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Abstract

Background: Arabidopsis ZBF1/MYC2bHLH transcription factor is a repressor of photomorphogenesis, and acts as a
point of cross talk in light, abscisic acid (ABA) and jasmonic acid (JA) signaling pathways. MYC2 also functions as a
positive regulator of lateral root development and flowering time under long day conditions. However, the function
of MYC2 in growth and development remains unknown in crop plants.

Results: Here, we report the functional analyses of LeMYC2 in tomato (Lycopersicon esculentum). The amino acid
sequence of LeMYC2 showed extensive homology with Arabidopsis MYC2, containing the conserved bHLH domain.
To study the function of LeMYC2 in tomato, overexpression and RNA interference (RNAi) LeMY(C2 tomato transgenic
plants were generated. Examination of seedling morphology, physiological responses and light regulated gene
expression has revealed that LeMYC2 works as a negative regulator of blue light mediated photomorphogenesis.
Furthermore, LeMYC2 specifically binds to the G-box of LeRBCS-3A promoter. Overexpression of LeMYC2 has led to
increased root length with more number of lateral roots. The tomato plants overexpressing LeMYC2 have reduced
internode distance with more branches, and display the opposite morphology to RNAI transgenic lines.
Furthermore, this study shows that LeMYC2 promotes ABA and JA responsiveness.

Conclusions: Collectively, this study highlights that working in light, ABA and JA signaling pathways LeMYC2 works
as an important regulator for growth and development in tomato plants.

Background
Plant growth and development are adaptive to changes in
ambient light conditions. Light is the energy source of
photosynthesis, and is also an important environmental fac-
tor for plant growth and development [1-6]. Plants can re-
spond to various light parameters including intensity,
direction, duration and spectral quality, and modulate the
developmental processes accordingly. The light signals are
perceived by at least four distinct families of photoreceptors
including red (R)/far-red (FR) light-sensing phytochromes,
UV-A/blue light-absorbing cryptochromes, phototropins,
and UV-B light absorbing UVRS in Arabidopsis [4,7-9].
The economic importance of tomato makes it an at-
tractive target for crop improvement by increasing the
disease resistance, nutritional content and productivity
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by genetic manipulation [10-13]. Studies on increase in
fruit nutritional value have mostly been carried out
through modulation of the expression of structural or
regulatory genes of specific pathway [14-21]. The tomato
mutants such as spl and hp2 with hypersensitivity to
light and elevated pigmentation have been reported [22].
It was subsequently shown that HP1 and HP2 are hom-
ologous to DDBI and DET1, respectively [23-27]. Reduced
expression of HPI/DDBI by RNAi strategy has been
shown to enhance pigmentation in tomato fruits [27]. It
has been demonstrated further that both HP1/LeDDBI1
and HP2/LeDET1 are essential components of a tomato
CUL4-based E3 ligase complex, where LeDDBI is associ-
ated with tomato CUL4 and DET1 [27].

The light signaling components including photoreceptors
and central regulators have been shown to have strong po-
tential in crop improvement [28]. Overexpression of Arabi-
dopsis PhyB photoreceptor in potato was shown to increase
the yield, both in gross weight and in number of tubers
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[29]. Four cryptochrome genes have been identified in to-
mato: two CRYI like (CRY1a and CRY2b), one CRY2 and
one CRY-DASH gene [30-32]. Role of CRY1 includes its im-
portance in seedling photomorphogenesis, anthocyanin ac-
cumulation and plant development, however it does not
show any effect on flowering time or fruit pigmentation
[33]. Reduced level of cryl in brassica transgenic plants led
to increased plant height and lower level accumulation of
anthocyanin [34]. Tomato CRY2 possesses similar but dis-
tinct functions in Arabidopsis. Overexpression of CRY2 in
tomato transgenic plants display short hypocotyl and re-
duced internode distance, overproduction of anthocyanin
and chlorophyll in leaves, and of flavonoids and lycopene in
fruits [25,27,33,35-37]. It also shows strong effect on the ex-
pression of stress related gene products in response to diur-
nal cues [38]. Tomato CRY-DASH is expressed at early
stages of tomato development and contributes significantly
in the control of circadian machinery with a light regulated
transcription [32]. Two light signaling components in to-
mato, LeCOPILIKE and LeHY5, which antagonistically
regulate the fruit pigmentation, have been identified [24].
RNAi-mediated down-regulation of DET1 and LeCOPI-
LIKE resulted in increased carotenoid levels in tomato
fruits [24,26].

Arabidopsis MYC2 is a bHLH transcription factor that
works downstream to cryl and cry2 photoreceptors [39].
MYC2 acts as a point of crosstalk among multiple signaling
pathways such as light, ABA, JA and Ethylene-Jasmonate
[39-43]. Although the function of MYC2 has been mainly
investigated in Arabidopsis, AtMYC2 orthologs/homologs
that have been characterized from other monocots or dicot
plants have recently been reported. The recent reports from
dicots have implied a broadly conserved role of MYC2 with
context to its function in JA signaling pathways [43-46].
TeJAMYC, the homolog of AtMYC2, is a key candidate
gene to increase paclitaxel (anticancer drug) accumulation
in Taxuscell cultures [47]. Three AtMYC2 orthologs,
NbbHLH1 and NbbHLH2 from Nicotiana benthamiana
and NtMYC2 from Nicotiana tabacum, have been shown
to regulate the expression of nicotine biosynthesis genes in
the roots [48]. CrMYC2, a MYC2 ortholog from Cathar-
anthus roseus, regulates the JA responsiveness of genes in-
volved in the regulation of alkaloid biosynthesis [45]. Two
MYC2 orthologs, MaMYC2a and MaMYC2b, in the regula-
tion of JA-induced chilling tolerance in banana (Musa acu-
minate) fruit have been reported [49]. A recent study in
maize (Zea mays) implicated MYC7, a putative MYC2
ortholog, in systemic signaling activation in response to in-
sect elicitors [50]. However, the functional role of MYC2 in
growth and development is practically unknown in crop
plants [51]. Here, we have carried out the functional ana-
lysis of LeMYC2 using transgenic tomato plants. Our re-
sults suggest that LeMYC2 acts as a negative regulator of
blue light—mediated photomorphogenic growth.
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Results

LeMYC2 acts as a negative regulator of blue light
mediated seedling development

Arabidopsis ZBF1/MYC2 has been shown to work as a re-
pressor of cryptochrome-mediated blue light (BL) signaling
[39]. To determine the function of MYC2 in growth and
development in crop plants, we cloned LeMYC2/ZBFIfrom
tomato (Lycopersicon esculentum cv: Pusa Ruby; Indian
Agricultural Research Institute, New Delhi) by reverse
transcriptase-PCR. The coding sequence of LeMYC2 cDNA
appeared to be a full-length cDNA (GeneBank Accession
number KF428776) encoding a protein of 689 amino acids
(predicted molecular mass of 75.7 kD) with a bHLH do-
main. The amino acid sequence of LeMYC2 has 93%, 66%
and 53% identity to JAMYC2 (Solanum tuberosum; CAF
74710), CrMYC2 (Catharanthus roseus; AAQ 14332) and
AtMYC2 (Arabidopsis thaliana; Atlg 32640), respectively
[40,44,45] (Additional file 1: Figure S1).

To determine the physiological function of LeMYC2 in
light-controlled seedling development, 22 tomato (Lycoper-
sicon esculentum) transgenic lines overexpressing LeMYC2,
10 transgenic lines under-expressing LeMYC2 (RNAI lines)
and 8 vector control transgenic plants were generated.
These independent lines were allowed to self-fertilize and
the T2 seeds were collected for further studies. Since
Arabidopsis atmyc2 null mutants display relatively weak
phenotype in photomorphogenic growth [39,52], two
overexpresser lines (OE1 & OE2) with highest level of
LeMYC2, and two RNAI lines (Ril & Ri2) with max-
imum down-regulation of LeMYC2 transcript were se-
lected in this study for further analysis. Analyses of
LeMYC2 transcript and protein levels in OE1 and OE2
transgenic lines showed higher level of transcript and
protein accumulation as compared to control transgenic
plants (Figure 1A and B). The RNAI transgenic lines in-
cluding Ril and Ri2 showed reduced accumulation of
LeMYC2 transcript and higher-level accumulation of
LeMYC2 SiRNA (Figure 1C-D).

To determine the possible role of LeMYC2 in tomato
seedling development, we examined the morphology of 6-
day-old LeMYC2 overexpresser and RNAi transgenic
seedlings grown in dark, white light (WL) and at specific
wavelengths of light. As shown in Figure 1E and I, no
morphological difference was observed between control
and LeMYC2 transgenic seedlings in the darkness. How-
ever, LeMYC2 transgenic seedlings displayed altered hypo-
cotyl length in WL irradiation. Whereas the overexpresser
transgenic seedlings showed reduced sensitivity, the RNAi
transgenic seedlings displayed hypersensitive response with
shorter hypocotyl especially at lower fluences (5 pmol/m?/s)
of WL (Figure 1F and J). This altered hypocotyl length how-
ever was not observed at higher fluences (30 umol/m?/s) of
WL (Figure 1G and K). Whereas enhanced inhibition in
hypocotyl elongation of RNAi seedlings was observed in BL,
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Figure 1 LeMYC2 mediated regulation of hypocotyl elongation during early tomato seedling development. A, Real time PCR analysis for
LeMYC2 transcript levels in 6-day-old seedlings of various LeMYC2 overexpresser transgenic lines grown in BL. LeActin used as control. Error bars
represent SD. Number of independent experiments with similar results is (n > 3). B, Western blot analysis of control (VEC) and LeMYC2 overexpresser
transgenic lines (OET and OE2). The gel blot was probed with anti-MYC2 antibodies. Anti-ACTIN antibody was used to probe ACTIN immunoblot.

C, Detection of gene-specific 22 nucleotide siRNAs by Northern blot analysis in RNAI transgenic plants targeting LeMYC2. LeMY(2 was used as probe for
the detection of siRNAs. D, Real time PCR analysis for LeMYC2 transcript levels in 6-day-old seedlings of various LeMYC2 RNAitransgenic lines grown in BL.
For experimental detail, see legend to A. E to H, Visible phenotypes of 6-day-old seedlings grown in darkness, white light (WL: 5 pmol/m?/s), white light
(WL: 30 umol/mz/s) and blue light (BL: 30 umol/mz/s), respectively. In each panel, from left to right seedlings of UN (Untransformed), VEC (vector control),
OET (LeMYC20ET), OE2 (LeMYC20E2),Ri1 (LeMYC2RNAI1) and Ri2 (LeMYC2RNAI2) lines are shown. Scale bar, 1
of 6-day-old seedlings as shown in A to D, respectively. About 15 seedlings of each line were used for the measurement of hypocoty! length. Error bars
indicate standard deviation (SD, n = 6). Asterisks in Figure F indicate that OE1, OE2, Ri1 and Ri2 are significantly different from the vector control (*P < 0.05
and **P <001, Student’s t test). The experiment was repeated for 4 times. M and N, Quantification of hypocotyl length of 6-day-old seedlings grown in RL
(30 pmol/mz/s) and FR (20 umol/mz/s), respectively. For experimental detail, see legend E to H.
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the overexpresser transgenic seedlings displayed elon-
gated hypocotyl as compared to control seedlings
(Figure 1H and L). While examined the hypocotyl
length in red (RL) or far red light (FR) grown seedlings,
no significant difference was observed between trans-
genic and control seedlings (Figure 1M and N). Taken
together these results suggest that LeMYC2 acts as a
negative regulator of BL-mediated inhibition of hypo-
cotyl elongation. These results further indicate that al-
though MYC2 does not play the negative regulatory
role in WL-mediated inhibition of hypocotyl elong-
ation in Arabidopsis [39], LeMYC2 works as a negative

regulator of WL-mediated inhibition of hypocotyl elong-
ation at lower fluences of WL.

Down regulation of LeMYC2 leads to higher level of
chlorophyll and anthocyanin accumulation, and light
regulated gene expression

Two important physiological responses, accumulation of
anthocyanin and chlorophyll, are regulated by light signal-
ing pathways. To determine the possible role of LeMYC2
on chlorophyll and anthocyanin accumulation, we mea-
sured the level of chlorophyll and anthocyanin in overex-
presser and RNAIi transgenic tomato seedlings. As shown
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in Figure 2A, the level of chlorophyll remained similar in
control and transgenic seedlings in WL. However, the
chlorophyll accumulation was strongly reduced in overex-
presser transgenic lines, and showed elevated level of
accumulation in RNAI lines in BL (Figure 2B). On the
other hand, although no significant difference was ob-
served in the accumulation of anthocyanin in overexpres-
ser transgenic lines in BL, the level of accumulation was
significantly higher in RNAI transgenic lines as compared
to vector control plants (Figure 2C). Taken together, these
results indicate that LeMYC2 acts as a negative regulator
of chlorophyll and anthocyanin accumulation in BL.

Since LeMYC2 acts as a negative regulator of photomor-
phogenic growth in BL, we ask whether the expression of
light inducible genes such as CAB and RBCS are modu-
lated by bHLH transcription factor, LeMYC2. To test this,
we performed quantitative real time PCR of 6-day-old
seedlings grown in BL and steady state mRNA level of
light inducible genes was estimated. The expression of
LeCABI and LeRBCS-3A was increased in LeMYC2 RNAi
transgenic lines, and the level of expression was compro-
mised in overexpresser transgenic seedlings as compared
to control plants in BL (Figure 2D and E).

To further examine the BL-mediated induction of
LeCABIand LeRBC-3A expression, 5-day-old transgenic
seedlings grown in darkness were transferred to BL for 2 h
and 4 h, and the transcript levels were measured. The level
of induction of LeCABI and LeRBCS-3A was elevated in
RNAI transgenic lines as compared to wild-type and over-
expresser seedlings at various time points. Whereas about
6-fold induction in RBCS-3A expression was found in
RNAI lines at 4 h, less than 4-fold and 3-fold induction
was detected in the wild type and overexpresser back-
grounds, respectively (Figure 2F). In the case of LeCABI,
the differential expression between the overexpresser and
RNAi transgenic lines was not observed after exposure to
BL for 2 h (Figure 2G). However, an approximately 60-fold
induction was detected in both wild type and RNA| lines,
whereas the level of induction was reduced to less than
40-fold in the overexpresser transgenic background at 4 h
(Figure 2G). Taken together, these results suggest that
LeMYC2 plays a negative regulatory role in the BL-
mediated expression of LeCABI and LeRBCS-3A.

LeMYC2 specifically binds to the G-Box of

LeRBCS-3A promoter

To determine whether LeMYC2 is able to work as a
transcription factor, we investigated the interaction of
LeMYC2 with the G-box present in LeRBCS-3A minimal
promoter. We used purified glutathione S-transferase-
LeMYC2 (GST-LeMYC?2) fusion protein and 147 bp pro-
moter fragment containing the G-box of LeRBCS3A for
gel shift assays. As shown in Figure 2H, whereas GST
alone did not show any binding activity (lane 2), strong
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low mobility DNA-protein complexes were formed with
GST-LeMYC?2 fusion protein (lanes 3). This DNA-protein
complexes were efficiently competed out by 50 and 100
molar excess of unlabelled G-box (lanes 4 and 5) but not
with 50 and 100 molar excess of mutated G-box, mG
(lanes 6 and 7). Taken together, these results suggest that
LeMYC2 specifically interacts with the G-box of LeRBCS-
3A minimal promoter.

LeMYC2 positively regulates the root growth in

tomato plants

Arabidopsis atmyc2 mutant plants develop significantly less
number of lateral roots and exhibit short stature as com-
pared to corresponding wild-type background [39]. We ask
whether altered level of LeMYC2 leads to altered root
morphology in tomato transgenic plants. Examination of
root growth of 14-days old LeMYC2 RNAI transgenic
plants revealed that the transgenic lines developed less
number of lateral roots as compared to vector control
plants (Figure 3A and B). Higher level of LeMYC2 protein
in overexpresser transgenic plants led to formation of more
lateral roots in comparison to control plants (Figure 3A
and B). Although Arabidopsis atmyc2 mutants do not show
any altered root length, the LeMYC2 overexpresser trans-
genic plants showed drastically longer root, and the root
length was significantly compromised in RNAI transgenic
lines as compared to corresponding vector control plants
(Figure 3A and C). Collectively, these results suggest that
LeMYC2 positively regulates the lateral root formation and
root length.

Overexpression of LeMYC2 leads to more branches with
reduced internode distance

In Arabidopsis, atmyc2 mutant adult plants display short
stature as compared to wild-type control plants [39]. To in-
vestigate the role of LeMYC?2 at the adult stage, phenotype
of about three months old Green House plants was exam-
ined. No significant change in height was detected in RNAi
or overexpression tomato transgenic plants as compared to
control plants (Figure 4A). LeMYC2 RNAIi transgenic
plants however showed less number of branches, while
overexpresser lines were branched with about twice as
many branches as vector control plants (Figure 4A and B).
The internode distance of the overexpresser transgenic
plants was significantly reduced as compared to control
plants, whereas it was drastically increased in the RNAi
transgenic plants (Figure 4C). These results, taken together,
suggest that LeMYC2 promotes formation of branches in
tomato plants.

To determine whether the number of seeds per tomato
fruit was altered in transgenic plants, we examined the
number of seeds in ripe fruits from various transgenic and
control plants. Although overexpresser or RNAIi trans-
genic plants produced viable seeds, almost all of the seeds
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Figure 2 Physiological characterization of LeMYC2 transgenic lines. A and B, Accumulation of chlorophyll in 6-day-old seedlings grown in
white light (WL: 30 umol/m?/s) and blue light (BL: 30 umol/m?/s), respectively. C, Accumulation of anthocyanin in 6-day-old seedlings grown in
BL (30 umol/mz/s). Asterisks indicate that Ri1 and Ri2 are significantly different from the vector control (*P < 0.05, Student’s t test; n = 5). D and E,
Real time PCR analysis for LeCABT and LeRBCS3 transcript levels in 6-day-old seedlings of various LeMYC2 transgenic lines grown in BL (30 pmol/m?/s).
For experimental detalil, see Figure 1A. F and G, The abundance of LeRBCS3 and LeCABT transcripts, respectively, from different transgenic seedlings grown
in darkness for 5 days and then transferred to BL (30 umol/mz/s) for 2 h and 4 h was determined by quantitative real time PCR. For experimental detalil,
see Figure 1A. H, LeMYC2 interacts with G-box containing LeRBCS3A promoter. Upper panel, Diagrammatic representation of 127 bp long LeRBCS-3A
promoter fragment containing G-box used in the electrophoretic mobility shift assays. Lower panel, Gel shift assays using the GST-LeMYC2 and 127 bp
G-box containing LeRBCS-3A promoter as probe. No protein was added in lane 1, and approximately 500 ng of GST protein was added in lane 2. In lanes
(3-7) about 350 ng of GST-LeMYC2 protein was added. Competition was performed with 50 (lane numbers 4 and 6) and 100 (lane numbers 5 and 7)
molar excess of wild type or mutated versions of 80 bp DNA fragment of LeRBCS-3A promoter as shown by the triangles in the figure. The arrowheads
indicate the DNA-protein complex formed. The plus (+) and minus (=) signs indicate the presence and absence, respectively.
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in the fruits of RNAI transgenic lines were smaller in size
than the control plants. On the contrary, the size of the
seeds in overexpresser transgenic lines was larger than the
control plants (Figure 4D and E).

Altered level of LeMYC2 expression modulates ABA and
JA responsiveness

Arabidopsis MYC2 acts as a point of crosstalk in multiple
signaling pathways including light, abscisic acid (ABA)
and jasmonic acid (JA) [39-43]. To determine ABA me-
diated induction of LeMYC?2 expression, 6-day-old to-
mato seedlings were treated with ABA and the level of
LeMYC2 transcript level was monitored. The expression
of LeMYC2 was induced by ABA and the level of induction
increased with higher concentration of ABA treatment
(Figure 5A). To determine whether down-regulation of
LeMYC?2 is able to alter the ABA responsiveness in trans-
genic tomato plants, freshly harvested seeds of overexpres-
ser and RNAI transgenic lines were plated on MS plates
without or with ABA. In the absence of ABA, the rate of
germination of seeds in various lines was found to be

similar (Figure 5B). However, 5uM of ABA reduced the
rate of seed germination of control plants, and the
effect was more severe in overexpresser transgenic lines
(Figure 5C and D). On the other hand, down-regulation of
LeMYC2 in RNAI lines led to significantly less sensitivity
to ABA with higher rate of seed germination (Figure 5C
and D). These results indicate that LeMYC2 positively reg-
ulates ABA-mediated inhibition of seed germination. We
then monitored the expression of ABA responsive genes in
LeMYC2 transgenic lines. The expression of AREB, PP2C
and TAS14 [53-56] was significantly reduced in LeMYC2
RNAI transgenic lines as compared to control plants in
the presence of ABA. Furthermore, the level of expression
of these genes was significantly increased in LeMYC2
overexpresser transgenic background (Figure 5E-G). These
results suggest that LeMYC?2 positively regulates the ex-
pression of ABA responsive genes such as AREB, PP2C
and TAS14.

Among plethora of functions of JA in plant growth and
development, one is the inhibition of root growth. To in-
vestigate the JA responsiveness of LeMYC2 transgenic
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100 mg in control and transgenic plants of LeMYC2. Error bars indicate SD (n =5).

plants, we grew the plants in the presence of JA and moni-
tored the root growth. JA caused root growth retardation
with reduced length and number of lateral roots formed in
control and overexpresser transgenic plants (Figure 6A-C).
The effect was more severe in the overexpresser transgenic
lines than the vector control plants (Figure 6A-C). On the
other hand, the effect of JA-mediated inhibition of root

growth was drastically reduced in LeMYC2 RNAI plants
(Figure 6A-C). These results altogether indicate that
LeMYC2 acts as a positive regulator of JA-mediated inhib-
ition of root growth. We then monitored the expression of
JA responsive genes, LIN6 and PIN2, in LeMYC2 trans-
genic lines [43,56-58]. As shown in Figure 6D-E, JA treat-
ment induced the expression of LIN6 and PIN2 genes in
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vector control plants, and the level of expression was sig-
nificantly higher in LeMYC2 overexpresser transgenic
plants. The level of induction of LIN6 and PIN2 expression
was however drastically reduced in RNAi transgenic lines
(Figure 6D-E). These results suggest that LeMYC2 pro-
motes JA-induced expression of LIN6 and PIN2.

Discussion

The function of MYC2 has mainly been studied in Arabi-
dopsis thus far [39,40,43]. In recent years, the functional
homologs of MYC2 have been identified from other dicot
and also monocot plants. Emerging evidences from other
plant species suggest that MYC2 functions are broadly con-
served in JA signaling pathways [43-45]. However, the pos-
sible role of MYC2 in plant growth and development

remained unknown besides Arabidopsis [59]. This study re-
veals that the reduced level of LeMYC2 leads to hyperpho-
tomorphogenic growth with shorter hypocotyl, whereas the
higher level of LeMYC2 results in elongated hypocotyl as
compared to wild type backgrounds. The expression of
light regulated genes such as LeRBCS-3A and LeCABI was
also found to be up-regulated in RNAi and down-regulated
in LeMYC2 overexpresser transgenic lines. Therefore, this
study demonstrates that LeMYC2 works as a negative regu-
lator of photomorphogenic growth and light regulated gene
expression, and establishes the role of LeMYC2 in seedling
development in tomato. It should be noted that although
transgenic lines with similar level of LeMYC2 were chosen
for this study, as shown in Figure 1, the level of LeMYC2 is
not identical in the overexpresser lines. This slight
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alteration in the regulatory protein, LeMYC2, level in trans-
genic lines might have attributed to significant changes in
the target gene expression.

The analyses of growth of transgenic seedlings overex-
pressing LeMYC2 or RNAI lines revealed that LeMYC2
predominantly works in BL-mediated seedling devel-
opment. Altered level of chlorophyll and anthocyanin
accumulation was also observed in the transgenic seedlings
in BL. The function of LeMYC2, as observed from the
phenotypic analysis of seedlings, remains confined to the
lower fluences (5 pmol/m?/s) of WL without any significant
change in chlorophyll accumulation. On the other hand,

the overexpresser or RNAi transgenic lines of LeMYC2
grown at higher fluences (30 pmol/m*/s) of WL in the
Green house exhibited strong phenotypic changes at the
adult stage. It is worth mentioning here that although Ara-
bidopsis atmyc2 mutant seedlings do not exhibit morpho-
logical defects in WL, the adult plants display short stature
with delayed flowering time in WL [39,52,60]. The adult
transgenic tomato plants, including overexpresser and
RNAI lines, in this study, did not display short stature.
However, the LeMYC2 overexpresser transgenic plants
grew with more branches with reduced internode distance,
and the RNAI lines showed opposite phenotype. It has been
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shown earlier that overexpression of cry2 photoreceptor in
tomato transgenic plants leads to dwarf phenotype with re-
duced internode distance [36]. Arabidopsis MYC2, the re-
pressor of BL-mediated photomorphogenic growth, has
been shown to work downstream to cryl and cry2 photore-
ceptors [39]. In this study, it is observed that LeMYC2 over-
expresser transgenic lines have increased number of
branches with reduced internode distance. In addition to
light, ABA and JA are also involved in plant growth and de-
velopment [61,62]. Thus the plausible explanation of such
observation could be attributed to the regulatory function
of MYC2 in multiple signaling pathways including light,
ABA and JA.

Although the fruit size remains the same, alteration in
the seed size is observed in the LeMYC2 overexpresser and
RNAI transgenic lines. Whereas the seed size is increased
in the LeMYC2 overexpresser lines, it has been drastically
reduced in the RNAI lines as compared to the control
plants. Alteration in seed size has been reported with post-
translational silencing of INVINHI, an inhibitor of a cell
wall invertase [63]. The microarray studies using Arabidop-
sis atmyc2 mutants have shown that MYC2 controls the
regulation of expression of genes involved in cell wall bio-
synthesis. LeMYC2 overexpression in tomato increases
anthocyanin levels, which is reminiscent of the tomato high
pigment mutants hpland hp2, which display increased
anthocyanin accumulation and shortened hypocotyl and in-
ternodes [23,24].

Negative regulators of photomorphogenesis such as
COP1, SHW1 and MYC2 act as positive regulators of lat-
eral root formation without any effect on root length
[39,64,65]. This study shows that in addition to lateral root
formation, LeMYC2 also promotes the root length of to-
mato plants. The light-regulated gene expression studies
reveal that LeMYC2 represses the expression of CAB and
RBCS genes. The light-mediated induction kinetics dem-
onstrates that LeRBCS-3A expression is significantly
higher in the dark grown seedlings in RANi transgenic
lines. Thus, although LeMYC2 transgenic lines do not
show any altered morphology in the dark, LeMYC2 plays
a negative regulatory role in the expression of LeRBCS-3A
in the darkness. The DNA-protein interaction studies re-
veal that LeMYC2 is able to bind to the G-box of LeRBCS-
3A promoter. Interestingly, two protein-DNA com-
plexes are detected that are equally completed out
with excess unlabeled G-box, however not with the
mutated version of the G-box. MYC2 in Arabidopsis
acts as a transcriptional regulator in ABA and JA sig-
naling pathways in Arabidopsis [40,42,43,66-71]. The
ABA and JA responsiveness of LeMYC2 transgenic
lines demonstrate that RNAIi transgenic lines are less
sensitive to ABA and JA mediated inhibition of seed
germination and root growth, respectively. The effect
of higher level of LeMYC2 was comparatively less
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than the reduced level (in RNAIi lines) both in ABA
or JA responsiveness.

Conclusions

This study demonstrates the functions of MYC2 in light,
ABA and JA signaling pathways in tomato. Our data sug-
gest that LeMYC2 is an important regulator of growth and
development from seedling to flowering plants. The obser-
vations made in this work highlight strong biotechno-
logical potential of LeMYC2 in crop improvement.

Methods

Plant material and growth condition

Tomato (Lycopersiconesculentumcv. Pusa ruby) seeds were
obtained from the Indian Agricultural Research Institute,
New Delhi. Seeds were sterilized, rinsed in sterile water,
and sown in Magenta boxes containing full strength of
Murashige and Skoog medium added with R3 vitamin
(0.5 mg L-1 thiamine, 0.25 mg L-1 nicotinic acid, and
0.5 mg L-1 pyridoxine), 3% (w/v) Sucrose, and 0.8% (w/v)
agar, pH 5.7. Tomato plants were grown initially in a
growth room at 14-h-day and 10-h-night conditions at 24
to 25°C. Four-week-old seedlings were transferred to
greenhouse conditions at natural day length (14 and 10 h
light in the summer and winter, respectively) and standard
condition (25°C day, 18°C night; 12 h watering cycle).
Transgenic generation 1 (T1) populations ofLeMYC2over
expresser and RNAI plants were planted in the greenhouse.
For hypocotyl measurements, T2 populations of transgenic
and vector control lines were germinated in MS-agar in
sterile jars under continuous white light, blue light or dark-
ness at 22°C. Hypocotyl length measurement was per-
formed with the help of Image J 1.41 software (NIH, USA)

Plasmid construction and plant transformation

All transgenic constructs were made in plasmid of PBI121
binary vector, which in commonly used for Agrobacterium
tumefaciens- mediated transformation of plant tissues
[72,73]. The LeMYC2coding regions were amplified by
PCR using synthetic primers /2D: 5'-GTGTTTATGG
AATGAC-3'; J2R: 5'- GACGATTTCTATCTAC-3’ from
10 days old tomato seedlings. The full length tomato
LeMYC2 was first cloned in pGEMT easy vector to gener-
ate compatible restriction site and was subsequently
recloned in pBI121 by using Xbal and BamH1 restriction
site. To generate LeMYC2RNAI construct, the bHLH do-
main of 670 bp was removed from the LeMYC2/PBI121
construct using Xba I and BamHI and 430 bp from the
start codon (ATG) of LeMYC2cDNA was amplified by PCR
using forward primer T-RNAi (BamHI)FP: 5" CGGGATCC
ATGACTGAATACAG 3’ (with BamHI as a flanking
sequence) and reverse primer T-RNAi (XhoI)RP: 5’
CCGCTCGAGCCTTTTTGCTTTATC 3’ (with Xhol as a
flanking sequence). Amplified product was double digested
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with BamH1 and Xhol and ligated in reverse orientation
with previously digested LeMYC2/PBI121clone.

The pBI121 plasmid containing the LeMYC2 full
length or RNAI construct and only vector control were
transformed into A. tumefaciens strain LBA4404 by the
freeze-thaw method [74]. For Agrobacterium-mediated
transformation and regeneration of tomato, cotyledons
from 2-week-old seedlings were used as described previ-
ously [75,76]. Briefly, tomato seeds were sterilized using
4% Sodium Hypochlorite and germinated on Murashige
and Skoog medium. After 2 weeks of germination the
cotyledons were cut and co-cultivated 30 mins with the
A. tumefaciens strain LBA4404 harboring the different
constructs and kept in dark for 2 days. After 2 days of
cocultivation the cotyledons were collected for selection
on MS plates containing 50 mg/l kanamycin. When the
plantlets regenerated, those were transferred to MS
rooting medium [75,76]. Transgenic seeds were germi-
nated in MS medium containing 150 pg/ml kanamycin
to get the progeny plants.

The presence of the transgene in the regenerating plant-
lets was confirmed by PCR using the forward primer 5
CGTTCCAACCACGTCTTCAAAGC 3’, which anneals
to the 35S promoter region, and the reverse primer 5’
CGAATATCTGCATCGGCGAACTG 3’ for over expresser
lines, respectively, which anneal to the LeMYC2coding
region. Genomic DNA was isolated using a commercial
kit (DNeasy Plant Mini Kit; Qiagen,Valencia, CA, USA).

Detection of small interference RNA (Si RNA) by

northern blot

Total RNAwas extracted using Tripure reagent according
to the protocol provided by the manufacturer (Roche,
http://www lifetechnologies.com/in/en/home.html). Total
RNA (approximately 100 pg) was fractionated on 15%
polyacrylamide/8 M urea denaturing acrylamide gel in 1X
TBE buffer mirVaana TM miRNAisolatation kit (Applied
Biosystem). Before loading total RNA was mixed with
equal volume of gel loading bufferll (mirVana™miRNAiso-
latation kit and denaturated at 95°C for 5 minutes). Gel
was electrophoresed at 30—45 mA till completion of the
run (stopped electrophoresis when the bromophenol blue
dye front had migrated to the bottom of gel). After that,
the gel was soaked for 5 minutes in 0.5-1 ug/mL solution
of ethidium bromide in 1X TBE and washed the gel for 2—
5 mins in 1X TBE. Visulized the RNA using a UV transilu-
minator to make sure that there is good separation of
RNA and photograph was taken for control. After stain-
ing, RNA was transferred to nylon membrane (pre equili-
brated in 0.25X TBE), Hybond N (GE healthcare) by
capillary transfer in 0.25X TBE for 16 h Nylon membrane
was rinsed in 6X SSC, cross-linked in UV crosslinker at
254 nm for 1 minute 45 seconds and 1.5 J/cm?, dried and
stained in 0.02% methylene blue in 0.3 M CH3COONa.
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Excess stain was washed with DEPC treated water. The
membrane was pre-hybridized for 2—4 hrs at 65°C in pre-
hybridisation buffer containing 6X SSC, 10X Denhard’s
solution and 0.2% SDS. After prehybridization, radiola-
belled probe (pre-denatured by boiling for 10 min and 68
snap-cooled for 3—5 min. at 4°C) in hybridization solution
(6X SSC, 5X Denhard’s solution and 0.2% SDS) was added.
After 16-18 h of incubation at room temperature in the
hybridization solution, the membrane was washed twice
with 2X SSC, 0.1% SDS at room temperature for 5 min
and checked the count. If differential count has not been
achieved membrane was subsequently washed twice with
0.2X SSC and 0.2% SDS at 42°C for 5-10 min and twice
with 0.1X SSC and 0.1% SDS at 42°C for 5 min. After the
final wash, the membrane was wrapped in plastic wrap and
then exposed to X-ray film or a phosphorimager screen for
autoradiography.

Protein extraction and Western blot analysis

Total Protein Extraction - The seedlings (100 mg) were fro-
zen in liquid nitrogen and ground in 200 pl of grinding buf-
fer (400 mM sucrose, 50 mMTris-Cl pH 7.5, 10% glycerol,
2.5 mM EDTA) and PMSF was added (0.5 ul for every
100 pl of grinding buffer). The protein extract was trans-
ferred to fresh microcentrifuge tube and centrifuged at
10000 rpm for 10 min to pellet down the debris. The super-
natant was transferred to fresh tube and an aliquot of 3 pl
was taken out in a separate tube for the estimation of pro-
tein by Bradford assay. To the rest of the protein extract,
appropriate volume of 5X sample buffer (200 mMTris- CI
pH 6.8, 400 mM DTT, 4% SDS, 0.025% Bromophenol blue,
20% glycerol) was added and boiled for 5 min before load-
ing on SDS-PAGE. Western blot analysis - Western blot
was performed using the Super signal west Pico chemilu-
minescent substrate kit (Pierce, USA) and following the in-
structions as described in users manual provided by the
manufacturer.

Quantitative real-time PCR

Control and transgenic seedlings were grown under re-
quired conditions. Total RNA was isolated using the
RNeasy plant extraction kit (Qiagen) according to the
manufacturer’s protocol. Two micrograms of total RNA
was reverse transcribed to ¢cDNA using a Titan One
Tube RTPCR system (Roche Applied Science) following
the manufacturer’s instructions. The quantitative real
time PCR (qRT-PCR) was performed using One Step
Real Time RT PCR (Applied Biosystems) with SYBR
Green dye. The analysis was done in triplicate from cDNA
derived from three independent experiments. Values were
normalized with the amplification of endogenous refer-
ence gene (actin or tubulin) as a constitutively expressed
internal control and relative to control. Primers used are
as follows:
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LeMYC2 FP: 5'GCCACACTGGAGGCAAGATT3' and
RP: 5" TTGCATCCCATCCGATGAT 3’

Tubulin-FP: 5’GGCGCTCATTGGACATTGA3’ and
RP: 5" CCTGTGAAATAAGGCGGTTAAGA 3’
Le-CABIFP: 5 TGGTTCATGCACAAAGCATC3' and
RP: 5" TCACTTT.CCGGGAACAAAGT 3'.
Le-RBCS3AFP: 5’'CTTTGGGTTTTCCCTTGAGA3’
and RP: 5" TTGGAGTCAATCGAGGGAGTA 3’
ACTIN2 FP: 5’ TGATGCACTTGTGTGTGACAA3’
and RP: 5" GGGACTAAAACGCAAAACGA 3’

LING6 FP: 5’ ACCCAAAAGGAGCAACATGGGG3' and
RP: 5" CCATCAATAGAAGTGTTATCCGG 3’

PIN2 FP: 5’CCCACGTTCAGAAGGAAGTC3' and RP:
5 TTTTGGGCAATCCAGAAGAT 3’

AREB FP: 5'GCACTCAACTCTAATTTCATTCAAGG3’
and RP: 5’TACGTATTTCCTGCCTCTTAAACC 3
PP2C FP: TCGGAAGGAGAAGATTACG3' and RP: 5
TCCACAATTCGCAACAAC 3’

TAS14 FP: 5’ ACAATACGGCAATCAAGACCAAA
TG3’ and RP: 5" CCCATCATACCGCCAGTACCC 3’

Chlorophyll and anthocyanin estimation

Leaf Tissue was ground in liquid N2. Total chlorophyll
was extracted into 80% acetone, and chlorophyll a and b
content was calculated by using MacKinney’s coefficients,
in which chlorophyll a equals 12.7(A663) - 2.69(A645) and
chlorophyll b equals 22.9(A645) -4.48(A663). For antho-
cyanin measurement leaf tissue (100-150 mg) or 3—4 seed-
lings were extracted overnight in 500 pl of extraction
solution (1% HCL in Methanol). Next day, seedlings were
crushed after addition of 400 ul of sterile water. Finally
chlorophyll was removed by adding 1 ml of chloroform
and debris was removed by centrifugation and supernatant
was collected into a fresh microcentrifuge tube. Then
Spectrophotometric estimation was carried out by taking
readings at the wavelengths of 530 nm and 657 nm. The
total Anthocyanin content was calculated with the help of
the following formula: (As30-0.33A¢s57)/g of fresh weight.

Lateral root growth

Seeds were on MS medium on magenta boxes and
stratified at 4°C in dark conditions for 4 d to induce
uniform germination. The boxes were kept in racks,
and the seedlings were grown under constant white
light conditions (90 gmol m™> s™) for 14 days. The root
length and number of lateral roots of control and dif-
ferent LeMYC2 transgenic lines were measured. Ap-
proximately 15 seedlings were used for the root length
and lateral root measurement.

ABA and JA responsiveness
The seeds of vector control, LeMYC2overexpresser and
LeMYC2 RNAitransgenic lines were sterilized with 4%
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sodium hypochlorite solution for 12 min and washed
with sterile water for five times. The seeds were plated
on to MS plates with 5 uM concentration of ABA
(Sigma-Aldrich). The plates were kept in cold in dark for
4 days for stratification and then transferred to constant
white light. The seeds were monitored for germination
and greening from 3 days to 8 days. The seeds were
counted as germinated when the radicle tip had fully ex-
panded the seed coat. Control and different transgenic
lines were germinated on MS with 10 uM of methyl jas-
monate (Sigma) in magenta boxes, after stratification
boxes were transferred to growth room and the root
growth was monitored regularly and seedling were taken
on plates and photographed and root length and lateral
roots were measured.

Additional file

Additional file 1: Figure S1. The LeMYC2 transcription factor shows
strong similarity with other homologues sequences. A, Comparison of
amino acid sequence of LeMYC2 transcription factor with other
homologues sequences from Arabidopsis (AtMYC2, AtbHLHO6)
Catharanthus roseus CrMYC2 (AAQ14332), and Solanum tuberosum
(JAMYC2, CAF74710). B, Unrooted phylogenetic tree of the deduced
amino acid sequences of LeMYC2 and other plant MYC proteins. The
phylogenetic tree was generated based on an alignment of the full
length deduced amino acid sequences of 24 MYC proteins, including,
VitisviniferaVwMYC2 (ABR23669); Arabidopsis thaliana AIMYC1 (AtbHLH12;
D83511), AtMYC2 (AtbHLHO6; Q39204), AtMYC3 (AtbHLH121; Q9FIP9) and
AtMYC4 (AtbHLHO80; 049687); Catharanthus roseusCrMYC1 (BAF42667),
CrMYC2 (AAQ14332), CrMYC3 (FJ004233), CrMYC4 (FJ004234) and
CrMYC5 (FJ004235); Taxus cuspidateTcJAMYC2 (ACM48567); Nicotiana
tabacum NtMYCla (ADH04267) , NtMYC1b (ADH04268) NtMYC2a
(ADU60100) and NtMYC2b ( ADU60101); Brassica napus BnMYC2
(CCQ71910); Hevea brasiliensis HbMYC2 (ACF19982); Cucumis sativus
CsMYC2 (XP_004148475), Medicago truncatula MtMYC2 (XP_003628820);
Glycine max GmMYC2 (XP_003531962); Zea mays ZmMYC7E (AAD15818)
Solanum tuberosum JAMYC2 (CAF74710), JAMYC10 (CAF74711) and LeJA3
(AAF04917). Alignments were made using CLUSTAL Omega multiple
sequence alignment tool. The phylogenetic tree was constructed by the
Maximum-likelihood approach using the MEGA5.10 program with default
settings. LeMYC2 is shown in the bracket. Numbers at the branch points
indicated bootstrap values based on 1000 bootstrap replicates.
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