RNA blot hybridization.
PEPI3 was highly expressed in the scented species but
rarely expressed in the scentless species (Figure 5). Like-
wise, PLOX1, PGDPS and PNADPHDH]1 were expressed in
the scent species. The same blot was hybridized to a probe
encoding a ribosomal RNA indicating that each individ-
ual lane had been loaded with the same amount of RNA
(Figure 5). These results were consistent with the bioinfor-
matics analysis of floral ESTs preferentially expressed in
the scent species.

Discussion

In this report, we developed a PaL system to facilitate the
identification of literature and pathway information
related to certain ESTs. Unlike PubMed, which can only
provide keyword searches without identifying the papers
really related to ESTs of interest to the user, PaL also pro-
vides an easier search platform for demonstrating which
of the sequences in hand is engaged in a certain KEGG
pathway. In PaL, BLAST is used for alignment in batch
(BLASTALL) and its alignment results are parsed to extract
such information. Thus, the PaL system covers the BLAST
function. We drew the candidate scent biosynthesis path-
way manually. In addition, we recognized enriched tran-
scripts by comparing the floral unigene databases for scent
and scentless species, and by EST filtering to identify other
genes for scent biosynthesis and scent modification candi-
dates. Systematic collection of ESTs and retrieval of related
research documents from public databases were highly
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rewarding strategies for studying these non-model plants,
particularly since genomic information is limited in
orchids. Efficient connection of the biological compo-
nents with related literature by computational methods
was a useful strategy for deducing the metabolic path-
ways.

In this study, we were able to identify genes, including
those for DXPS, DXPR, DMEC, GDPS, EPI, NADPHDH
and cytochrome P450, all involved in the DXP-geraniol-
linalool pathway, by combining EST data mining with
metabolic profiling and analysis of volatiles and EST fil-
tering. Although comparison with scentless plant material
would in principle be optimal if isogenic scentless P. bell-
ina lines could be used, no such variants yet exist. The
flowers of P. bellina and P. equestris express similar sets of
genes determining the nature of the organ even though
they are phenotypically different. However, their final
appearance, including scent, may be determined by a rel-
atively small number of genes expressed in a cultivar-spe-
cific manner.

All monoterpenes are formed from GDP, which is synthe-
sized from dimethylallyl diphosphate and isopentenyl
diphosphate [48]. The high expression level of GDPS in P.
bellina flowers suggests that scent biosynthesis in this spe-
cies is predominately due to production of geraniol and
linalool from DXP. Thus, EST data mining and EST filter-
ing were informative in identifying genes among different
dbESTs from different sources and may be applicable for
comparative genomics.

Monoterpene synthase genes have been identified in both
floral and vegetative organs of several angiosperms and
gymnosperms [19,49] Of special interest in this respect
are studies of terpene synthases, a large class of enzymes
that appear to be responsible for most of the structural
variety of terpenes [50]. However, terpene synthase was
not identified in P. bellina in this work. We have applied
an HMM based method such as Interpro [51] to validate
whether any such protein domains were in fact present in
the dataset. Results showed that no any terpene synthase
domains were present in the P. bellina floral EST database.
The low sequence-relatedness among monoterpene syn-
thases in angiosperms [49] might have added to the diffi-
culty; thus far, few terpene synthase genes have been
identified in monocotyledons. In addition, these genes
may belong to families with high diversity in non-con-
served regions [10]. A further attempt to identify them was
conducted by in silico hybridization using known monot-
erpene synthase genes as electronic probes, but neither
linalool synthase nor geraniol synthase genes were found.
The pool in the P. bellina EST database may be insufficient,
so that not all genes in the scent biosynthesis pathway -
including monoterpene synthase genes — have been iden-
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tified. Alternatively, there may be regulation of the scent
biosynthesis at the precursor level, and the enzymes
responsible for synthesis are not transcriptionally regu-
lated. Previous studies have shown that linalool synthase
levels and activities in Clarkia breweri remain high while
linalool emission decreases, suggesting that regulation of
terpenoid precursors occurs in C. breweri [10,52].

Both EPI and NADPHDH are multifunctional and are
involved in B-oxidation and reduction reactions [53].
PEPI3 showed a distinct expression profile in the scented
species and thus may be correlated with scent biosynthesis
via the geraniol-linalool pathway. Altogether, our results
suggest that EPI, cytochrome P450 and NADPHDH are
related to monoterpenoid biosynthesis in orchids.

The role of the LOX pathway in plant-pathogen interac-
tions and the importance of 13-LOXs and their product
jasmonate in resistance against insects and pathogens
have been analyzed in numerous pathosystems [54,55]
The 9-LOX pathway generates a group of metabolites that
are structurally related to, but distinct from, those derived
from the 13-LOX pathway [55]. In our results, a much
lower level of fatty acid derivatives was observed in P. bell-
ina flowers than in P. equestris flowers (3.3 + 1.8 vs. 330.5
+ 35.0 ng/flower/h; Table 1). Since no 13-LOX pathway
genes were expressed in P. bellina, its fatty acid derivatives
were produced mostly by the 9-LOX pathway. However,
there was a discrepancy in that 9-LOX ESTs were the most
abundant ESTs in P. bellina flowers, but fatty acid deriva-
tives were at very low levels in its volatiles. These results
suggest that fatty acid derivatives produced by the 9-LOX
pathway in P. bellina flowers are mostly not volatiles.
Recently, 9-hydroxy-10-oxo-12(Z), 15(Z)-octadecandi-
enoic acid (KODA) biosynthesized by 9-LOX and AOS
were shown to have flower-inducing activity in Lemna
[56]. Although the biological function of the high levels of
9-LOX expression in P. bellina flowers is unclear, the
expression of PbLOX may control the synthesis of some
signal for flower scent formation or emission. In addition,
many lipid bodies were observed in the petal epidermis of
P. bellina by transmission electron microscopy (data not
shown), suggesting that the 9-LOXs are involved in con-
verting storage lipids into substrates for further oxidation
to provide energy for scent emission. It will be important
to demonstrate products of the 9-LOX pathway in vivo and
functionally characterize genes that encode 9-LOX and
other enzymes involved in this pathway in order to under-
stand their relationships to floral scent formation and
emission in P. bellina.

Despite the popularity of Phalaenopsis species in cultiva-
tion, very little is known about their ecology and distribu-
tion in nature. So far, there have been no reports
indicating the kind of insects that visit P. bellina or P.
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equestris in the wild. Flowers of Phalaenopsis spp., with its
colorful perianth, are pollinated by bees and produce fra-
grances during the day [22]. Bumble bees are primarily
attracted from a distance to visual stimuli, whereas land-
ing depends upon both visual and olfactory cues [57]. The
complex fragrances and vivid colors in P. bellina suggest
that this species probably attracts pollinators by both
olfactory and visual stimuli. In contrast, the strictly visual
strategy used by P. equestris to attract pollination vectors is
the presentation of the colored perianth. Although P.
equestris has small flowers (1.0-1.2 cm in diameter), it
produces many more flowers in a peduncle compared to
P. bellina, which produces 1 to 3 larger flowers (5-6 cm in
diameter) per plant but with fragrance. It seems logical
that the evolution of Orchidaceae, a family that was prob-
ably already highly "pollinator-oriented" at its inception,
further augmented the complexity of the pollination
mechanisms [57]. The emission of volatiles from P. bellina
flowers may have evolutionary significance and thus
increase reproductive fitness in orchids.

Conclusion

In this work we have shown how EST research can be use-
fully applied to the construction of a putative scent metab-
olism pathway in P. bellina and the identification of the
genes encoding the enzymes involved in this pathway. For
a non-model plant with a very large genome (1.5 ~ 8.1 x
10° bp for Phalaenopsis spp. [25]), which cannot easily be
accessed for whole genome sequencing, EST analysis of its
transcriptome profile becomes a very efficient and inform-
ative tool. A combination of volatile analysis, EST data-
base mining with the PaL finder and EST filtering can be
applied to deduce the scent biosynthesis pathway in P.
bellina and to identify scent-related genes.

Methods

Plant materials

The development of P. bellina flowers is divided into 3
stages. At stage 1 (day 3 pre-anthesis), the flower bud is
closed, the petals are green and no fragrance is emitted
(Figure 1a). At stage 2 (the flowering day), the petals and
sepals blossom slightly but still without fragrance (Figure
1b). At stage 3 (day 7 post-anthesis), P. bellina flowers
bloom and have a strong fragrance (Figure 1c). In con-
trast, P. equestris flowers are scentless (Figure 1d-1f). All
plant materials were cultivated in the greenhouse at the
Taiwan Sugar Research Institute (TSRI) in southern Tai-
wan. The growth conditions were: temperature 30°C/
25°C, relative humidity 84% and photosynthetic photon
flux density 90 pumol m2s-1.

Headspace scent chemical collection and
chromatographic analysis

P. bellina and P. equestris flowers produce fragrance during
the day. Volatiles trapped from day 5 to day 10 post-
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anthesis flowers (35 P. bellina and 24 P. equestris) were col-
lected using dynamic headspace sampling systems [5],
with air pumped from the chamber through activated
charcoal traps (1.5 mg) at 400 ml/min for 35 h (from 9
am to 4 pm for 5 days). The volatiles were eluted with 1
ml hexane and evaporated to 0.5 ml. Trapped floral scent
compounds were analyzed by gas chromatography-mass
spectrometry (GC-MS; QP2010, SHIMADXU, Shimadzu
Co, Tokyo, Japan). We used an INNOWAX column (60
cm, 0.32 mm, 0.25 um phase thickness) and the oven was
programmed from 40°C to 230°C (held for 5 min) at
5°C/min increments. The pressure of the helium inlet was
set at 75.2 kPa, with a linear velocity of 34.6 cm/s (split
flow 8.3 pl/min). The injector temperature was kept at
240°C, with the injected volume set to 1 ul and the elec-
tron energy to 70 eV. Mass spectra and reconstructed chro-
matograms were obtained by automatic scanning of the
samples in the mass range m/z 20-500 Da. Peaks on mass
chromatograms with characteristic fragments were
checked for homogeneity.

The identities of all compounds were determined by com-
paring retention times and mass fragmentation patterns
with the NIST98 (US Environmental Protection Agency,
1998) and NIST02 (SHIMADXU, Shimadzu Co, Tokyo,
Japan) databases. For quantitative analyses, 10 pg/ml
ethyl myristate was used as an internal standard [36].

Construction of cDNA library

Total RNA samples were extracted from P. bellina flower
buds (column removed) by the guanidium thiocyanate
method [58]. Poly(A) mRNA was prepared with a Poly(A)
Quick RNA Isolation kit (Stratagene, La Jolla, CA). The
cDNA library was constructed using a commercial kit fol-
lowing the manufacturer's instructions (Stratagene). The
cDNAs synthesized were directionally cloned into a ZAPII
vector. cDNA phage clones were excised using the EX
Assistant helper phage system (Stratagene), and a pBlue-
script SK+ plasmid was recovered. A floral EST database
established previously from the flower buds of the scent-
less species P. equetris [21,24] was used for comparison.

DNA sequencing and analysis

Plasmid DNAs were purified from overnight cultures with
a miniprep kit (Viogene, Taipei, Taiwan). Sequencing
reactions were carried out from the 5' end using an auto-
mated sequencer (ABI PRISMTM 377 DNA Sequencer,
Perkin-Elmer, Boston, MA) with a T3 primer 5'-AATTAAC-
CCTCACTAAAGGG-3'. Sequence data were analyzed with
Sequencher V. 4.1.2 (Gene Codes Corp., Ann Arbor, MI)
to remove vector, poly(A), adaptor and ambiguous
sequences. The P. bellina flower bud EST sequences have
been submitted to the EST database with the accession
numbers  CK857580-CK859399 and CO742089-
CO742627.
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The PHRED program was employed for base calling and
sequence quality assessment. The assembly program,
Sequencher V. 4.1.2, was then used to organize the redun-
dant ESTs into unigenes of overlapping contigs at a strin-
gency of 95% identity with a minimum 40 bases of
overlap. All sequences were searched and checked for sim-
ilarities to sequences in Uniprot [59] using the BLASTX
tool [60]. The GO Slim Classification for Plants, devel-
oped at TAIR [61] was used to characterize the ESTs func-
tionally. The GO identifier of the best hit (with a cutoff of
le-5) was attributed to the sequence. This step allowed
putative functions to be assigned on the basis of the clas-
sification proposed by GO.

Floral transcripts differentially expressed between the
scented and scentless species were represented as percent-
ages of ESTs in each floral bud cDNA library (Table 2). The
simple Monte Carlo Test [62] was used to assess the statis-
tical significance of the heterogeneity of distribution
between the two EST databases. Each EST sequence in the
two databases was randomly shuffled 1000 times. The fre-
quencies of corresponding ESTs were calculated in the
simulated databases. This procedure was repeated 19
times.

Pathway and Literature (Pal) finder: a system for speeding
up pathway finding

We developed a system, Pathway and Literature (Pal)
finder, to map ESTs to metabolic pathways, and correlated
the EST annotations and metabolic components to the
related literature.

Initially, the Pathway and Literature (Pal) finder was
developed to speed up the process of finding pathways.
The architecture of the PaL system is shown in Figure 3. Its
outputs include possibly-involved pathways and related
literature for sequences of interest to the user.

In this system, users are required at the outset to input a
set of ESTs of interest in FASTA format. After receiving
these data, the first stage of this system is to annotate
those ESTs against the Arabidopsis proteome provided in
the KEGG database through BLASTALL. This stage also
collects directly related literature found from the BLAST
search results. This stage can be time-consuming since
BLASTALL needs a longer time to process all EST align-
ments.

At stage 2, sequences annotated in stage 1 are mapped to
Arabidopsis metabolic pathways in KEGG. The pathway
query environment for our VFCP database is demon-
strated at taiwanorchid_1 [63].

At stage 3, a query environment is designed for users to
collect a literature corpus and to narrow down the ESTs in
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which they are interested at taiwanorchid_2 [64]. This
stage uses information retrieval techniques to rank the lit-
erature based on the correlation between publications and
annotation of the ESTs of interest. Two sets of keywords
are requested from the user. The first set, the background
keyword set, normally has wider domain keywords (such
as flower scent), which are used to collect domain-related
literature for building a literature corpus. The other set
(keywords 2) is used to filter the ESTs through data min-
ing if their annotations contain the keywords of interest.
Those ESTs filtered by using keywords 2 were in the same
domain.

At final stage, the cosine similarity with vector space
model (VSM) was used to find similarities between the
grouped annotations and the literature in the corpus. In
this stage, this program tokens, stems, waves stop word,
and indexes the terms for both annotations and literature.
Term frequency (TF, [65]) was used for the candidate gene
database to calculate term weight and frequency with
inverted document frequency (TF-IDF, [65]) in order to
weight the corpus database. The output of this page is rec-
ommended literature, ordered according to correlation
with the domain of interest to the user.

EST filtering

To identify transcripts that are highly abundant in the
scent species but in neither the scentless species nor rice
and Arabidopsis flowers, we carried out 2 steps of EST fil-
tering. First, the scent-related genes in the scent floral bud
unigene database were filtered by in silico hybridization
using the unigene database of the P. equestris flower bud
as probes. The flower bud unigene database of P. bellina
was filtered by TBASTX against the flower bud unigene
database of P. equestris with an E-value < 10-5. The
matched genes were counted as homologous genes
between P. bellina and P. equestris, while the unmatched
ones were counted as P. bellina specific and may be scent-
or morphogenesis-related genes. The "no hits found"
sequences were retrieved using an in-house program,
nothitfound.pl, for further processing. Further EST filter-
ing was performed against the collected (15,350) flower
unigenes of rice and Arabidopsis, which were obtained
from NCBI public databases. The TBLASTX program was
carried out with an E-value < 10-7.

RNA blot analysis

For northern blot hybridization, RNA was prepared from
the flower buds of P. bellina and P. equestris. Total RNA
samples of 10 pug were denatured with glyoxal, subjected
to electrophoresis on a 1% agarose gel and transferred to
nylon filters (Amersham Pharmacia Biotech, Piscataway,
NJ). The RNA blots were hybridized with various probes
for scent-related genes. The conserved domains of lipoxy-
genase (LOX), epimerase/dehydratase (EPI) and NADPH
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dehydrogenase (NADPHDH) were excluded from the
probe-designing region to avoid cross-hybridization. The
PLOX1 probe was generated with the primer pair 5'-
CGCATCGGATGAGCTATATT-3' and 5'-GATGCA-
GAAACTTAGTACTGC. The PEPI3 probe was amplified
with  5'-CACTTAAGCACATTTCTGGT-3' and 5'-
TCGACAAATGATCTGGAGGA-3', and the PNADPHDH]1
probe was amplified with 5'-GCTCCCAGTGTGCCTATGA
TACC-3' and 5'-TCCCTCCCGCAATACG AATG-3'. The
geranyl diphosphate synthase (PGDPS) probe of P. bellina
was generated with the primer pair 5'-GCGGTTAG-
GCGACTGCIT-3' and 5'-CAGAAT ACAATAATACAT-
GAATATCACC-3'. Conditions for prehybridization and
hybridization were as described by Tsai et al. [66]. For an
internal control, the same blot was hybridized to a probe
containing a partial genomic fragment coding for ribos-
omal RNA from Phalaenopsis (a gift from Dr. Y. Y. Kao,
Institute of Molecular and Cellular Biology, National Tai-
wan University, Taipei, Taiwan).
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