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Abstract

Background: Effects of water deficit on plant water status, gas exchange and hydraulic conductance were
investigated in Betula pendula under artificially manipulated air humidity in Eastern Estonia. The study was aimed to
broaden an understanding of the ability of trees to acclimate with the increasing atmospheric humidity predicted
for northern Europe. Rapidly-induced water deficit was imposed by dehydrating cut branches in open-air
conditions; long-term water deficit was generated by seasonal drought.

Results: The rapid water deficit quantified by leaf (V) and branch water potentials (Wg) had a significant (P < 0.001)
effect on gas exchange parameters, while inclusion of Wg in models resulted in a considerably better fit than those
including W, which supports the idea that stomatal openness is regulated to prevent stem rather than leaf xylem
dysfunction. Under moderate water deficit (W, =-1.55 MPa), leaf conductance to water vapour (g,), transpiration rate
and leaf hydraulic conductance (K)) were higher (P < 0.05) and leaf temperature lower in trees grown in elevated air
humidity (H treatment) than in control trees (C treatment). Under severe water deficit (W, <-1.55 MPa), the
treatments showed no difference. The humidification manipulation influenced most of the studied characteristics,
while the effect was to a great extent realized through changes in soil water availability, i.e. due to higher soil water
potential in H treatment. Two functional characteristics (g, K|) exhibited higher (P < 0.05) sensitivity to water deficit
in trees grown under increased air humidity.

Conclusions: The experiment supported the hypothesis that physiological traits in trees acclimated to higher air
humidity exhibit higher sensitivity to rapid water deficit with respect to two characteristics — leaf conductance to
water vapour and leaf hydraulic conductance. Disproportionate changes in sensitivity of stomatal versus leaf
hydraulic conductance to water deficit will impose greater risk of desiccation-induced hydraulic dysfunction on the
plants, grown under high atmospheric humidity, in case of sudden weather fluctuations, and might represent a
potential threat in hemiboreal forest ecosystems. There is no trade-off between plant hydraulic capacity and photo-
synthetic water-use efficiency on short time scale.
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Background

Global warming is accompanied by changes in atmospheric
water vapour content and precipitation rate, although there
will be pronounced regional differences in their magnitude
and direction [1]. Over a period from 1900 to 2005 precipi-
tation has significantly increased in northern Europe and
continuation of this trend with larger increase in the fre-
quency than in the magnitude of precipitation is predicted
from climatic models. Climate change scenarios predict by
the end of the century increases in air temperature by 3.5—
5°C and precipitation by 5-30% in boreal and northern
temperate regions of Europe [2,3]. Increase in atmospheric
relative humidity (RH), the inevitable result of more fre-
quent rainfall events, will reduce water loss through tran-
spiration [4,5], and affect both the delivery of nutrients to
root absorbing surface and nutrient uptake by trees due to
diminished water fluxes through the vegetation [6,7].

On the other hand, climate extremes including heat
waves and droughts across Europe are projected to become
more frequent and enduring over the 21st century [1,8]. Be-
cause trees have adapted to local average climatic condi-
tions, extreme events have consequences on forest health
and productivity across site conditions [9,10]. Plants grow-
ing in humid air have less effective stomatal control over
transpirational water loss [4,11,12] and demonstrate higher
vulnerability to xylem cavitation, i.e. have narrow hydraulic
safety margin [13,14]. In addition, Okamoto et al. [15] dem-
onstrated that high air humidity induces abscisic acid
(ABA) 8'-hydroxylase in stomata and vasculature, followed
by the reduction of ABA levels — a plant hormone, which
promotes stomatal closure under water deficit [16].

Water deficit decreases stomatal conductance before leaf
water potential () falls below critical values, to avoid ad-
verse consequences on leaf tissues (dehydration of proto-
plasm) and water transport system (hydraulic dysfunction
through runaway xylem cavitation). However, the mecha-
nisms by which stomata respond to and control ¥y are still
unclear [14,17]. The classical view suggests that a primary
signal of water shortage is ABA, produced by roots situated
in dry soil and transported to shoots [18]. As a result, a
considerable time lag is expected in the response of stomata
to changing soil water status. Soil drying concentrates ABA
in both the xylem sap and leaves [19-21]. This is followed
by water efflux from guard cells and stomatal closure [22].
Stricter stomatal control leads to increasing short-term (in-
trinsic water-use efficiency [23]) and long-term water-use
efficiency (carbon isotope discrimination [24]).

In Arabidopsis, shoot vascular tissues appear to be a
major site of ABA biosynthesis and suggest tissue-
autonomous ABA synthesis in addition to its long-
distance root-to-shoot movement [16,25]. Bauer et al.
[26] report that guard cells possess the entire ABA bio-
synthesis pathway and that cell-autonomous synthesis
is sufficient for stomatal closure. Thus, effects of fast
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changes in leaf water status do not involve chemical
signals from roots, but rather are predominantly hy-
draulic [22,27,28]. Guard cells respond to changes in
Y either directly or via a signal generated close by [29].
Stomatal closure, in turn, will increase stomatal limitation
to photosynthesis. At severe water deficit, efficiency of
photosystem II will decrease as well [12,30,31] further
impelling decline of CO, assimilation.

The structure and function of the water transport system
govern the productivity and survival of land plants because
the vascular architecture places a physical limit on plant
functioning [29,32]. Therefore, the water pathway from the
soil-root interface to the sites of evaporation in leaves is
critical to maintain leaf water status and hold stomata open,
keeping a positive carbon budget. Water deficit will induce
cavitation of xylem elements in roots, stems and leaf veins
[10,33,34], thereby reducing water supply to foliage and
amplifying water deficit effects on stomatal conductance
and photosynthetic performance. Tissue dehydration also
impacts aquaporin (AQP) expression controlling hydraulic
conductance of the leaf symplastic compartment [35].
Furthermore, as the concentration of ABA increases in the
xylem, AQP activity in the bundle sheath cells is down-
regulated, thereby reducing water flow into the leaf as
demonstrated by Shatil-Cohen et al. [21].

We analysed the impact of water deficit on plant water
status, gas exchange and hydraulic conductance on saplings
of silver birch (Betula pendula Roth) under artificially ma-
nipulated air humidity in field conditions. Silver birch is
distributed widely over almost all of Europe, and in north-
ern Europe it is among the most important commercial
tree species. Because trees growing in moist atmosphere ex-
perience less water loss and have higher stomatal openness,
we hypothesize that physiological characteristics in trees
acclimated to higher humidity exhibit higher susceptibility
to rapidly-induced water deficit. The primary aim of this
study was to test this hypothesis experimentally. Secondly
we tested whether the putative trade-off between plant hy-
draulic capacity and water-use efficiency (WUE) is observ-
able on a short time scale. We aimed this study to broaden
the understanding of the ability of trees to acclimate with
the increasing atmospheric humidity predicted for northern
Europe.

Results

Effects of air humidification and rapidly-imposed

water deficit

The air humidification caused a decrease of up to 10% in
atmospheric water vapour pressure deficit (VPD) during
the misting application (Figure 1). ANCOVA revealed that
the humidification treatment influenced (P < 0.05) most of
the studied characteristics (Table 1). The strongest effects
were observed for leaf conductance to water vapour (gi)
and leaf water potential (Wy), whereas leaf temperature
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Figure 1 Daily variation of mean atmospheric water vapour

pressure deficit (VPD) in June and July 2010. The error bars
denote SE.

(Ty), ratio of intercellular to ambient CO, concentrations
(Ci/C,), net photosynthetic rate (A,) and intrinsic water-use
efficiency (IWUE) remained unaffected by the manipula-
tion. The rapidly-induced water deficit, quantified by leaf
(W) or branch water potential (Wg), had a highly significant
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(P<0.001) effect on all studied parameters. Except for leaf
hydraulic conductance, K, inclusion of W into the analysis
model resulted in a considerably better fit than inclusion of
Y1. An analysis of sensitivity of the physiological parame-
ters to changes in plant water status (dx/dWg), estimated by
slopes of the corresponding linear regressions, revealed that
almost all variables of trees grown under elevated atmos-
pheric humidity (H treatment) tended to respond more
sensitively to water deficit. However, in only two cases the
corresponding slopes differed significantly between the
treatments (Figure 2): g (P<0.05) and Ky (P<0.01). In
order to compare the gi and K responses to each other,
we normalised the absolute values with corresponding
means and analysed sensitivity of the normalised g; and K.
(values of both characteristics below or above 1) to devel-
oping water deficit. Ki declined 2.3 times (P <0.01) and g
14 times (P<0.05) faster in humidity-treated trees com-
pared to the control with decreasing V.

Mean values of the gas exchange and hydraulic charac-
teristics for control (C treatment) and humidified trees
are presented in Table 2. E and g exhibited greater (P <
0.05) values in H treatment both before branch cutting
in the morning and under moderate water deficit (W1>-

Table 1 Results of ANCOVA for effects of the humidification treatment and fast-imposed water deficit on leaf water
status, temperature, gas exchange and hydraulic conductance (N =117-124)

Dependent variable Effect Statistical significance Partial n°
Leaf water potential, W Treatment P <0.001 0.090
Branch water status P <0001 0.763
Leaf temperature, T, Treatment ns -
Branch water status P<0.001 0.246
Leaf conductance to water vapour, g. Treatment P<0.001 0.101
Branch water status P<0.001 0.544
Transpiration rate, £ Treatment P<0.001 0.088
Branch water status P <0001 0401
Leaf temperature P<0.001 0.127
Stomatal conductance, gs Treatment P=0.026 0.041
Branch water status P <0001 0.543
Leaf temperature P=0.021 0.044
Ratio of intercellular to ambient CO, concentrations, CG/C, Treatment ns -
Branch water status P <0001 0338
Net photosynthesis, A, Treatment ns -
Branch water status P <0001 0518
Leaf temperature P=0.039 0.037
Intrinsic water-use efficiency, IWUE Treatment ns -
Branch water status P <0.001 0.140
Leaf hydraulic conductance, K Treatment P=0.022 0.039
Leaf water status P<0.001 0433
Leaf temperature P=0.004 0.062

ns, not significant.
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Figure 2 Branch water potential (W) versus leaf conductance to water vapour (g;; A) and leaf hydraulic conductance (K;; B) in control
and humidified trees. The numbers by the regression lines indicate the respective slopes.

1.55 MPa). Under moderate water deficit, 77 was less
and K greater in H than in C branches (P <0.05). The
means of other gas exchange parameters showed no
difference among treatments. Water deficit developed
rapidly after branch cutting, thereby leading to a decline
in most parameters, including K.

Net photosynthetic rates were strongly correlated
with stomatal conductance (gs; R?=0.970, P <0.001)
across a wide range of stomatal openness for both treat-
ments combined (Figure 3A). At first IWUE increased
in response to the rapidly-induced water deficit and
attained a maximum of >70 pmol mol™, corresponding
to gs ~0.06 mol m2st (Figure 3B). When gs fell below
this value (at Wg<-1.0 MPa), IWUE declined very
steeply as A,, decreased more rapidly than gs. Two char-
acteristics — Tp and Cj/C, — demonstrated opposite
trends with increasing water deficit. None of the charac-
teristics differed significantly among the treatments
under severe water deficit (¥ <-1.55 MPa; Table 2).

Long-term effects of water deficit

Long-term water deficit was imposed by reducing soil water
availability due to a moderate drought that developed in
July (Table 3; Figure 4). Although the misting application
decreased transpirational water loss, bulk soil water poten-
tial (Ws) in H plots also underwent substantial decline
(dropped to —180 kPa) in July. Inclusion of Ws as an index
of soil water availability into the analysis models changed
the outcome radically: the effect of the humidification treat-
ment became — with one exception — insignificant for all
gas exchange and water relations characteristics (Table 4).
Only g, depended simultaneously on the treatment (P =
0.036), rapidly-induced water deficit (¥p; P <0.001) as well
as soil water availability (Ws; P <0.001). Consequently, the
effects of humidification manipulation were to a great extent
realized through changes in soil water status. Four charac-
teristics g, E, soil-to-branch hydraulic conductance (Ks_p)
and whole-tree hydraulic conductance (Kt)] were 2.1-2.3
times greater in humidified trees than in control trees.
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Table 2 Comparison of mean values of physiological characteristics in control (C) and humidified trees (H) before
branch cutting (on intact trees) and depending on severity of water deficit (¥, <-1.55 MPa versus ¥, >-1.55 MPa)

Characteristic Before cutting Y, >-1.55 MPa Y, <-1.55 MPa

C H C H C H
Y, (MPa) -1.07 -1.03 126 125 -1.91 -2.10
Yg (MPa) -0.81 ~065 098 —-0.90 -1.62 -156
T, Q) 262 254 27.6" 26.2" 288 293
g (molm™=s™) 0.071" 0.166" 0.044" 0.101” 0.026 0.060
E(mmol m™2s7) 0.92" 2.07" 0.65" 1.33" 047 1.00
gs (mol m™2s7) 0.145 0237 0.086 0.138 0.046 0.060
C/C, (dimensionless) 0.70 068 0.74 0.71 087 0.89
An (umol m=2s7") 647 9.29 421 596 2.00 2.66
IWUE (umol mol™) 513 482 493 499 353 328
K., (mmol m™ s™' MPa™") 365 5.88 247" 3.78" 185 188
R. (dimensionless) 032 044 - - - -
Ksg, (mmol m™2 s~ MPa™") 2.28" 526" - - - -
Kz, (mmol m™ s~ MPa™") 115" 236" - - - -

Y\, leaf water potential; Wg, branch water potential; T, leaf temperature; g,, leaf conductance to water vapour; E, transpiration rate; gs, stomatal conductance to
water vapour; C/C,, ratio of intercellular to ambient CO, concentrations; A, net photosynthesis; IWUE, intrinsic water-use efficiency; K, leaf hydraulic conductance;
Ry, relative leaf hydraulic resistance; Ks_g, soil-to-branch hydraulic conductance; Ky, whole-tree hydraulic conductance. Statistical significance of the difference:
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Figure 3 Stomatal conductance (gs) versus net photosynthetic
rate (A,; A) and intrinsic water-use efficiency (IWUE; B) across
control (C) and humidified trees (H).

In fact, the differences in physiological characteristics
between the treatments recorded on intact branches in the
morning (Table 2) reflect co-effects of the air humidifica-
tion and long-term soil water deficit. The responses of gi.
and K, to variation in Wp were analysed also separately for
the data obtained before and after cutting branches, and for
moister (Ws>-218 kPa) and drier soil conditions (Wg<-218
kPa). Before cutting, neither of the response slopes differed
between the treatments; after cutting, both slopes differed
significantly between the treatments (g, P < 0.05; K, P<
0.01). dgi/d¥p and dKi/d¥g showed no difference within
treatments between the different soil moisture ranges.
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Figure 4 Mean bulk soil water potential (¥s) in control and

humidified plots in June and July 2010. The error bars denote SE.
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Table 3 Sums of precipitation (mm) at the FAHM site in
June and July

Year
Month
2008 2009 2010
June 79 152 110
July 64 90 33

Liquid versus gaseous phase conductance

Changes in K were co-ordinated with those in both
stomatal conductance and net photosynthesis, while the
relationships were substantially stronger for humidified
trees. Specifically, R? in C treatment was 0.264 and 0.293

Page 6 of 12

for gs and A, respectively. In H treatment the respective R>
values were 0.583 and 0.601 (for all cases P < 0.001). g5 and
A, were associated considerably more strongly with Ks_p
(R*=0.75-0.85) and K (R* = 0.80-0.85; Figure 5). IWUE in
intact branches declined with increasing hydraulic capacity:
with K, (R*=0.204, P < 0.05), Ks.5 (R*>=0.356, P<0.01) as
well as Kt (R*=0.356, P<0.01). There was no statistical
relationship between K and IWUE across the whole data
sets (i.e., throughout the whole range of water deficit). The
reliability of gasometric measurements was proved by an
excellent accord among the readings obtained with different
instruments: although gs and total leaf conductance (gi)
were measured on different leaves and under different

Table 4 Results of ANCOVA for effects of the humidification treatment and fast and long-term water deficit on leaf
water status, temperature, gas exchange and hydraulic conductance (N =117-124)

Dependent variable Effect Statistical significance Partial n?
Leaf water potential, ¥ Treatment ns -
Branch water status P <0.001 0.808
Soil water availability P<0.001 0.209
Leaf temperature, T, Treatment ns -
Branch water status P <0.001 0.246
Soil water availability ns -
Leaf conductance to water vapour, g. Treatment P=0.036 0.033
Branch water status P <0.001 0.572
Soil water availability P<0.001 0.164
Transpiration rate, £ Treatment ns -
Branch water status P <0.001 0413
Soil water availability P<0.001 0.145
Leaf temperature P <0001 0.129
Stomatal conductance, gs Treatment ns -
Branch water status P<0.001 0.560
Soil water availability P <0001 0.184
Leaf temperature P=0.001 0.087
Ratio of intercellular to ambient CO, concentrations, G/C, Treatment ns -
Branch water status P <0001 0338
Soil water availability ns -
Net photosynthesis, A, Treatment ns -
Branch water status P <0.001 0.526
Soil water availability P <0.001 0.122
Leaf temperature P=0.006 0.067
Intrinsic water-use efficiency, IWUE Treatment ns -
Branch water status P <0.001 0.140
Soil water availability ns -
Leaf hydraulic conductance, K. Treatment ns -
Leaf water status P <0.001 0465
Soil water availability P=0.003 0.064
Leaf temperature P=0.002 0.073

ns, not significant.
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Figure 5 Co-ordination between gaseous and liquid-phase
conductances. Stomatal conductance to water vapour (gs; A)
and net photosynthetic rate (A; B) versus soil-to-branch hydraulic
conductance (Ks.g) and whole-tree conductance (Ky) across
humidification and control treatments.

conditions (controlled versus ambient conditions, respect-
ively), the two characteristics exhibited a near perfect
concordance (R? = 0.944 for C trees, R* = 0.901 for H trees,
for both P < 0.001).

Discussion

General responses to water deficit

The rapidly-induced water deficit had highly significant
(P<0.001) effect on all parameters measured at the
leaf level (Table 1). Under moderate water deficit (W1 >-
1.55 MPa) leaf conductance to water vapour, transpiration
rate and leaf hydraulic conductance were significantly (P
<0.05) higher in trees grown at elevated air humidity
than in control trees. These differences are attributable to
higher initial values (a result of long-term effects) and
probably also to larger branch internal water storage in H
treatment under moderate drought, although statistically
not proven by the Wy data. Leaf temperature, on the con-
trary, was higher (P < 0.05) in C trees due to the diminished
transpiration. Under severe water deficit (W1<-1.55 MPa)
the treatments showed no difference in any of the charac-
teristics (Table 2).
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Two characteristics — g, and K — exhibited a signifi-
cantly steeper decline with increasing water deficit in H
treatment than in the control, indicating higher susceptibil-
ity to weather fluctuations of trees grown under increased
RH. The observed stomatal responses are primarily associ-
ated with impact of rapidly-induced water deficit and obvi-
ously driven by hydraulic signals, because dg;/d¥g did not
differ between the treatments in intact branches and did
not depend on soil water status if the data was analysed
separately in subsets. Thus, the effect of soil drying is
secondary. Various mechanisms are suggested as signal-
ling cues to initiate or enhance ABA biosynthesis, in-
cluding hydraulic signals [36]. The priority of hydraulic
versus metabolic stimuli is considered fundamentally
important in preventing plant desiccation and is main-
tained in stomatal control through vascular plant phyl-
ogeny [37,38]. However, the apparent change in
stomatal sensitivity to branch water status induced by
the humidity manipulation could be due to differences
in the leaf-borne ABA levels, as previous reports
describe that endogenous ABA concentrations in leaves
grown for a long time under high humidity are lower than
under moderate humidity [11,12]. Also fast de novo syn-
thesis or conversion of inactive conjugates of ABA [15,16]
in shoot vascular tissues triggered by branch dehydration
cannot be dismissed. Although studies on Arabidopsis
thaliana provide crucial information on stomatal re-
sponses, species-specific differences exist, especially when
the plants are exposed to simultaneously changing envir-
onmental factors [39].

Thus, our experiment supports the first hypothesis that
trees acclimated to higher humidity exhibit greater sensitiv-
ity to rapidly-induced water deficit with respect to two
functional traits. However, these changes have different
consequences on plant water status. The reduction of g
helps to limit water loss, slows down further ¥} falling and
prevents runaway xylem embolism. The impact of decreas-
ing Ky is opposite — leaf water supply declines causing W
to fall. Birch trees showed differential changes in these two
fundamental traits due to the experimental manipulation:
the humidity-treated trees exhibited substantially faster
water deficit-driven reduction in K than in g if compared
to the control. Thus, greater risk of leaf dehydration and
xylem dysfunction is probably imposed on the trees grown
under higher atmospheric humidity in case of sudden wea-
ther extremes, because strict stomatal control over water
loss is a crucial factor in preventing water deficit-induced
xylem cavitation [13]. Plant hydraulic conductance does not
limit stomatal openness under moist weather conditions,
but it could become crucial in climate extremes (severe
drought, disastrous heat wave), which are scarcely predict-
able and yet will become more frequent in the future [8].
Among ecosystems, forests are particularly sensitive to
climate change, because the long life-span and conservative
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structure of the water-conducting system of trees do not
allow rapid acclimation to environmental fluctuations [3].
The air humidification manipulation affected most of the
studied characteristics, but not IWUE (Table 1), unlike the
soil humidity manipulation reported by Possen et al. [40].
In some species even long-term soil drought does not affect
IWUE if A, and gs decrease with equal rates [41]. The in-
clusion of ¥s in the analysis models excluded the treatment
effect (Table 4), suggesting that the impact of experimental
manipulation in droughty summer (Table 3) is realized
largely through changes in soil water status (ie. due to
higher ¥s in H treatment). Only leaf conductance to water
vapour (gi) depended simultaneously on the treatment
(P =0.036), rapidly-induced water deficit (P < 0.001) and
soil water availability (P <0.001). However, g in H trees
demonstrated higher sensitivity to water deficit, i.e. an op-
posite trend to that observed by Fanourakis et al. [4]. Weak
stomatal control could be a consequence of the low
transpiration in plants grown continuously under high RH
(>85%). The degree of stomatal acclimation depends on
both the duration and timing of exposure to high RH dur-
ing leaf development, while determinative is just a stage of
leaf expansion completion [4]. In silver birch, elevated
atmospheric humidity had the widest consequences on
stomatal regulation, as the effects extended beyond that of
soil water availability. This is an important point in view of
climate change: Roelfsema and Hedrich [20] argue that
stomata will play an essential role in the adaptation of
plants to climate change, because of their interrelated roles
in CO, uptake and release of water. As for gs, we observed
less pronounced response (compare Tables 1 and 4), obvi-
ously because of its being measured under artificial condi-
tions (constant irradiance, temperature and air humidity).

Changes in plant hydraulic traits

The air humidity manipulation led to higher soil water
availability (Figure 4) in H treatment due to reduced tran-
spirational water loss [5,7] under low VPD during the
misting application (Figure 1). This resulted in higher hy-
draulic capacity of the trees grown in more humid envir-
onment, i.e. a long-term effect (Table 2). This response
was observed under the moderate drought in July 2010
(Table 3). By contrast, we did not observe unequivocal
shifts in hydraulic traits in the rainy summer of 2009: K},
decreased, while hydraulic conductance of root systems
(KR) and leaf-specific conductivity of stem-wood increased
in response to elevated RH [42]. The present study
revealed some alleviating effect of elevated RH under
moderate drought, and the plant response to increased air
humidity seems to differ depending on prevailing weather
conditions. Nor can we dismiss increased xylem vulner-
ability and possible hydraulic dysfunction under unex-
pected severe drought, although on average the climate
will become more humid at high latitudes [2,3].
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The differences in Kg g and Kt observed on intact trees
in 2010 likely ensued from xylem cavitation in response to
differential soil drying (i.e. a long-term effect) in the treat-
ments. The differences in K resulted from rapidly-imposed
water deficit rather than soil water availability, because Kt
measured on intact branches showed no significant differ-
ence between the treatments (Table 2) and dKi/d¥p was
invariant of soil water status. Ks_g demonstrated a greater
intertreatment variation compared to Ky — by a factor of
2.3 versus 1.6, respectively. This is attributable to greater
susceptibility of root xylem than of shoot xylem to water
stress-induced embolism [33,43]. Domec et al. [44] re-
ported that Ky declines faster than Kj, as soil dries. The
increasing resistance between soil and trunk has been
shown to be the main cause of Kt decline and has also the
highest weight in the stomatal control [45]. We cannot
exclude also concurrent mechanisms responsible for the
differences in the decline of K. versus K, such as that
associated with contribution of apoplastic versus cell-
to-cell route to liquid water transport under water deficit.
When transpiration stream is attenuated, plasma mem-
brane AQPs are upregulated, the membrane water perme-
ability increases and transcellular water flux becomes
much more significant [46]. One must consider that the
soil-to-branch pathway represents predominantly an apo-
plastic route, while in leaves the contributions of the two
routes to the total hydraulic resistance are of the same
magnitude [47]. Nevertheless, Johnson et al. [48,49] mea-
sured Ki concurrently with ultrasonic acoustic emissions
in dehydrating leaves of several woody species and pre-
sented reliable evidence that xylem embolism is a primary
factor in dehydration-induced declines in leaf hydraulic
conductance. Findings of Nardini et al. [50] highlight the
role of regulation of K in plant acclimation suggesting
that leaf resistance to drought-induced hydraulic dysfunc-
tion is a key to plant survival and competition even over
limited geographical ranges.

Co-ordination between gas exchange and hydraulic traits

Net photosynthetic rate (A,,) and stomatal conductance (gs)
in silver birch were positively correlated with plant hy-
draulic characteristics (Figure 5), whereas gas exchange pa-
rameters were considerably more strongly associated with
Kg g or Kt than with Kj. This result confirms that max-
imum ggs and A, depend on hydraulic conductance of the
whole soil-to-leaf pathway (expresses potential capability
for leaf water supply) rather than solely on that of the leaf
[45,51,52].

The rapidly-imposed water deficit affected (P < 0.001) all
parameters measured at the leaf level, showing substantially
stronger association with Wy than with Wy (Table 1). Thus,
the gas exchange and stomatal conductance of silver birch
are determined by direct water availability to the leaf, esti-
mated by W5 in the petiole insertion point, rather than by
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the current leaf water status (¥1) itself. The relationship be-
tween gas exchange and Wy is probably mediated by stem
hydraulic capacitance, because the internal water storage in
trees plays a role in mitigating diurnal fluctuations in plant
water status caused by transpirational water losses [14,53].
So, plants with a great capacity to avoid high stem water
deficits during periods of high transpiration tend to have a
relatively risky stomatal strategy and maintain higher mid-
day gs [17]. On the other hand, our results support the idea
that stomatal openness is regulated in a way to prevent pri-
marily dysfunction of stem xylem, as proposed by Meinzer
et al. [14]. This is likely a general trait for broad-leaved
trees, as recently reported for a number of subtropical tree
species [17].

Leaf gaseous phase conductance began to decrease simul-
taneously with K, in response to the rapidly-imposed water
deficit, i.e. with no threshold level in the water potential
range experienced in the present study. This result coin-
cides with that obtained on leaves of Quercus, Pinus and
Pseudotsuga species [54]. Although the field measurements
under uncontrolled conditions did not allow construction
of vulnerability curves, our data imply narrow hydraulic
safety margin existing in silver birch (the 50% decline of Ki,
was observed at about —1.2 MPa), a characteristic of angio-
sperm species [55]. Blackman et al. [56] sampled 20 phylo-
genetically disparate woody angiosperms and found that
the greater the water potential inducing a 50% loss in K,
the narrower the safety margin. This trait suits well with
general life strategy of a fast-growing pioneer species, such
as B. pendula. In this context the present result is consist-
ent with our previous findings: stomatal sensitivity of sun
leaves of B. pendula to atmospheric VPD (80 mmol m 2 s
In(kPa)™! [57]) exceeds the corresponding mean of angio-
sperms (73 mmol m> s™* In(kPa)™* [55]). Contrary to the
paradigm that isohydric species avoid cavitation, it has been
revealed that relatively isohydric species tend to experience
far greater cavitation and refilling of xylem on a daily basis
than anisohydric species, the benefit of which is enhanced
capacitance for use in transpiration [58].

Silver birch has been reported to be able for efficient
acclimation to lack of water, including adjustment of WUE
[40]. Thus, the drought developed in Estonia in summer
2010 was not severe enough to induce significant changes
in photosynthetic water-use efficiency (IWUE; Table 4).
Our earlier studies [57,59] performed on large birch trees
growing in a natural forest stand revealed the opposing
height-related trends in IWUE and soil-to-leaf hydraulic
conductance (K1) within tree crowns at sufficient light
intensities, suggesting a trade-off between water transport
and use efficiencies. The inverse relationships between
hydraulic characteristics and IWUE found in this study
suggest that the respective trade-off between hydraulic
capacity and WUE occurs in silver birch both at the leaf
(K1) and whole-plant levels (Kt). The trade-off reflects
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co-ordinated adjustment of plant gas exchange and hy-
draulic system to long-term water deficit, but not a
response to rapidly-imposed interference; therefore, the
converse relation was discovered only in intact branches.
Hence, it is always necessary to consider time scales when
analysing trends in plant WUE. Abril and Hanano [19]
indicated that WUE in Mediterranean woody species
reduces during the day by water stress, but it increases as
seasonal drought proceeds.

Conclusions

Our results support the hypothesis that physiological
traits in trees acclimated to higher air humidity exhibit
higher sensitivity to rapid water deficit with respect to
two characteristics — leaf conductance to water vapour and
leaf hydraulic conductance. Disproportionate changes in
sensitivity of stomatal versus leaf hydraulic conductance to
water deficit might impose greater risk of desiccation-
induced hydraulic dysfunction on the plants, grown under
high RH, in case of sudden weather fluctuations. We failed
to discover a short-term trade-off between plant hydraulic
capacity and photosynthetic water-use efficiency. The
impact of air humidity manipulation was realized prin-
cipally through changes in soil water availability, while
the treatment may have different effects on plant func-
tioning depending on weather conditions prevailing
during the growing season.

Methods

Study area and environmental variables

The studies were carried out on 5-year-old silver birch
(B. pendula) trees in an experimental forest plantation at
the Free Air Humidity Manipulation (FAHM) site, situ-
ated in Roka village (58°14'N, 27°17'E, 40-48 m ASL),
Eastern Estonia, representing a hemiboreal vegetation
zone. The long-term average annual precipitation in the
region is 650 mm and the average temperature is 17.0°C in
July and -6.7°C in January. The growing season lasts 175—
180 days from mid-April to October. The soil is a fertile
Endogenic Mollic Planosol (WRB) with an A-horizon thick-
ness of 27 cm. Total nitrogen content is 0.11-0.14%, C/N
ratio is 11.4, and pH is 5.7-6.3.

Three sample plots served as control areas (C treat-
ment) and three plots were humidified (H treatment)
using the computer-operated FAHM system. The system
integrates two different technologies — a misting tech-
nique to atomize/vaporise water and a FACE-like tech-
nology to mix humidified air inside the plots, enabling
relative humidity of the air (RH) to be increased by up
to 18% over the ambient level during humidification
treatment, depending on the wind speed inside the
experimental stand. The humidification was applied in
daytime 6 days a week throughout the growing period if
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ambient RH was <75% and mean wind speed <4 m s
As a long-term average, RH was increased by 7-8%. A
detailed description of the FAHM site and technical
setup has been presented by Kupper et al. [5]. The ma-
nipulation was started in June of 2008; gas exchange and
hydraulic measurements were performed on 15H and
15 C trees in June and July of 2010. Environmental vari-
ables measured continuously were air temperature (7})
and relative humidity (RH) with HMP45A humidity and
temperature probes (Vaisala, Helsinki, Finland), precipi-
tation with TR-4 tipping bucket rain gauges (Texas Elec-
tronics, Dallas, TX), bulk soil water potential (Ws) with
EQ2 equitensiometers (Delta-T Devices, Burwell, UK) at
depths of 15 and 30 cm. The readings of the sensors
were stored as 10 minute average values with a DL2e
data logger (Delta-T Devices).

Gasometric and hydraulic measurements

One sample branch (mean height above the ground
14049.3 cm for C trees and 138+8.4 cm for H trees) per
tree from the middle third of the crown was selected for
gasometric and hydraulic measurements. Two branches,
one from C and another form H treatment, were sampled
simultaneously using two instruments. Net photosynthetic
rate (A,), stomatal conductance to water vapour (gs) and
ratio of intercellular to ambient CO, concentrations (C;/C,)
were measured with a LCpro+ portable photosynthesis sys-
tem (ADC BioScientific, Hoddesdon, UK) on four or five
leaves per branch at a saturating photosynthetic photon
flux density (1196 pmol m™> s™') applying constant CO,
concentration (C, =360 pmol mol™), air humidity (water
vapour pressure 15 mbar) and temperature (25°C). Leaf
conductance to water vapour (i.e. total gaseous phase con-
ductance, g1), transpiration rate (E) and leaf temperature
(T1) were measured on six leaves per branch with a LI-
1600M steady-state diffusion porometer (Li-Cor, Lincoln,
NE) at ambient conditions. Intrinsic water-use efficiency
(IWUE) was calculated as the ratio of A, to gs [41,60]. Bulk
leaf water potential (W7) was determined in four detached
leaves by the balancing pressure technique using a
Scholander-type pressure chamber simultaneously with gas
exchange measurements. Xylem water potential of the
branches (W) was estimated by applying the bagged leaves
technique, sampling two leaves per branch at each meas-
urement time, prepared the previous evening. Water poten-
tial of the non-transpiring (bagged) leaves, presumed to
have equilibrated with the xylem water potential of the
branch proximal to the petiole, was taken as an estimate of
Wp. The first measurement series was performed on intact
branches in the morning immediately before branch cut-
ting. Then the sample branches were cut off and allowed to
dehydrate in open-air conditions in order to generate a
rapidly-imposed water deficit. The next four measurement
series were conducted within ~3 h after cutting. All
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measurements were done on dry leaves under non-misting
conditions: on intact branches in the morning before mist-
ing started and after that outside the experimental plots.

Hydraulic conductance of leaves (K1) was estimated by
the evaporative flux method under steady-state condi-
tions and was calculated according to the Ohm’s law
analogy:

E

Ky =——rH
L YIB_YIL ’

(1)
where E is the evaporative flux. As E is expressed per
unit leaf area, values of K1 have been scaled by leaf area.
K; was standardized for the dynamic viscosity of water
at 28°C. Soil-to-branch (Ks.g) and whole-tree hydraulic
conductance (K1) were calculated analogically based on
water potential drops across the corresponding segments
(Ws-Wp and Ys-V, respectively). Ks.g and Kt were left
unstandardized, because of variable temperature along
these long transport pathways.

Data analysis

Statistical data analysis was carried out using Statistica,
Vers. 7.1 (StatSoft Inc., Tulsa, OK). Effects of air humidifi-
cation (treatment), rapidly-imposed (estimated by ¥ or
¥p) and long-term water deficits (estimated by ¥s) on leaf
gas exchange and hydraulic conductance were analysed by
applying analysis of covariance (ANCOVA). We acknow-
ledge that data from such field experiments do not allow
strict separation of the rapid and long-term effects of
water deficit, however, this approach was encouraged by
absence of differences both in ¥, and Wy between the
treatments before branch cutting in the morning (see
Table 2). “Treatment’ was treated as a categorical predictor,
while Ws, 71 and W1 or Wg were included in the analysis
model as covariates; type IV sums of squares were used in
the analysis. The ANCOVA was performed in two stages:
first, analysis of the treatment and rapidly-imposed water
deficit effects; second, addition of the effect of the long-
term water deficit. Statistically insignificant covariates
were removed from the final models. Effect sizes were
assessed by partial eta-squared (’7;2>ama1) defined as the ratio

of variance accounted for by an effect and that effect plus
its associated error variance [61]:

’72 o Sseffect (2)
partial Sseffect + sSerror ’

where SSgec: is the sum of squares for given effect and
SSerror is the sum of squares for the respective error
term.
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