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Abstract

Background: Acetabularia acetabulum is a giant unicellular green alga whose size and complex life
cycle make it an attractive model for understanding morphogenesis and subcellular
compartmentalization. The life cycle of this marine unicell is composed of several developmental
phases. Juvenile and adult phases are temporally sequential but physiologically and morphologically
distinct. To identify genes specific to juvenile and adult phases, we created two subtracted cDNA
libraries, one adult-specific and one juvenile-specific, and analyzed 941 randomly chosen ESTs from
them.

Results: Clustering analysis suggests virtually no overlap between the two libraries. Preliminary
expression data also suggests that we were successful at isolating transcripts differentially
expressed between the two developmental phases and that many transcripts are specific to one
phase or the other. Comparison of our EST sequences against publicly available sequence databases
indicates that ESTs from the adult and the juvenile libraries partition into different functional
classes. Three conserved sequence elements were common to several of the ESTs and were also
found within the genomic sequence of the carbonic anhydrasel gene from A. acetabulum. To date,
these conserved elements are specific to A. acetabulum.

Conclusions: Our data provide strong evidence that adult and juvenile phases in A. acetabulum
vary significantly in gene expression. We discuss their possible roles in cell growth and
morphogenesis as well as in phase change. We also discuss the potential role of the conserved
elements found within the EST sequences in post-transcriptional regulation, particularly mRNA
localization and/or stability.
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Background

High-throughput sequencing of partial cDNAs, or
expressed sequence tags (ESTs), provides relatively fast
and cost-effective access to the gene expression profile of
an organism [1,2]. EST libraries provide access to the pop-
ulation of genes transcribed, making analyses of ESTs
informative in determining which genes are expressed at
specific developmental ages, in specific tissues, or under
specific environmental conditions.

EST analyses are especially useful when studying organ-
isms for which little sequence data exists and for which
sequencing of the genome is either not planned, or not
easily feasible due to genome size. To date, there is little
genomic data available for the Chlorophytes (green
algae), a group far more diverse and evolutionarily diver-
gent than all land plants combined. From this group, only
Chlamydomonas reinhardtii has been the object of an exten-
sive EST project [3,4]. Genomic information from this
project proved critical to elucidating the function, biosyn-
thesis, and regulation of the photosynthetic apparatus [4].

Acetabularia acetabulum (Fig. 1), also known as the "Mer-
maid's Wineglass", is a giant unicellular green alga whose
size and complex life cycle make it an attractive model sys-
tem for understanding morphogenesis and subcellular
localization [5]. Reaching 3 cm in height at maturity, this
unicell contains just a single diploid nucleus for most of
its life cycle. It undergoes a complex morphogenetic pro-
gram, most of which takes place at the apex [6], centime-
ters away from the nucleus. Classic experiments on A.
acetabulum |7,8] provided the first compelling evidence
for the role of the nucleus in morphogenesis and for the
existence of "products of the nucleus", later presumed to
be mRNAs [9].

The life cycle of A. acetabulum is composed of several
developmental phases (Fig. 1). Like multicellular land
plants, juvenile and adult phases of A. acetabulum are tem-
porally sequential, but morphologically distinct [10].
Juvenile phase comprises the first centimeter of growth
while adult phase comprises the remaining 2 to 3 cm [10].
Juvenile whorls of hairs are stacked closer to each other
along the stalk, and the branching pattern of the hairs
within each whorl is simpler than in adults [10]. Physio-
logically, these two phases differ as well. For example,
juveniles grow well in crowded conditions and poorly at
low population densities, while adults grow well only at
low population densities. Similar to land plants, the tran-
sition between phases is associated with a change in the
reproductive competence of the apex [11,12]. In A. acetab-
ulum, adult apices are competent to produce a terminal
reproductive whorl, the cap, while juvenile apices are not
(J Messmer and DF Mandoli, unpublished). At the molec-
ular level however, the difference is gene expression pat-
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terns between adult and juvenile phases are virtually
unknown.

To reveal differences in gene expression between adult
and juvenile phases, we constructed two subtracted EST
libraries from A. acetabulum. These libraries were designed
to contain transcripts specific to one phase or the other,
presumably enriched in transcripts involved in morpho-
genesis or phase change. We randomly sequenced and
analyzed 941 ESTs from these two libraries. Our analyses
of these sequences indicate that juvenile and adult phases
differ significantly in their gene expression patterns. We
also identified 3 consensus sequences, shared mainly by
adult ESTs, that have identity with introns and the 3'UTR
from carbonic anhydrase genes we previously cloned [13].
We discuss the potential role of these conserved elements
in mRNA post-transcriptional regulation, particularly
mRNA localization and/or stability.

Results

General characterization of the ESTs

Suppressive subtractive hybridization, or SSH [14], results
in the isolation and amplification of mRNAs present in
one population (the tester population) and absent in the
other (the driver population). Using SSH, we created two
subtracted libraries, one putatively enriched in juvenile-
specific transcripts and one putatively enriched in adult-
specific transcripts (Additional file 1). From now on, we
will refer to these libraries as the "juvenile library" and the
"adult library", respectively.

To test the differential expression of the ESTs, 96 clones
from each library were randomly chosen and spotted in
the same pattern onto two nylon membranes. Each repli-
cate membrane was hybridized with one of two probes,
created either from adult or juvenile mRNA samples (Fig.
2). Out of the 96 randomly-chosen, putative juvenile
clones, 53 were only expressed in juveniles, 13 were
expressed at a higher level in juveniles than in adults, 5
were expressed at similar levels in adult and juveniles and
25 did not generate any signal with either probe (Fig 2.,
top panels). Out of the 96 randomly-chosen, putative
adult clones, 44 were expressed only in adults, 14 were
expressed at a higher level in adults than in juveniles, 10
were expressed at similar levels in adults and juveniles, 5
were expressed at a higher level or only in juveniles and 23
did not generate any signal with either probe (Fig 2., bot-
tom panels). In addition, differential expression of three
clones was confirmed by virtual northern blots (data not
shown). Virtual Northern blots differ from Northern blots
in that phase-specific cDNA is blotted on the nylon mem-
branes instead of mRNA [15]. These data provide solid
preliminary evidence that the SSH was successful at isolat-
ing many transcripts differentially expressed in these two
phases.
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Juvenile, adult and reproductive morphologies of Acetabularia acetabulum. This giant alga has a complex life cycle
and undergoes distinct developmental phases. From a spherical microscopic zygote, it initiates polarized growth elongating pri-
marily at the tip (or apex) and periodically forming whorls of branched hairs. The reproductive phase starts as the unicell initi-
ates a terminal apical whorl or "cap". When mature, the cap will house gametangia in which gametes form. The thallus and the
diploid nucleus are drawn to scale. The number and complexity of the whorls of hairs was reduced for the sake of clarity.

In total, 604 and 601 ESTs were sequenced from the adult
and juvenile libraries respectively. Sequences containing
no insert or unreliable data (as evidenced by the sequence
trace) were excluded, leaving 478 ESTs from the adult
library and 463 ESTs from the juvenile library for further
analysis. Sequences were cleaned in silico of contaminat-
ing fragments (vector and primer sequences; see Materials
and Methods). For 87% (411) of the adult clones and
83% (392) of the juvenile clones, this single-pass
sequencing provided the complete sequence of the insert,
i.e. vector sequence bordered both ends of the insert. ESTs

ranged from 68 bps to 855 bps in length. On average,
juvenile clones were longer than adult clones, averaging
474 bps and 408 bps respectively.

Due to the way the libraries were created (Additional file
2), some ESTs in the final library contained either a polyA
or polyT tract [16]. These tracts originated from the polyA
tail of the corresponding original mRNAs, indicating that
these ESTs probably contained untranslated regions.
Because the ESTs were not cloned directionally, sequences
containing polyA or polyT tracts were obtained according
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Dot blot analysis of the level of expression randomly chosen ESTs. 96 clones randomly chosen from the juvenile
library and 96 clones randomly chosen from the adult library were spotted onto nylon membranes and the membranes were
probed with either a "juvenile” probe (created from mRNA isolated from juveniles) or an "adult" probe (created from mRNA

isolated from adults).

to which strand was sequenced. The occurrence of these
tracts was significantly higher in the juvenile than in the
adult library (40 vs 15% respectively).

Redundancy and overlap between the two libraries

All ESTs were aligned and partitioned into clusters (see
Material and Methods for details). All ESTs that were not
part of a cluster remained singletons (279 adult and 233
juvenile ESTs). A consensus sequence was derived from
clusters containing two or more ESTs. The juvenile ESTs
formed 77 clusters and the adult ESTs formed 84 clusters.
Clusters contained up to 14 ESTs (Fig. 3). This probably
over-estimates the true number of clusters, as non-over-
lapping ESTs would be placed into two or more separate
clusters or remain singletons even if they originated from

the same initial mRNA. In addition, it is possible that
sequences that only differed because of sequencing errors
or regions of poor sequence quality were not clustered
together.

Clusters containing ESTs from both libraries were labeled
as "mixed clusters". Only 2 such mixed clusters were
found, representing a mere 0.3% of the total number of
clusters (Fig. 3). Thus, the overlap between the two librar-
ies is minimal, providing additional evidence that SSH
probably successfully isolated ESTs specific to each devel-
opmental phase.
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Figure 3

Number of ESTs in each cluster class. A cluster class included all the clusters that contain the same number of ESTs. Most
ESTs remained singletons (class 1). The largest cluster contains 14 ESTs (class 14). INSET: Redundancy of and overlap between
the two libraries. "Adult clusters" contained only adult ESTs, "juvenile clusters" contained only juvenile ESTs and "mixed clus-
ters" contained at least one adult and one juvenile EST. The majority of the ESTs remained singletons.

Gene functions of the ESTs

All ESTs or cluster sequences were analyzed for homology
using BLASTN, TBLASTX and InterPro (see Materials and
Methods). Hits with E values that were <1.00E-06 for
BLASTN and TBLASTX searches were considered signifi-
cant. In total, ESTs representing only 162 clusters or ESTs
produced significant BLAST hits, 144 of which were asso-
ciated with a putative gene function (Table 1). 45% of
these putative functions were independently confirmed
by InterPro searches. Interestingly, the only two mixed
clusters were both associated with the large subunit ribos-
omal RNA (rrnL) gene, the only chloroplast encoded gene
found in our analyses.

All singletons and clusters were also analyzed for homol-
ogies using BLASTX against the Arabidopsis thaliana pro-
tein database [17] and using TBLASTX against the current
draft of the Chlamydomonas reinhardtii genome [18]. For
both searches, hits with E values < 10E-06 were consid-

ered significant. In general, the same sequences produced
significant hits against each of the different databases
(Table 1). This independently confirmed the results of the
first searches and the low percentage of coding sequences
within our ESTs. In total, 178 ESTs (only 26%) produced
significant hits in at least one of the BLAST searches (Table

1).

The 178 ESTs or clusters that produced significant hits
were sorted into functional categories according to the
classification scheme developed for plants [19] (Fig. 4).
The largest functional class from both libraries contained
genes associated with photosynthesis ("energy" in Fig. 4).
In general, a higher percentage of juvenile ESTs have func-
tions related to transcription, and protein synthesis, trans-
port and storage while a higher percentage of adult ESTs
have functions related to cell structure (Fig. 4 and Addi-
tional file 3).
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Table I: Number of clusters or singletons that produced significant BLAST hits in different database searches.

Significant hit against # clusters or singletons
All three databases 108
Genbank! and Arabidopsis? 19
Genbank'and Chlamydomonas3 9
Arabidopsis? and Chlamydomonas3 2
Genbank! only 26
Arabidopsis? only |
Chlamydomonas3 only 13
No significant hit 497

Total 675

I BLASTX and TBLASTX searches against the non-redundant Genbank database (E value < |0E-06). 2BLASTX searches against the Arabidopsis
thaliana database [17] (E value < 10E-06). 3 TBLASTX searches against the Chlamydomonas reinhardtii database [18] (E value < |0E-06).
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Protein of unknown function
Unclear classification
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Figure 4

Classification of the ESTs according to their putative function. Those juvenile and adult ESTs whose function could be
predicted based on searches of public databases were classified according to those putative functions. Only two ESTs were
found in both the adult and the juvenile libraries. These ESTs are labeled "mixed".
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Phylogenetic analysis of the ESTs

To assess if the putative functions of the ESTs also
occurred in land plants or in other green algae, we identi-
fied (for each of the 178 ESTs that generated significant
BLAST hits) the sequence giving the lowest E value ("best
match") in the BLAST searches and the organism to which
this sequence belongs. As expected, most of these "best-
match" sequences belong either to Chlamydomonas rein-
hardtii or the Streptophyta (1and plants). This is not surpris-
ing, as the number of sequences available for most green
algal lineages remains extremely limited. Specifically, A.
acetabulum belongs to the class Ulvophyceae for which very
little sequence information is available [20].

Conserved sequences within the ESTs

Some ESTs showed similarity to each other over short
regions. These ESTs clustered into three groups of 5, 9 and
2 sequences respectively (Fig. 5). The length of the com-
mon stretch of sequence varies between 30-70 bps for
group 1, 45-90 bps for group 3 and 170 to 250 bps for
group 2 (Fig. 5). Within each group, these ESTs showed no
similarity to each other outside of these regions but within
these regions, the level of identity was high. Most of these
ESTs belonged to the adult library. None of these 16 ESTs
produced any relevant BLAST hit, making it difficult to
predict whether or not they contain coding sequences.
Among the sequences sharing the second consensus
sequence (Fig. 5c), all but two of the ESTs ended with a
polyA or polyT tract, indicating that they probably contain
3' UTRs. None of the ESTs sharing the first or third con-
sensus sequences (Fig. 5b or 5d) ended with a polyA or
polyT tract. These 3 conserved elements may be specific to
A. acetabulum, because they were not found in any other
sequence in Genbank (nucleotide database) except for the
carbonic anhydrase 1 and 2 (CA1 and CA2) genes from A.
acetabulum [13]. All three of these conserved sequences
fell in the non-coding regions of the two CA genes, either
in introns or the 3'UTRs (Fig. 5a).

Discussion

Adult and juvenile phases in A. acetabulum differ
significantly in gene expression

The expression analysis (Fig. 2) and the fact that there is
virtually no overlap between the two libraries suggest that
the subtraction succeeded in isolating differentially
expressed transcripts.

The 941 ESTs were organized into 675 independent clus-
ters or singletons. Although this number is probably an
overestimate — non-overlapping ESTs originating from the
same transcript may partition to different clusters or
remain singletons - these ESTs only represent a portion of
all the ESTs present in the libraries. These data provide
strong evidence that the adult and juvenile phases in A.

http://www.biomedcentral.com/1471-2229/4/3

acetabulum differ significantly in gene expression and that
a large number of genes are probably phase-specific.

Physiological differences between the two developmental
phases

The functions of the transcripts expressed at the different
phases partition differently into functional classes (Fig. 4).
Given that the libraries were created such that only ESTs
specific to one developmental phase would be isolated,
the distribution of gene functions among the ESTs is not
expected to reflect that of a typical photosynthetic cell, but
merely the functions that are specific to one developmen-
tal phase or the other.

Juveniles seem to devote much of their unique gene
expression to transcription, protein synthesis, transport
and storage, consistent with the general idea that juveniles
are fast growing, more dedicated to growth than morpho-
genesis. During juvenile phase, the unicells increase about
10-fold in height (from <1 mm to 1 cm) in 2 weeks and
are not competent to make a cap. On the other hand,
adults increase in height about 3-fold, another 3 centime-
ters. Adult cells are much more complex than juvenile
cells, with numerous whorls of hair that are highly
branched. There is thus an increased requirement for cell
wall synthesis during the adult phase. Adults also are com-
petent to execute complex cap morphogenesis, and are
preparing for nuclear divisions, nuclei transport and
gametogenesis [21]. There is not a large increase in cyto-
plasmic volume between adult and juveniles because
most of the volume within an adult is occupied by a cen-
tral vacuole (Ngo et al., submitted). This more complex
adult development is consistent with a lower percentage
of transcripts dedicated to protein synthesis and a higher
percentage of transcripts involved in cell structure (e.g.
cytoskeletal proteins, enzymes involved in cell wall syn-
thesis or maintenance, histones).

A surprisingly high number of ESTs from both libraries are
associated with photosynthesis (Additional file 3, class 2).
For example, five ESTs were putative homologs of the rbcS
protein. It is possible that these ESTs truly come from dif-
ferent transcripts. It is also possible that they originate
from the same transcript but have not been clustered
together because they do not overlap or because of regions
of poor sequence quality. To address this question, we
aligned these sequences to the A. acetabulum rbcS mRNA
sequence present in Genbank (Fig. 6). We observed in
each EST or cluster, a region of high sequence identity to
the Aa-rbcS sequence (identity varied between 84 and
89% at the nucleotide level). Two of the clusters (cn115
and cn116) were identical except for sequence ambigui-
ties, which were frequent enough for these two sequences
not to be clustered together. With the exception of cn116
and cn115, the other sequences were different enough
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CA2 mRNA (1800-2000) AGCATTTTTTGGCATCGAAAATTCCATGCGATAGCATCAGGTAACTATGCTIGTITG-

A384 AGCATTTTTTAGCATCGAAAATTCCATGTGATAACATCACGTAACTATGGC--——--
A398 AGTATTTTTTAGCATCGAATATCCTATGCAATAGCATCAGGTAACTATATTTCACA
CAl (5300-5410) AGCTTTTTTTAGCATCCAAAATTCAATGCAATAGCATCAGGTAACTATGTGTATTT

khkkhkkhkhkhhkhkhhhhkhhhhhhhkhkhk *hkkk *khkhkhhkhkkhkhhkhkhkhkx*x

Figure 5

Conserved sequences among independent ESTs and their position relative to the A. acetabulum carbonic anhy-
drase (AaCAl) genomic sequence. a: Structure of the AaCA| genomic sequence. Positions in the intron and 3'UTR where
sequence was omitted are indicated by slanted, heavy double lines. The white boxes represent AaCAl exons, the hatched box
represents the 3' UTRs. The black boxes represent three regions of strong homology between different EST sequences and
the AaCA| gene and the AaCA2 mRNA. b, c and d: sequence alignments of the AaCA[ gene and different ESTs (singletons or
clusters) over these three conserved regions. The name of the EST or gene from which each sequence originates is indicated in
front of the sequence. The regions of the AaCAl and AaCA2 genes shown in the alignment are indicated in parentheses. * indi-
cates a consensus in at least 70% of the sequences aligned. - indicates a gap in the alignment. The presence of a polyA/T tract at
the end of an EST is indicated by "(A/T)" in front of the EST name.
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Figure 6

Alignment of the putative rbcS clusters and ESTs with the A. acetabulum rbcS sequence from Genbank. The 5
ESTs or clusters that showed homology to the rbcS gene were aligned to the A. acetabulum rbcS mRNA sequence (Aa-rbcS)
published in Genbank (sequence id: X51815). The black box represents the ORF of the Aa-rbcS sequence. The white boxes
represent, for each EST or cluster, regions of high identity with the Aa-rbcS sequence. The percentage of identity in these
regions varied between 84% and 89%. The rest of the sequences (black line) showed little or no identity (<50%) to the Aa-rbcS
sequence or to each other. At the amino acid level, the conserved regions (white boxes) were 94 to 96% identical to each

other or to the Aa-rbcS sequence.

from each other and from the Aa-rbcS sequence to con-
clude that they did not actually originate from the same
transcript. In support of this hypothesis, regions outside
of these fragments of very high sequence identity could
not be aligned (<50% identity). At the amino acid level,
the sequence identity between these regions (white boxes
in Fig. 6) and the Aa-rbcS sequence was almost complete,
varying between 94 and 96%. A closer look at the
sequences confirmed that most of the nucleotide differ-
ences present in the ORFs occurred at the third position of
a codon, often resulting in the conservation of the amino
acid sequence. Finally, one of the clusters (cn115) ends
with a polyA tract, indicating the end of the 3'UTR, while
the transcript that generated cluster 146 seems to possess
a much longer 3'UTR that contains no polyA tract. Taken
together, these results suggest that there may be at least 3
different loci coding for the rbcS protein in Acetabularia
(cn169, J538 and Aa-rbcS, Fig 6). Confirmation of these
surprising results with different methods and detailed
expression analysis of the different loci will be of great
interest. A similar analysis of the chlorophyll a/b binding
proteins might also determine whether different proteins
are expressed during different phases and whether they are
functionally distinct and/or differentially regulated. The
LHC (light-harvesting complex) binding proteins form a
very large family that has been best characterized in land
plants [22]. Analysis of the 22 ESTs with identity to LHC
binding proteins from land plants will improve our cur-
rently poor knowledge of this gene family in algae.

Putative gene functions of particular interest

Immuno-cytochemistry has been used to visualize tubulin
and actin proteins in A. acetabulum during development
[23,24]. Actin microfilaments were found in thalli of all
ages forming continuous, parallel bundles along the

entire stalk. Microtubules, conversely, could not be
detected in the alga prior to meiosis. Microtubules were
detected during reproduction, surrounding haploid nuclei
as they are transported up into the cap. Consistent with
these results, our data suggest that juveniles express actin
transcripts (but not tubulin) while adults express both
alpha and beta tubulin (but not actin) transcripts, pre-
sumably in preparation for reproduction.

Two of our ESTs were putative expansin homologues.
Expansins promote cellulose walls extension in land
plants. Typical of the "mannan weeds", the wall of the
diplophase of A. acetabulum is predominantly a para-crys-
talline mannan framework (Dunn et al., submitted). Only
gametangia are enclosed in a cellulosic wall, itself sur-
rounded by the mannan wall of the cap. Consistent with
this, our results indicate that the expansin gene was
expressed during adult but not juvenile phase. So far,
expansins have only been found in land plants [25] where
expansin acts within the cell wall and is activated by an
acidic pH [26]. If these transcripts code for expansin pro-
teins that play a role in loosening walls in A. acetabulum,
it would be interesting to see if their mechanism of action
is similar to that in land plants, and whether their sub-
strate is also a cellulose wall.

A. acetabulum, for most of its life cycle, contains only one
nucleus, which is located in the rhizoid. This nucleus
undergoes replication at the end of adult phase, during
reproduction [27]. At this juncture, there is a tremendous
need for nucleotides and histones to make the millions of
haploid nuclei needed for gametogenesis [21]. Consistent
with this, histone mRNAs were found only in the adult
library (Additional file 3, class 9). It would be interesting
to look more deeply into when these transcripts are
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expressed and how this organism is able to produce his-
tone proteins in such high quantities in such a short
period of time.

Finally, one of the ESTs has homology to an argonaute
protein (Additional file 3, class 11, E value to Oryza sativa
argonaute of 5e-15). Argonaute proteins are highly
conserved and play a major role in RNA interference in
animals (a.k.a. quelling in fungi or post-transcriptional
gene silencing in plants [28]). These processes are
involved in the silencing of specific genes via double
stranded RNA [29] and their importance in post-transcrip-
tional regulation is just starting to be deciphered. Argo-
naute proteins have been found in land plants, ciliates,
animals and fungi but, to the best of our knowledge, this
EST is the first identified algal sequence of an argonaute
protein.

Why most of the ESTs do not correspond to any previously
described sequences

We can think of three reasons why only 28.6% of the ESTs,
a particularly low number, were assigned a putative
homolog based on BLAST and InterPro searches. First,
these are subtracted libraries, created with the objective of
identifying rare, phase-specific transcripts or transcripts
involved in morphogenesis, apical growth, or phase
change. Hence, these ESTs should include fewer house-
keeping transcripts, abundant transcripts, or transcripts
common to both phases or to other organisms.

Second, the ESTs were generated by a reverse transcriptase
using a poly-T primer that often does not generate full-
length cDNAs. Our libraries therefore tend to be enriched
in 3' ends of the transcripts, which contain non-coding
sequences and which would not be recognized in homol-
ogy searches. The high percentage of ESTs containing a
polyA or polyT stretch supports this hypothesis.

Finally, A. acetabulum belongs to the order Dasycladales, in
the green algal class Ulvophyceae, for which very little
sequence data is currently available. Before the addition of
our ESTs, only 73 DNA sequences from A. acetabulum were
available in Genbank, representing just 37 different genes.
Although complete genomes of several land plants and
green algae are now at least partially available, it is plausi-
ble that most of the A. acetabulum sequences are too diver-
gent from those of other algae or land plants to be
recognized as orthologs when entered in BLAST searches
[30]. To test this hypothesis, we raised the cut-off value for
the BLASTN and BLASTX searches against the Genbank
databases from 10E-06 to 10E-03. Most additional hits
obtained originated from algal or land plant sequence as
opposed to a random distribution of the organisms repre-
sented in Genbank. This supports the hypothesis that
these ESTs are probably homologous to these algal or

http://www.biomedcentral.com/1471-2229/4/3

plant sequences but too divergent for the homologies to
be trusted.

Do adult and juvenile transcripts differ in structure?
Insights into post-transcriptional regulation

Curiously, 40% of the juvenile clones but only 15% of the
adult clones end with a polyA or polyT tract. If these tracts
correspond to the mRNA polyA tail, then these ESTs con-
tain some or all of the 3' untranslated regions (3' UTR) of
the transcript from which they originated. We have dia-
grammed hypotheses explaining the differential occur-
rence of these tracts in adult versus juvenile clones (Fig.
7). The first explanation presumes an artifact of the tech-
niques used to create the libraries. ESTs result from the
amplification of cDNA fragments that have been digested
by Rsal, each Rsal fragment having an equal chance of
being amplified and cloned. If the adult cDNAs were more
completely digested than the juvenile cDNAs, then the
adult cDNAs would have generated a higher number of
ESTs, a lower proportion of which would contain polyA
tracts (Fig. 7a). A second hypothesis presumes differential
mRNA length: if adult cDNAs were, on average, longer
than juvenile cDNAs, each adult cDNA would produce
more ESTs, yielding a lower proportion of ESTs contain-
ing the polyA tract. Adult cDNAs could be longer if on
average they have longer coding sequences (Fig. 7b) or
longer 3'UTRs (Fig. 7c). If they have longer 3'UTRs, the
proportion of coding sequences as well as the proportion
of ESTs with polyA tracts will be higher in juvenile ESTs
than in adult ESTs, consistent with our findings.

Why would 3' UTRs be longer in adult transcripts than in
juvenile transcripts? In adult A. acetabulum, growth and
morphogenesis occurs almost exclusively at the stalk apex,
centimeters away from the unique nucleus located in the
rhizoid. Therefore, aspects of post-transcriptional regula-
tion, such as mRNA stability and mRNA localization, are
probably very important to the regulation of gene expres-
sion in these unicells. Indeed, more than half of the tran-
scripts (9/16) studied to date in A. acetabulum are
localized to one end or the other of the unicell, most often
to its apex [31-33]. To achieve this localization, each tran-
script must contain cis-acting elements within its
sequence, also called 'zipcodes' [34]. In yeast and animal
cells, 'zipcodes' are part of the 3' UTR of the localized tran-
scripts [35]. Also, considering the rate at which mRNA
molecules move along cytoskeletal elements along the
stalk of A. acetabulum [36,37], to reach the apex, any
mRNA must be at least three days old, classifying them
among the "ultra-stable” mRNA species [38]. In plants,
the cis-acting elements responsible for stability of an
mRNA molecule are also located in its 3' UTR [38]. Tran-
scripts 3' UTR might therefore play an important role in
the regulation of gene expression in this species, especially
in adults.
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a. Adult EST } | } EEAAAAAAA  25%
Rsal Rsal Rsal

Juvenile EST | | EAAAAAAA  33%
(Rsal) Rsal Rsal

b. Adult EST } } I EAAAAAAA - 2509/
Rsal Rsal Rsal

Juvenile EST ! | —MAAAAAAA 330/
Rsal Rsal

C. Adult EST I | ms— A\ AAAAAA D50/
Rsal Rsal Rsal

Juvenile EST | | EAAAAAAA 33%

Rsal Rsal

Figure 7

Hypothetical explanations for the difference in frequency of poly A/T tracts within the two libraries. The black
boxes represent the 3' UTR of hypothetical transcripts. On the right are the calculated percentages of ESTs containing a polyA
or polyT tract that would result from the creation of ESTs from the hypothetical MRNA shown. a: Differential digestion of the
initial cDNAs. ESTs resulted from the amplification of cDNA fragments that have been digested by Rsal, each Rsal fragment
having an equal chance of being amplified and cloned. If the adult cDNAs were more completely digested than the juvenile
cDNAs, the adult cDNAs generated a higher number of ESTs (4 instead of 3 in this case), a lower proportion of which would
contain polyA tracts. b and c: Differential mRNA length in vivo. Adult cDNAs were, on average, longer than juvenile cDNAs, so
each adult cDNA produced more ESTs (4 instead of 3), yielding a lower proportion of ESTs containing the polyA tract. Adult
cDNA:s could be longer because they have, on average, longer coding sequences (b) or longer 3'UTRs (c).

To achieve these stability and localization patterns, adult
mRNAs probably contain several post-transcriptional reg-
ulatory elements within their 3' UTRs, potentially explain-
ing why these would be longer. What are these regulatory
elements? The fact that three conserved elements (Fig. 5)
were found within several unrelated ESTs, most of which
originate from the adult library is promising. These 3 ele-
ments also appear to be specific to A. acetabulum and are
located in a non-coding region of the carbonic anhydrase
gene, whose transcript is apically localized [13]. Five of
the ESTs containing the second conserved element also
contain a polyA tract, suggesting that these ESTs may code
for 3' UTRs. The first and second conserved elements fall
within introns of AaCA1 (Fig. 5). It is possible that these
sequence elements of AaCAl1 are part of alternatively
spliced introns and sometimes contained in the mature
mRNAs produced from this gene. Future research will
focus on elucidating the function of these conserved ele-
ments and their spatial expression during development.

Conclusion

These results presented here provide strong evidence sup-
porting the hypothesis that adult and juvenile phases in A.
acetabulum differ significantly in gene expression patterns
and that a large number of genes are phase-specific. Our
next goal is to identify among these genes those that
might be involved in morphogenesis or phase change.
The ESTs from the two phases also partition into different
functional classes, underlining further the physiological
differences between the two phases. Finally, we identified
conserved elements within the EST sequences. While the
functional significance of these conserved elements
remains to be elucidated, it is tempting to suggest that
these sequences might be involved in the post-transcrip-
tional regulation of these transcripts, possibly in sub-cel-
lular localization and/or stability.

Methods

Culture of A. acetabulum

Unicells were grown in artificial seawater until they
reached the desired developmental age. Axenic cultures
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were obtained by decontaminating mature caps and then
using the axenic gametangia they housed for mating [21].
Zygotes were grown in sterile artificial seawater, Ace27,
which is identical to Ace25 [39] except that the KCl
prestock was purified over a chelex-100 column and it
contains urea hydrogen peroxide at a final concentration
of 10-15> M. Cultures were grown under cool white fluores-
cent lights at a photon flux density of 170 pmol m-2s-! on
a 14 h light/10 h dark photoperiod, at 21°C + 2°C and
repeatedly diluted to suit their developmental age [21].

mRNA extraction

Juveniles were harvested by filtration and adults were har-
vested using sterile dental tools. The unicells were dried
briefly on a Kimwipe, and weighed on aluminum foil.
Packets of algae of the same age were flash-frozen in lig-
uid nitrogen. 7.15 g of juveniles (approximately 18,000
unicells) and 18.2 g of adults (approximately 4,000 uni-
cells) were ground to a fine powder under liquid nitrogen.
The powder was transferred to Oakridge tubes containing
extraction buffer (0.1 to 0.2 g of ground unicells/ml
extraction buffer). RNA was extracted according to Chang
et al. [40].

Suppressive Subtractive hybridization (SSH)

c¢DNA synthesis and SSH were performed according to the
manufacturer's recommendations using the PCR cDNA
Synthesis Kit (Clontech Laboratories, Inc.) and the PCR-
Select cDNA Subtraction Kit (Clontech Laboratories, Inc.)
respectively. A summary of the steps involved in SSH and
a more detailed figure of the formation of the ESTs from
mRNA can be found in Additional file 1 and 2.

Cloning of the ESTs to make the libraries

DNA was precipitated using a standard ethanol precipita-
tion protocol [41]. In order to add 3' A-overhangs to the
PCR products for subsequent cloning, the DNA was resus-
pended into 25 pl of PCR reaction cocktail (2.5 pl of 10X
buffer, 1.5 ul MgCl,, 2 ul 10 mM dNTPs, 18.875 ul water
and 0.125 pl Taq polymerase (Promega)) and incubated
at 72°C for 8-10 minutes. The DNA was precipitated
again [41] and resuspended in TE to the starting volume
of the DNA amplification reaction. Following the manu-
facturer's recommendations, each library was cloned into
2 different cloning vectors using the AdvanTAge™ PCR
Cloning Kit (Clontech Laboratories, Inc., now a discontin-
ued product) and the TOPO™-TA Cloning Kit
(Invitrogen).

Dot blot and virtual Northern blot analysis of the libraries
The quality of subtraction was controlled as recom-
mended by the PCR-Select protocol provided by Clon-
tech. PCR-amplified inserts of 96 randomly picked clones
from both libraries were duplica-spotted onto nylon
membranes and hybridized with the radioactively labeled
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subtraction mix from both subtractions. In addition, dif-
ferential expression of cDNA inserts of three clones was
confirmed by virtual northern blots using SMART cDNA
synthesis (Clontech) [15]. The clones used in these dot
blots and virtual northern blots were not sequenced and
are not part of the following sequence analysis.

EST sequencing

Colonies were randomly picked from each library using
sterile toothpicks. Plasmid DNA from each colony was
isolated and eluted with 2 x 40 pl of elution buffer (Plas-
mid Miniprep Kit, Qiagen).

DNA sequencing was carried out at the Plant-Microbe
Genomics Facility, Ohio State University. The sequencing
reactions were prepared by mixing 400 ng of plasmid
DNA and 4 pmol of primer (M13F (5'-GTAAAACGACG-
GCCAG-3') or M13R (5'-CAGGAAACAGCTATGAC-3")
with water for a total volume of 10 ul. Next, 2 ul of
BigDyeTerminator mixture, version 2 (Applied Biosys-
tems), 4 ul BetterBuffer (The Gel Company) and 4 pl
water were added. The cycling parameters were those rec-
ommended by the manufacturer except that the reactions
were run for 35 cycles instead of 25. The reactions were
cleaned up with Millipore Multiscreen/Sephadex col-
umns, according to the manufacturers recommendations
(Millipore Technical Note TN053). The resulting 20 pl of
clean sequencing reaction product (in water) was placed
in an Applied Biosystems 3700 DNA Analyzer for separa-
tion and analysis.

Sequence analysis

Sequence preparation

Each clone was sequenced once using the M13 forward
primer. If the sequence was of poor quality, the clone was
sequenced again using the M13 reverse primer. Using
Sequencher (Gene Codes Inc.), each nucleotide sequence
was cleaned in silico of contaminating vector or primer
sequence individually by aligning the EST sequence to
that of the vector and those of the primers used in the cre-
ation of the libraries (nested PCR primer 1 (5'-TCGAGCG-
GCCGCCCGGGCAGGT-3'") and nested PCR primer 2 (5'-
AGCGTGGTCGCGGCCGAGGT-3'). These steps insured
that the remaining sequence was devoid of contaminating
DNA fragments that could potentially generate erroneous
hits in BLAST searches [16]. A high proportion of the
sequences also contained polyA or polyT tracts. These
DNA fragments were also removed in silico from the
corresponding sequences before performing homology
searches.

Homology searches
Each EST was queried as follows:
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- BLASTN searches [42] (database searched: nr (non-
redundant nucleotide sequences)) [43].

- TBLASTX searches [42] (database searched: nr (non-
redundant nucleotide sequences), genetic code: 6 (used
by ciliates and Dasycladales [44]), defaults were used for
the rest of the parameters) [43].

- InterPro searches [45] queries protein motifs databases
from the European Bioinformatics Institute [46]. InterPro
hits were mapped to the Gene Ontology [47].

- BLASTX searches against the Arabidopsis thaliana database
[17].

- TBLASTX searches against the June 2003 draft of the
Chlamydomonas reinhardtii genome [18].

Clustering of the ESTs

Clustering and alignments of the ESTs were performed
using StackPack software (Electric Genetics, Cape Town,
South Africa) [48,49]. Clustering was performed in two
phases. The first phase used the 'd2' algorithm, which is
part of the 'd2' cluster [50,51]. The second phase used
Phrap [52].

The analysis was run with the following parameters:

d2_cluster: word_size = 6, similarity_cutoff = 0.96,
minimum_sequence_size = 50, window_size = 150 and
reverse_comparison = 1.

Phrap: old_ace = 1, vector_bound = 0, trim_score = 20,
forcelevel = 0, penalty = -2, gap_init = -4, gap_ext = -3,
ins_gap_ext = -3, del_gap_ext = -3, maxgap = 30, flags = -
retain_duplicates.

Organization of the data

Bioinformatics scripts and the database systems used to
store and query sequence/annotation data were provided
by the Specialized Plant Resources in Informatics and
Genomics (SPRIG) project http://bioinformatics.org/
sprig, in particular, the SPRIG generic EST database and
support script [53].

Availability of the sequences

The EST sequences analyzed in this study have been sub-
mitted to dbEST division of Genbank under accession
numbers: CF 258288 to CF259228.
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