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Abstract

Background: The rubber tree, Hevea brasiliensis, is an important plant species that is commercially grown to
produce latex rubber in many countries. The rubber tree variety BPM 24 exhibits cytoplasmic male sterility, inherited
from the variety GT 1.

Results: We constructed the rubber tree mitochondrial genome of a cytoplasmic male sterile variety, BPM 24, using
454 sequencing, including 8 kb paired-end libraries, plus lllumina paired-end sequencing. We annotated this
mitochondrial genome with the aid of lllumina RNA-seq data and performed comparative analysis. We then compared
the sequence of BPM 24 to the contigs of the published rubber tree, variety RRIM 600, and identified a rearrangement

that is unique to BPM 24 resulting in a novel transcript containing a portion of atp9.

Conclusions: The novel transcript is consistent with changes that cause cytoplasmic male sterility through a slight
reduction to ATP production efficiency. The exhaustive nature of the search rules out alternative causes and supports
previous findings of novel transcripts causing cytoplasmic male sterility.
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Background

Mitochondria are membrane-bounded organelles that
function in energy metabolism, biosynthesis of cofactors
and vitamins, cellular differentiation, signalling, cell growth,
and cell death [1]. They contain their own genomes which
are inherited maternally in most plant species. The first
flowering plant mitochondrial DNA (mtDNA) to be com-
pletely sequenced was Arabidopsis thaliana [2], since then
there have only been 37 additional mitochondrial genomes
sequenced and analyzed from flowering plants [www.
ncbi.nlm.nih.gov/Genomes/]. These additional mitochon-
drial genomes have increased our understanding of genome
rearrangement, DNA transfer and phylogenetic diversity.
Plant mitochondrial genomes encode tRNAs, rRNAs, pro-
teins and ribosomal proteins and range in size from 200 Kb
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in Brassica hirta 3] to 2.74 Mb in Cucumis melo [4]. Mito-
chondrial genome expansion in land plants is primarily
due to large intergenic regions, repeated segments, intron
expansion and incorporation of foreign DNA such as plas-
tid and nuclear DNA [5,6]. Accumulation of repetitive se-
quences in plant mitochondrial genomes cause frequent
recombination events and dynamic genome rearrange-
ments within a species [7,8]. Several mutations by gene re-
arrangement of the mitochondrial genes were found
associated with cytoplasmic male sterility (CMS) such as
the T-urfl3 gene in maize [9], pcf gene (a fusion of atp9
and cox2 portions) in petunia [10], cox! in rice [11] and
mutations in ATPase subunits in sunflower [12] and Bras-
sica [13]. RNA processing also plays an important role in
controlling CMS as evidenced in o0rf355/0rf77 (atp9) and
T-urfl3 in maize [14,15].

Conventional strategies for obtaining mitochondrial gen-
ome sequencing involve isolation of mitochondrial DNA,
cloning and sequencing. However, problems with this
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approach of mitochondrial genome sequencing include
difficulty resolving sequence of the mitochondrial genome
from the nuclear genome and assembly of a single cir-
cular genome due to the highly dynamic genome struc-
ture. Rivarola et al. [16] suggested that examination of the
read depths of the resulting assemblies could be used to
separate reads of nuclear, chloroplast and mitochondria
origin. With the development of next generation sequen-
cing (NGS) technologies, new strategies have been used to
obtain plant mitochondrial genomes. A combination ap-
proach of shotgun and paired-end NGS sequencing from
non-enriched whole genome DNA libraries have been
successfully used to obtain the mitochondrial genomes of
melon [4], carrot [17] and date palm [18].

Hevea brasiliensis, or rubber tree, is an important eco-
nomical plant that can produce natural latex at a commer-
cial scale. Sequencing information of its nuclear genome
[19], plastid genome [20] and mitochondrial genome is
important for genetic improvement and understanding of
biological mechanisms of the plant species. The closest
plant species to H. brasiliensis with a mitochondrial gen-
ome draft reported is from Ricinus communis which is in
the same Euphorbiaceae family [16]. In this study, we ob-
tained a draft of the rubber tree mitochondrial genome of
the variety BPM 24, a cytoplasmic male sterile descendant
of a GT 1 (female) x AVROS 1734 (male) cross [21]. The
variety GT 1 is male sterile, its offspring BPM 24 is male
sterile and the offspring of BPM 24 are also male sterile.
Thus the cause for male sterility in this line is cytoplasmi-
cally inherited, which makes the mitochondrion the most
probable cause. The assembled BPM 24 genome was char-
acterized for gene annotation, transcription analysis, RNA
editing events, sequence variation and recombinations
within the species that cause cytoplasmic male sterility in
rubber tree.

Methods

Plant materials

Shoot apical meristem samples of H. brasiliensis (varieties
BPM 24, RRII 105, RRIC 110, PB 235, RRIT 251 and RRIM
600) were collected for DNA and RNA extraction from
an experimental field at the Rubber Research Institute
of Thailand, Ministry of Agriculture and Cooperatives,
Thailand. The samples for DNA extraction were processed
using the DNeasy Plant Mini Kit (Qiagen, CA, USA). The
samples for RNA extraction were immediately frozen in li-
quid nitrogen and stored at —80°C until RNA extraction
following the protocols in Triwitayakorn et al. [22].

Sequence analysis

The DNA from variety BPM 24 was sequenced in house
on a Genome Sequencer (GS) FLX platform (Roche, USA)
using two libraries: shotgun sequencing and 8-kb paired-
end sequencing according to Roche protocols. In addition
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this sample was sequenced on a Hiseq 2000 platform
(Ilumina, USA) using paired-end sequencing at Macrogen
(Korea). The genomic sequencing reads from 454 were
assembled de novo using gsAssembler (Newbler, version
2.7, Roche, USA). Scaffolds were produced using SSPA-
CE_basic_V2.0 [23]. The scaffold graph was produced
using bb.454contignet [17]. The assembled contigs were
searched for sequence homology against the publicly avail-
able plant mitochondrial genomes and repeats were iden-
tified using Reputer. The Illumina data was mapped to
the 454 assembled contigs to improve on the assem-
bly and the sequence depth was used to differentiate
between mitochondrial sequences and nuclear encoded
mitochondrial copies. To identify regions of plastid ori-
gin, the assembled sequences were aligned against the
rubber tree chloroplast genome [20] using BLAST. Com-
parison of mitochondrial genome structures of rice, to-
bacco, castor bean and rubber tree was performed using
MAUVE [24].

The extracted RNA from the six rubber tree varieties
were sequenced on an Illumina HiSeq2000 at Macrogen
(Korea). RNA sequence data quality was checked using
FastQC and was cleaned using TRIMMOMATIC v0.27
[25]. The reads were mapped to the assembled genome
using TopHat (v2.0.9) [26] with bowtie (v1.0.0) [27] and
the fusion search option.

Sequence annotation

Open Reading Frames (ORFs) were predicted using Open
Reading Frame Finder [https://www.ncbinlm.nih.gov/gorf/
gorfhtml]. The tRNA genes were searched using tRNAscan-
SE [28]. The annotated genes were also checked with the
plant mitochondrial genome annotation program Mitofy
[29]. All predicted ORFs, tRNA genes and rRNA genes
were searched against the publicly available mitochon-
drial nucleotide and protein sequence database. Expression
of genes was checked by mapping the RNA sequen-
cing data from each sample to the assembled genome
using TopHat. RNA-editing events were identified from
this mapping data using VarScan (v2.3.4) [30], in addition
RNA-editing events were predicted using PREP-Mt [31].
RNA-editing events were compared to other plant species
by obtaining sequences from genbank with RNA-editing
information and performing an alignment. Trans-membrane
domains were predicted using TMHMM (v2.0) [32].

PCR and Sanger confirmation

The contig graph was confirmed by PCR using 50 pri-
mer pairs (see Additional file 1). PCR for rearrangement
sites was performed for each of the six varieties of rub-
ber tree in both genomic and ¢cDNA samples. Primers
for suspected rearrangement sites were designed so that
they flanked the suspected rearrangement site in non repeti-
tive genomic DNA and additional primers were designed
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within the regions indicated as expressed by the RNA-seq
mapping data (see Additional file 2).

Phylogenetic tree

The phylogenetic tree was constructed using seven spe-
cies (Ricinus communis, Hevea brasiliensis, Carica papaya,
Brassica napus, Raphanus sativus, Arabidopsis thaliana
and Cycas taitungensis as an outgroup). Gene sequences
from each species for 21 conserved genes (nadl, nad2,
nad3, nad4, nad4L, nad5, nad6, nad7, nad9, cob, coxl,
cox2, cox3, atpl, atp4, atp6, atp8, atp9, rps3, rps4,
rps12) were compared and a maximum likelihood tree
was constructed using MEGA 5 with 1000 bootstrap
replications [33].

Results and discussion

Mitochondrial sequence assembly

We assembled the mitochondrial sequence of the rubber
tree variety BPM 24 from 454 sequence data into 37
contigs ranging from 101 bp to 147 kb in length with an
N50 size of 51 kb (DDBJ: AP014526). Additional contigs
were identified as mitochondrial sequence but, despite a
similar GC content, had a sequence depth less than 10%
of the other contigs. The low sequencing depth indicated
that these contigs were nuclear encoded copies of mito-
chondrial sequence and these sequences were removed
from the sequence assembly. Scaffolding the confirmed
mitochondrial contigs produced a complex scaffold graph
with 37 nodes and 49 edges that consisted of many small
loops linked by repeat sequences. Twenty-one of these
contigs had single 3" and 5 edges, 15 contigs had two
3’ and/or 5’ edges and one contig had three 3’ and 5’
edges resulting in thousands of possible configurations
(see Additional file 1). To obtain the master circle mito-
chondrial sequence, the contig graph was traversed in
such a way as to use all of the contigs at least once. We
used Illumina paired-end data to confirm the scaffolds
predicted by the 454 data and to correct homopolymer er-
rors that are common in pyrosequencing data. We also
performed PCR using a set of primers designed to the
edges of each scaffold to confirm that these scaffolds did
indeed join as shown by the presence of a PCR product
(see Additional file 1). Several large segments of the mito-
chondrial genome were repeated in reverse orientation in
the master circle resulting in duplication of approximately
350 kb in the master circle (Figure 1).

Several studies have attempted to identify the mechan-
ism of plant mitochondrial DNA replication (for review
see [34]) with evidence found for rolling circle replica-
tion and recombination mediated replication. However,
the exact mechanism remains to be fully elucidated. In
addition, studies using pulse field gel electrophoresis and
electron microscopy failed to find a single circular strand
of DNA, instead finding many smaller subgenomic circles
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and linear strands of DNA consistent with rolling circle
replication products ([35] and references). Recent efforts
to sequence plant mitochondrial genomes have also found
evidence for subgenomic circles in the form of scaffold
graphs of varying complexity [36-42], much like what we
found in this study. In fact some studies have suggested
that subgenomic circles are the native state of plant
mitochondrial genomes [36,40], and must therefore be
self replicating. With so many repeat sequences it is quite
possible that an origin of replication sequence could exist
multiple times in plant mitochondrial genomes allowing
for independently replicating subgenomic circles to exist.
Furthermore it is difficult to imagine how such diversity in
mitochondrial genome size and subgenomic circle num-
ber could exist if there was but a single origin of replica-
tion with only the complete master circle able to segregate
to dividing mitochondria. Such a mechanism would surely
result in loss of non essential sequence and evolution to-
wards more compact mitochondrial genomes as observed
in mammalian mitochondrial genomes [43]. Thus our
data adds to the growing body of evidence that plant mito-
chondrial genomes can consist of several independently
replicating subgenomic circular DNA strands, a single cir-
cular DNA strand, or a mixture of both. Despite this, it is
common practice to reconstruct a single ‘master circle’
DNA strand to represent the complete mitochondrial gen-
ome [36,39].

Plant mitochondrial genomes contain a large number
of repeat sequences that enable homologous recombin-
ation to produce multiple subgenomic circles (for review
see [44]). The rubber tree contig graph predicts a large
number of possible subgenomic circles for the mitochon-
drial genome, suggesting mitochondrial mosaicism exits in
rubber tree. The large number of possible subgenomic cir-
cles is facilitated by a large number of direct and inverted
repeats. Over 34% of the mitochondrial genome consists of
repeat and inverted repeat motifs. The most common re-
peat size was 20—40 bp with over 1800 instances account-
ing for 3.4% of the genome, followed by the 41-200 bp
size range accounting for 1.16% of the genome (Table 1).
Almost 30% of the genome consists of repeats larger than
200 bp, in many cases these large repeats formed individ-
ual contigs and are a contributing factor in the complexity
of the contig graph (Table 1). Mapping reads from the Illu-
mina paired-end run to the assembly gave a range of read
depths that support variation in copy number of loci
across the mitochondrial genome, the highest read depth
was approximately three fold higher than the lowest depth
(see Additional file 3). This suggests that the rubber tree
subgenomic circles exist at different stoichiometries, simi-
lar to what was found in the cucumber mitochondrial
genome [36]. Thus the rubber tree master circle is accur-
ate in terms of sequence and contig orientation, but may
under-represent the true copy number of each contig.
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Figure 1 Annotated representation of the rubber tree mitochondrial genome (outer circle). Grey arches indicate the mapping of each pair
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Annotation of the mitochondrial genome

We identified 65 open reading frames that match known
genes (Table 2). These gene annotations were supported
by Illumina paired-end RNA-seq data from BPM 24 plus
5 additional clones (RRIM 600, RRIC 110, RRII 105, RRIT
251 and PB 235). These genes were primarily from the
oxidative phosphorylation pathway (24 genes) and ribo-
some (12 genes). Fifty-four genes are encoded by a single
exon and 11 genes are encoded across multiple exons. We

found trans-splicing in three genes, nadl, nad2 and nads.
Group II trans-splicing in these three nad genes is well
documented and occurs in organelles of multiple plant
species (for review see [45]). Each of the trans-spliced nad
genes have large introns, up to several hundred kb, and at
least one exon encoded on the opposite strand compared
to the other exons for that gene, consistent with find-
ings in other species [45]. In addition a gene transferred
from the chloroplast, ycf3, would require trans-splicing
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Table 1 Size, number and direction of repeat sequences
in the rubber tree mitochondrial genome

Repeat Number of % genome size  Direct  Inverted
length (bp)  repeats

20-40 1837 344 962 875
41-60 160 059 88 72

61-80 42 0.21 21 21
81-100 14 0.09 9 5
101-200 27 0.26 13 14

>200 29 29.95 15 14

Total 2109 34.55 1108 1001

Table 2 Coding information of the rubber tree
mitochondrial genome

Gene function

Gene name

Complex |

Complex Il
Complex Il
Complex IV
Complex V

Cytochrome-c
biogenesis

SecY-independent
transport

Ribosomal RNAs

Ribosomal protein
small subunit

Ribusomal protein
large subunit

Intron maturase

Chloroplast transferred

complete genes

Conserved
Hypothetical genes

Transfer RNA

Pseudogenes

cp-derived gene
fragment transfer

Lost gene (transferred

to nucleus)

2x)nad1[5], (2x)nad2[5], nad3, nad4[4], (2x)nad4l,
nad5[5], (2x)nade, (2x)nad7[5], (2x)nad9

(2x)shd3, (2x)shd4

(2x)cob

cox1[2], (2x)cox2[2], cox3

(2x)atpl, (2x)atp4, (2x)atp6, (2x)atp8, atp9

(2x)ccmB, (2x)ccmC, ccmFc[2], ccmFn
(2x)mttB

55 rRNA, 18S rRNA, 26S rRNA
rps1, rps3[2], (2x)rps4, rps12, rps13

(2x)rpl5, (2x)rpl10, rpl16

(3x)matR

(2x)4.55 rRNA, (2x)5S rRNA, 16S rRNA, (2x)psaA,
(2x)ycf3[3]

orf101, orf122, orf126, (2x)orf128, orf129, (2x)
orf190

(2x)trnC-GCA, trnD-GUC, trnD-GUC-cp, (2x)trnE-UUC,
(2X)trnF-GAA, trnG-GCC, (2x)trH-GUG-cp, trnK-UUU,
2x)trnl=UAAL], (4x)trnM-CAU, (2x)trnM-CAU-cp, (4x)
trN-GUU-cp, tmP-UGG, (2x)trmP-UGG-cp, trnQ-UUG,
(2X)trnR-ACG-cp, trnS-GCT, 2x)trnS-TGA, trnV-GAC-cp,
(2X)trnW-CCA-cp, (2x)trY-GTA

pl2, (2X)rps2, (2x)rps14, rps19

16S rRNA, 23S rRNA, atpE, ndhF, (2x)psaB, (2x)
psbC, (2x)rpoA, rps12_3end, (2x)ycf1, (2x)ycf15,
(2x)ycf2, ycfe8

rps10[2]

*Note: Bracketed numbers indicate copy number of each gene, square
brackets indicate number of exons, chloroplast derived tRNAs have -cp

appended to them.
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to produce a functional mRNA in the rubber tree
mitochondrion.

There were 19 tRNA genes identified, five of which oc-
curred twice in the assembled mitochondrial master
circle (Table 2). Seven of the tRNA genes plus 12 other
genes are also found on the rubber tree chloroplast gen-
ome suggesting that they have been transferred from the
chloroplast to the mitochondrial genome. It is unlikely to
be chloroplast DNA contamination as these sequences dif-
fer from those in the chloroplast genome at multiple sites
and there are sequencing reads extending from mitochon-
drial sequence to these transferred chloroplast fragments.
Gene transfer from chloroplast to mitochondria is a com-
mon phenomenon in plants and the chloroplast copies
that we found in the rubber tree mitochondria are largely
consistent with previously identified chloroplast gene
transfer events [46]. Exceptions include two genes, trnS-
GGA and trnl-CAU, that have been transferred from
chloroplast to mitochondria in a range of species but were
not found in the rubber tree mitochondrial genome. A
third gene, trnE-UUC, also known to have been transferred
from chloroplast to mitochondria in other species, was
found in the rubber tree mitochondria, but did not appear
to be from the chloroplast DNA. Ricinus communis was
similar to rubber tree in that it lacked the trnl-CAU gene
and had a mitochondrial copy of trnE-UUC that was dif-
ferent to the chloroplast copy, but unlike rubber tree had
a chloroplast copy of trnS-GGA. This shows that the
chloroplast-derived trnS-GGA was lost to rubber tree
after the split from Ricinus and that the either chloroplast-
derived trnl-CAU and trnE-UUC genes were lost to the
Ricinus/rubber tree clade or that the transfer occurred
after this clade split from the other species.

A phylogenetic tree constructed using seven species
and 21 mitochondrial genes showed that rubber tree is
most closely related to Ricinus (Figure 2). The number
and type of mitochondrial genes can vary widely across
species with gene loss and transfer to the nucleus oc-
curring commonly [47]. Among the 7 species used we
observed 26 different gene loss events (Figure 2). Interest-
ingly, there were five events where genes that had pre-
viously been lost to a clade were regained by a species,
two of these events were observed in Ricinus communis
which regained rpsl1 and truD-GUC (as previously re-
ported [48]). Rubber tree also regained trnD-GUC sug-
gesting the event took place before the split from Ricinus
communis. In each of these cases the regained gene
was lost quite far back in the clade making it unlikely
to be an error in the phylogenetic tree construction.
It is interesting to note that rubber tree also gained a
chloroplast copy of truD-GUC (in addition to the mito-
chondrial copy mentioned above) suggesting that this
tRNA might play an important role in the rubber tree
mitochondria.
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Figure 2 Phylogenetic tree of seven mitochondrial genomes in plants. Mitochondrial-like tRNA genes and protein-coding genes eliminated
during evolution are presented in black boxes and genes that appear to have regained are presented in red boxes.

J

RNA editing
We identified cases of RNA editing by mapping the
RNA-seq data to the assembled mitochondrial genome.
This identified 224 cases among the six samples where
the RNA-seq base was a thymine while the genomic base
was a cytosine (see Additional file 4). Out of these sites
184 were also predicted to be RNA editing sites based
on information from other species and 199 changed an
amino acid. The most common amino acid changes were
S to L with 52 events, P to L with 42 events and S to F with
29 events. RNA-editing was compared across 29 species,
where data was available, and found to be highly conserved
across all species (see Additional file 4). We found 8 cases
where a C was edited to a U in rubber tree, in genes atp4,
coxl, cox2, matR, nadl, nad2 and nad?7, but remained
an unedited C in all other species (see Additional file 4).
There was a single case, in cytochrome c biogenesis factor
C (ccmFC), where RNA-editing was required to produce
a stop codon, this RNA-editing site was highly conserved
among many species. The most heavily edited gene was
cytochrome ¢ oxidase subunit 2 (cox2) with 15 RNA-
editing events in 783 bp of sequence.

Two cases were found where BPM 24 showed a lack
of RNA-editing at a location where all the other rubber
tree samples showed either RNA-editing or a variant,

one was in succinate dehydrogenase subunit 3 (sdh3) and
the other was in maturase-R (matR). The sdh3 RNA-
editing event did not change an amino acid and was not
found in any other species so is unlikely to have a sig-
nificant effect. The RNA-editing event in matR changes
a hystidine residue (positively charged) to a tyrosine resi-
due (hydrophobic with a negative dipole) which may be
required for correct protein folding, but is not in a func-
tional motif. The RNA-editing in matR was observed in
four other species while six other species showed a T vari-
ant. There were only two cases where a species with RNA-
editing information had the same base (C) as BPM 24 at
this locus, however, this could represent incomplete infor-
mation rather than a lack of RNA-editing. Mitochondrial
encoded maturases have been found to be required for the
proper splicing of some group II introns in Arabidopsis
with mutations resulting in retarded growth and develop-
mental phenotypes [49,50]. However, the specific func-
tion of matR remains unknown so whether this lack
of RNA-editing plays a role in the CMS phenotype or
not is unclear.

Male sterility
Since it is known that BPM 24 male sterility is mito-
chondrially inherited there must be a mitochondrial
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change that causes CMS [21]. With this in mind we com-
pared contigs from the published rubber tree genome, var-
iety RRIM 600 [19], that were identified as mitochondrial
sequence against the BPM 24 mitochondrial contigs and
scaffold assembly. This identified 11 contigs from the pub-
lished genome that blast to the BPM 24 mitochondrial
genome in a disjointed manner (Table 3) indicating a re-
arrangement in BPM 24 compared to the published rub-
ber tree sequence. Five of these potential rearrangement
sites that were within 1 kb of a gene were checked by PCR
in six varieties of rubber tree. Two sites were found to
exist in both the arrangement represented by the pub-
lished genome and the arrangement represented by our
assembly in all varieties, confirming the variation in mito-
chondrial subcircles identified in the scaffold graph. Three
of these regions showed variation amongst the six varieties
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tested (see Additional file 2). One region was present as
the published rubber tree (RRIM 600) arrangement in var-
ieties BPM 24, RRII 105 and RRIM 600 but not in RRIC
110, RRIT 251 or PB 235, however all varieties had the
BPM 24 arrangement for this region. Two rearrangements
were unique to BPM 24 and in both cases were close to or
within coding sequence making them good candidates for
the cause of CMS in BPM 24.

The first rearrangement unique to BPM 24 was identified
by the 1096 bp published RRIM 600 contig AJJZ010142287.1.
The first 612 bp of this contig maps to 338444—339054 bp
in the BPM 24 master circle and the last 585 bp of the
contig maps to 854280-854864 bp in the master circle
(Table 3). In the master circle the break point sections
share a 101 bp repeat sequence with 1 mismatch be-
tween the two sequences which may be the footprint

Table 3 Blast result of published contigs (RRIM 600) vs BPM 24 master circle showing 11 rearranged contigs

Query id* % identity Align length q. start’ g. end” 24 start* 24 end* e-value
AJJZ011005169.1 8593 135 549 683 338566 338700 7e-27
96.74 276 937 1211 854221 854495 4e-130
AJJZ011005166.1 98.79 1077 241 1317 21535 20459 0
96 200 1 198 1017254 1017055 4e-87
AJJZ010488272.1 100 144 182 325 115093 115236 3e-78
96.76 185 51 235 159007 159191 2e-88
100 117 1 17 221602 221486 4e-62
AJJZ010386739.1 98.62 217 186 401 179706 179922 4e-112
98.3 176 1 176 1031613 1031788 5e-90
AJJZ010369193.1 99.35 308 1 308 423994 424301 4e-171
100 203 306 508 663278 663076 3e-113
AJJZ010233339.1 94.44 162 567 728 202461 202622 le-66
8295 88 415 502 741897 741984 3e-08
86.92 107 414 520 882085 882190 1e-19
AJJZ010228768.1 92.62 149 2483 2631 15228 15376 7e-54
84.71 327 2631 2934 15404 15728 6e-67
82.71 451 1622 2060 357491 357055 9e-66
87.14 770 831 1596 358263 357495 0
AJJZ010174367.1 91.99 1548 5871 7413 156744 158290 0
9252 1096 9138 10223 529298 528203 0
89.38 885 10204 11068 894891 895774 0
94.33 141 11065 11203 895680 895820 3e-40
AJJZ010143874.1 99.97 7965 1 7965 38753 30789 0
100 1864 7733 9596 127434 125571 0
ALJZ010142287.1 99.18 612 1 612 338444 339054 0
100 585 512 1096 854280 854864 0
AJJZ010039172.1 984 187 80 266 17960 17774 6e-97
99.6 248 266 513 32045 32292 le-137

*ltalics indicates that the rearrangement or part of it has been confirmed by PCR.

*Start and end of query sequence alignment location.

*Start and end of master circle sequence alignment location. Bold indicates a gene is located within 1 kb.
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of a homologous recombination (see Additional file 2).
Interestingly, the 338444—-339054 bp region has RNA-seq
data supporting expression at this region but no gene
is annotated in the assembly and BPM 24 has an extra
240 bp of sequence that none of the other varieties share.
This additional sequence was checked by PCR using
primers flanking the break site and was confirmed to be
present only in BPM 24 both in genomic DNA and cDNA
(see Additional file 2). The sequence has an open reading
frame encoding 51 amino acids, 33 of which are identical
to the tail end of ATPase subunit 9 (atp9) plus 5 additional
amino acids. A full copy of atp9 is annotated as occur-
ring at 760961-761254 bp and the RNA-seq data at
this region is the same in all six rubber tree varieties. The
rubber tree atp9 has a transmembrane region near the
amino-terminus and another near the carboxyl-terminus
of the protein (Figure 3). The novel transcript incorporates
the entire carboxyl-terminus transmembrane domain
(Figure 3) which may allow it to compete with the full
atp9 gene in the ATP synthase complex. It is likely that a
recombination occurred in a subgenomic circle containing
a copy of atp9 in BPM 24 resulting in the novel transcript
at this recombination site. The fact that the other rubber
tree varieties also show expression at this location is likely
a mapping artefact where RNA-seq reads from the nor-
mal gene are mapping to this section, this is supported
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by seven sequence variants between BPM 24 and the other
rubber tree varieties in the RNA-seq reads that map to
this section (see Additional file 2). This shows that
the sequence identified at the 339 kb region is an add-
itional transcript rather than a mutant form of atp9 for
BPM 24, similar to what has been identified in other CMS
plants [51,52].

The second rearrangement was identified by the
11561 bp contig AJJZ010174367.1 from RRIM 600 that
maps to four separate sections of the master circle
(Table 3). The most interesting of these is Section 5871—
7413 bp of the published RRIM 600 contig that matches
156744—158290 bp of the master circle, and similar to
the first rearrangement, has a 29 bp repeat sequence
near the break site and RNA-seq data supporting ex-
pression with 128 bp of extra sequence unique to BPM
24. Using PCR primers that flanked the rearrangement
site within the expressed section we found that the pub-
lished contig sequence is present in all varieties and the
rearranged sequence is found and expressed only in
BPM 24 (see Additional file 2). The expressed sequence
at this site matches ATPase subunit 1 (atpl) which is an-
notated at 156716—158245 bp on the master circle nega-
tive strand, placing one of the break points 45 bp before
the start codon of atpl and the other 28 bp before the
end of atpl. All varieties had RNA-seq data consistent
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with a complete and functional copy of atpI with the extra
sequence in BPM 24 occurring after the stop codon sug-
gesting that this variant is unlikely to affect the protein
product.

A novel or fusion transcript is a common occurrence
in CMS plants and often involves a portion of, or is near
an ATP synthase subunit gene [53]. In total, nine cases
of a novel transcript containing part of an ATP synthase
gene have been found in CMS plants which are not
found in control plants: atpl in eggplant [54]; atp6 in
maize [9], Brassica tournefortii [13], wheat [55] and chilli
[56]; atp8 in sunflower [57]; atp9 in petunia [10], rape-
seed [58] and sorghum [59]. In addition, disruptions to
the ATP synthase complex, not featuring fusion tran-
scripts, in plant mitochondria have been associated with
CMS in chilli [60], Oryza rufipogon [61], Arabidopsis
thaliana [62], wheat [63], maize [64] and tobacco [65].
Since the observed novel transcript in rubber tree is
both a novel fustion transcript and includes a portion of
an ATP synthase subunit, typical of a CMS causing
change, it is highly likely to be the cause of CMS in rub-
ber tree. While it may be difficult to imagine how dis-
ruption to such a fundamental function as energy
production could result in male sterility but not affect
any other cell type or developmental process, there is
evidence that some cell types are more sensitive than
others to perturbation of mitochondrial efficiency. A
prime example of this is Leber’s hereditary optic neur-
opathy in human where a mitochondrial mutation in an
oxidative phosphorylation gene only affects retinal gan-
glion cells [66]. The most common finding in CMS
plants is an additional transcript that contains part of an
ATP synthase gene and is thus a gain of function change
which explains how it can be specific to anthers. Anther
development has a high energy demand and mitochon-
dria undergo rapid expansion in copy number early dur-
ing anther growth, increasing by as much as 40 fold
per cell [67]. Anthers of CMS maize begin to break-
down shortly after this mitochondrial expansion sug-
gesting a link between the two processes [67]. Indeed,
cell death of sunflower CMS anthers has been associ-
ated with the release of mitochondrial cytochrome c
oxidase into the cytosol [68], which is an activation signal
for apoptosis-like cell death [69]. This particular form
of sunflower CMS is caused by a novel transcript with
atp8-like sequence and has been shown to have reduced
ATP hydrolysis function [57]. Thus novel transcripts
that encode part of an ATP synthase gene, such as
the one identified in BPM 24, cause CMS, at least in
some cases, by slightly reducing the ATP synthase com-
plex activity to a point where mitochondria cannot gen-
erate sufficient energy for the highly energy reliant
anthers resulting in mitochondria mediated apoptosis-
like cell death.
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Conclusion

We have reconstructed the mitochondrial sequence of
rubber tree clone BPM 24 and identified coding sequences
and repeat elements. We then used the published contigs
from RRIM 600 to identify rearrangements in BPM 24
that result in fusion transcripts for atpl and atp9, with the
atp9 fusion transcript likely reducing the efficiency of
ATP production and resulting in cytoplasmic male steril-
ity. Since BPM 24 is the offspring of the variety GT 1, we
have indirectly identified the cause of CMS in GT 1 also.
The exhaustive nature of this search approach rules out
any other cause for the observed CMS in BPM 24 rubber
tree and corroborates findings by other groups, often
using less exhaustive search approaches, that novel fusion
transcripts of ATP synthase genes can cause CMS.

Availability of supporting data

Rubber tree mitochondrial genome master circle: DDB]J:
AP014526.

Rubber tree mitochondrial genome raw reads: DDB]J:
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