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Abstract

Background: Effective improvement in sorghum crop development necessitates a genomics-based approach to
identify functional genes and QTLs. Sequenced in 2009, a comprehensive annotation of the sorghum genome and
the development of functional genomics resources is key to enable the discovery and deployment of regulatory
and metabolic genes and gene networks for crop improvement.

Results: This study utilizes the first commercially available whole-transcriptome sorghum microarray (Sorgh-WTa520972F)
to identify tissue and genotype-specific expression patterns for all identified Sorghum bicolor exons and UTRs. The
genechip contains 1,026,373 probes covering 149,182 exons (27,577 genes) across the Sorghum bicolor nuclear,
chloroplast, and mitochondrial genomes. Specific probesets were also included for putative non-coding RNAs that may
play a role in gene regulation (e.g., microRNAs), and confirmed functional small RNAs in related species (maize and
sugarcane) were also included in our array design. We generated expression data for 78 samples with a combination of
four different tissue types (shoot, root, leaf and stem), two dissected stem tissues (pith and rind) and six diverse genotypes,
which included 6 public sorghum lines (R159, Atlas, Fremont, PI152611, AR2400 and PI455230) representing grain, sweet,
forage, and high biomass ideotypes.

Conclusions: Here we present a summary of the microarray dataset, including analysis of tissue-specific gene expression
profiles and associated expression profiles of relevant metabolic pathways. With an aim to enable identification and
functional characterization of genes in sorghum, this expression atlas presents a new and valuable resource to the
research community.
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Background
Sorghum [Sorghum bicolor (L.) Moench] is a staple
cereal crop for millions of people in the marginal, semi-
arid environments of Africa and South Asia. Its unique
and advanced ability to grow in regions of low and
variable rainfall highlight its potential to impact agricul-
tural productivity in widespread water-limited environ-
ments [1,2]. Originating and evolving across the diverse
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environmental landscape of Africa, morphological and
physiological adaptation strategies has advanced sor-
ghum as a naturally heat and drought-tolerant warm
season C4 grass that is more efficient at utilizing water,
nitrogen and energy resources with respect to other
major crops, including maize and wheat [1,3,4]. Occupy-
ing seven million hectares of farmland, the United States
is currently the world’s top sorghum producer (8.8 mil-
lion annual metric tons), followed by India (7.0), Mexico
(6.9), and Nigeria (4.8) (http://cgiar.org/sorghum). Culti-
vated in diverse climates and environmental conditions,
the challenges of increasing performance and yield on
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marginal lands and cooler climates remains at the fore-
front of sorghum improvement efforts worldwide [5,6].
Sorghum is globally established as an important source

of food, feed, sugar and fiber, and recent interest in bioe-
nergy feedstocks also spotlights sorghum as an attractive
alternative for sustainable biofuel production [4]. Framed
upon the 2009 sorghum reference genome [7], transla-
tional genomic resources have been developed that dir-
ectly impact research in other closely related C4 feedstock
grasses, including switchgrass and Miscanthus [8,9]. Com-
prehensive understanding of the genetic and molecular
mechanisms that regulate metabolite biosynthesis, trans-
port and storage in these species is essential for the effi-
cient development of biofuel feedstocks.
Global transcriptome profiling further provides a means

to access gene networks for the discovery of functional con-
nections between genes, mRNAs and their regulatory pro-
teins, and complex traits expressed through coordinated
and dynamic gene networks across different tissues and
developmental stages [10]. Over the last decade, micro-
array-based expression profiling has provided a reliable
high-throughput platform for genome-wide analysis of
gene expression in many organisms. Microarrays offer
substantial advantages for functional genomics, as they are
increasingly cost-effective, provide a comparable accuracy
of expression profiling to RNA-sequencing, and have been
shown to provide comprehensive expression data (up
to 90% of the transcriptome) in a given tissue [11]. Well-
established microarray data analysis tools are also available
for querying, visualizing and analyzing the genomes and
predicted genes [12,13], as well as for analyzing the tran-
scriptome profiling data and integrating with other public
datasets [14-17].
To provide insight into the sorghum transcriptome,

we generated a record of gene expression in a set of
seven tissues and six diverse sorghum genotypes. The
choice of samples reflects our aim to develop and enrich
the current sorghum transcriptome literature. Previous
studies have predominantly focused on reproductive tis-
sues, and the majority of these reports do not represent
the complete sorghum transcriptome. Several of these
studies have also been limited to the reference genome
(BTx623) or Keller, a recently resequenced sweet sor-
ghum variety [18-22].
Comparable whole plant transcriptome maps are avail-

able for a number of other model species, including Ara-
bidopsis thaliana [23], maize (Zea mays) [24], barley
(Hordeum vulgare) [25], rice (Oryza sativa) [26,27], and
soybean (Glycine max) [28]. These recent transcriptome
surveys were constructed with only one genotype or
line/accession for their respective species of interest,
whereas the present study aims to highlight the practi-
cal importance of examining expression profiles across
diverse tissue types, developmental stages, as well as
genotypes in order to accurately target genes and meta-
bolic pathways for the efficient development of improved
feedstocks.
Fundamental understanding of sorghum genomics is

necessary for improving sorghum for agronomic and
compositional traits. Specifically, genotypes with high
biomass and increased levels of fermentable stem sugars
are ideal for developing feedstocks for the biofuel
industry. We developed this genomic resource, the
whole-transcriptome array as well as the vegetative tran-
scriptome in diverse genotypes and tissues, in order to
facilitate the characterization of molecular networks and
regulatory mechanisms governing important metabolic
pathways including, but not limited to, cell wall biosyn-
thesis for lignocellulosic biomass as well as synthesis,
translocation, and storage of fermentable photosynthates
for energy content. The relevance of our dataset is dem-
onstrated by genotype and tissue-specific expression of
the phenylpropanoid and lignin biosynthetic pathway
genes.
Intended as readily available public resource for func-

tional gene characterization, the transcriptome data pre-
sented here is available through NCBI's Gene Expression
Omnibus (GEO) under accession number GSE49879,
and the Sorghum Genome Array is available through
Affymetrix (http://affymetrix.com).

Results and discussion
Generation and quality assessment of data
A whole-transcriptome exon array for Sorghum bicolor was
custom-designed by Chromatin, Inc. (http://chromatininc.
com) and Affymetrix: Sorgh-WTa520972F. This genechip
contains 1,026,373 probes covering 149,182 exons (27,577
genes) across the Sorghum bicolor genome (10 chromo-
somes), chloroplast and mitochondria. The sequences
used to construct the probesets included all identified
Sorghum bicolor exons from the Sbi1 assembly (http://
www.phytozome.net). Multiple probes were chosen for
each exon, with a minimum of one probe per exon and 25
probes per gene. In addition to standard Affymetrix con-
trols, positive controls in the microarray design included
probes for constitutively expressed Sorghum bicolor genes
(actin, ubiquitin and eIF4a1). Probes for intronic regions of
actin and ubiquitin were also utilized to determine back-
ground expression levels.
To study the sorghum transcriptome and build a gene ex-

pression atlas, we collected 78 diverse samples from various
developmental stages and tissue types (Additional file 1). In
order to broadly capture sorghum genetic diversity, we in-
cluded genotypes representing three major ideotypes, in-
cluding grain, sweet, and bioenergy sorghums. Our study
includes R159, an elite grain sorghum characterized by the
valuable agronomic traits of uniform growth and disease re-
sistance [29]. Grain sorghum is cultivated primarily for its
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high starch content, applications in human/animal health
and nutrition, and as biofuel feedstock for ethanol produc-
tion [5]. We also included two sweet sorghums, Fremont
and Atlas, that produce increased biomass and accumulate
high levels of fermentable carbohydrates in the stem. Add-
itionally, Fremont is drought resistant and flowers early,
while Atlas is less susceptible to lodging (due to a stiff stalk
phenotype) and flowers later [30]. We also selected three
bioenergy or high biomass lines, PI455230, PI152611, and
AR2400 that produce increased levels of cellulosic material
and are photoperiod sensitive, which allows the plant to
produce higher amounts of vegetative matter under long
day conditions (Additional file 2). PI152611 is specifically a
forage line, a fast-growing, highly digestible grass utilized
for livestock feed [5,29].
The primary goal of this study was to obtain relevant

and applicable data for the research community develop-
ing sorghum as a global feedstock; this research interest
guided our sample selection towards vegetative tissues,
with a strong bias for stem tissues. A comprehensive
Figure 1 Pearson’s correlation matrix of the whole dataset. Pair-wise P
expression values of the whole transcriptome (27,577 genes) in all 78 samp
and are indicated by the color bar on the top side of the figure. The color
trancriptomic profile of sorghum inflorescence and leaf
data was recently made available to the community [19].
We compared the leaf RNA sequencing dataset with the
present leaf dataset to demonstrate and confirm that our
microarray analysis approach towards transcriptome
profiling was appropriate. The Spearman correlation of
the transcriptome across technologies is 0.61 (Additional
file 3), which is consistent with several studies compar-
ing RNA-seq and microarray methods for genome-wide
transcriptome profiling [31-33]. The present comparison
corroborates these studies and demonstrates that the
microarray platform for expression profiling correlates
well with current sequencing methods. With a common
goal of crop improvement, complementary datasets such
as these generate a core of information that can be ex-
plored for the functional characterization of genes and
genetic pathways.
We assessed data quality for hybridization by compar-

ing normalized signals of all probe sets between bio-
logical replicates using Pearson’s correlation analysis.
earson correlation coefficients were calculated from the gene
les. The hierarchical clusters were obtained based on Euclidian distance
scale indicates the degree of correlation.
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The biological replicates were highly correlated, with an
average Pearson’s correlation coefficient of 0.99 (Additional
file 4). The highly reproducible results of the replicate data
further validate the quality of the microarray platform and
present dataset. Previous studies have consistently estab-
lished strong correlations between qRT-PCR data and
microarray data processed using robust multi-array ana-
lysis (RMA) [34,35]. However, we also tested a small subset
of these genes via qRT-PCR to validate the array-generated
expression data and expression patterns across multiple
tissue types (Additional file 5A and 5B).
To further assure data quality, we also examined the

general expression patterns of well-characterized genes
that have been highlighted for tissue-specific expression
in previous studies. In microarray experiments with
RNA isolated from shoot tips, we observed high expres-
sion levels for homologs of SPATULA, a shoot tip tran-
scription factor that is strongly expressed in shoot tips
Figure 2 Cluster dendrogram of the whole dataset (78 samples). The
distance. The 5 clusters are indicated by the color bar on the bottom side
and young leaf primordia [36]. Similarly, the sorghum
homolog for TIP2-3, a root-specific aquaporin gene [37],
was also expressed at higher levels in our study using
root-isolated RNA (Additional file 6).

Global gene expression patterns
We detected the expression of 19,354 genes in at least
one of the 78 samples, representing 70.2% of all genes
on the array (27,577 genes). The number of expressed
transcripts detected in the various tissues ranged be-
tween 10,850 and 11,587 (representing 56 to 60% of all
expressed genes on the array). Expressed genes were de-
termined following established methods [24], and with a
conservative and arbitrary expression threshold cutoff of
320 (five times the mean normalized signal from intronic
gene probes used as controls), we found that 15.4% of
genes on the array were detected in all tissues (4256/
27,577) (Additional file 7). Gene ontology (GO)
hierarchical clusters of organs were grouped based on Euclidian
of the figure.
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annotation analysis of these constitutively expressed
genes reveals that most are involved in basic biological
processes including development, protein synthesis/
modification, and signal transduction (Additional file 8).
Similar to published work in maize, expression of consti-
tutive genes varied among the samples, with the coeffi-
cient of variation (CV) ranging from 5% to 129%. With a
CV of 10.4%, we identified a ubiquitin-conjugating en-
zyme, Sb09g023560, as one of the most stably expressed
genes (Additional file 9). This class of genes was also
identified in the maize atlas as the most stably expressed
among variable tissues [24].
A diverse range of plant tissues was sampled in this

study; however, 29.8% of the probesets were not detected
Figure 3 Functional category distribution of tissue-specific transcripts
types. The Sbi1.4 version of the sorghum annotation allowed for the identi
transcripts were manually verified and grouped into 7 functional categorie
above our designated expression threshold level. Several
plausible explanations can account for this incomplete
expression coverage, including gene expression from
specific tissues and/or developmental stages not in-
cluded in this study, false positive gene models, and
levels of expression below detection threshold limits.
Further, the arrays were developed utilizing the BTx623
reference sequence and do not capture polymorphisms,
copy number variation and presence-absence variation
across all the sampled genotypes.

Transcriptome-based classification of sorghum tissues
A Pearson’s distance correlation matrix was constructed
to compare and evaluate the transcriptome data from
. Expression levels of select Gene Ontology categories across tissue
fication of ~85% of expressed genes across all tissue types. The
s based on Plant GO slim classifications.
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each sample (Figure 1). This data shows strong correla-
tions among and within the individual tissue types. The
associated dendrogram reveals clustering according to
tissue type as well as genotype, highlighting the signifi-
cance of genotype-specific expression in this study
(Figure 2). Utilizing GO categories, functional analysis of
the identified gene sets revealed enrichment of known
tissue-specific biological processes. For example, the
leaf and shoot-associated gene sets were enriched for
photosynthetic genes relative to the roots, as expected
(Additional file 8). We found that components of protein
synthesis were overexpressed in the seedling roots and
shoots, whereas genes involved in metabolism were
over-represented in the shoot tip and stem tissues
(Figure 3). These data identify core sets of genes associated
with various biological processes and are clear targets for
future study aimed to definitively characterize their func-
tions in specific tissues.
Differential transcriptomes of developmentally distinct

vegetative tissues were also apparent from the principal
component analysis (PCA) (Figure 4). The PCA reveals
clustering of functionally related tissue types, and the
first two principal components (PC) of this analysis ex-
plain 68% of the variance among samples (PC1 = 48%,
PC2 = 20%). Apical meristematic zones of the roots and
shoot tips clustered together and weakly clustered with
leaves, shoots and stem tissues. The large group of
stem tissues (46 samples) including internode, pith, and
rind strongly clustered together and weakly with the
remaining tissues. These results are consistent with pre-
vious studies in maize and P. halli crop models, that
Figure 4 Classes sharing similar expression patterns. Principal compon
29,065 probe sets (27,577 genes, 654 controls and 834 small RNA probe se
by color and shape of symbol.
show core similarities among stem-associated tissues
and subsequent divergence of root and leaf samples
[24,38].
Interestingly, three out of 46 stem samples clustered near

the group of meristematic tissues (roots and shoot tips). All
three of these ‘outlier’ samples were collected at the top
internode, 61 days after planting (DAP) in three of the six
sampled genotypes (PI455230, PI152611, and AR2400). At
70DAP, the stem samples from same genotypes clustered
with the other stem samples. These lines are characterized
as high biomass genotypes, whereas the remaining three ge-
notypes can be characterized as either grain or sweet lines
(R159, Atlas, and Fremont). The PCA indicates that at
61DAP, the patterns of gene expression in the stem of the
high biomass lines are more related to meristematic re-
gions, or regions of active growth. While it is possible
that these three stem samples were collected too close to
the meristematic shoot tip region, further study may indi-
cate that the differential transcriptome in the stems of
these lines capture a transition zone of gene expression in
which sorghum commits to post-reproductive pathways of
sugar production and grain fill versus continued biomass
production. This result further demonstrates the im-
portance of examining genotype, tissue type, as well as
temporal expression patterns when targeting transcrip-
tional programs of interest.

Tissue and genotype-specific patterns of gene expression
To identify tissue-specific genes, we created genotype-
specific datasets for PI152611, Fremont, and AR2400, each
representing one of three major classes of sorghum: forage,
ent analysis was applied to 78 tissue samples, based on expression of
ts). Each symbol represents a single sample. Tissue types are indicated
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sweet, and high biomass types respectively. Excluding repli-
cate tissues from the same major organ, we identified genes
exclusively expressed in the leaf, shoot, root, shoot tip and
stem (Figure 5). The leaf and meristematic shoot tips
expressed the greatest number of tissue-specific transcripts
across all three genotypes, whereas the seedling shoots
expressed the fewest number of tissue-specific genes. Of
particular interest in this dataset is the extent of variation
observed across genotypes. For example, in stems, over 800
stem-specific genes are identified in representative exam-
ples of sweet and high biomass sorghum. Over 500 stem-
specific genes are detected in forage sorghum; however,
only 103 stem-specific genes are common among all three
sorghum types. This lack of shared tissue-specific genes
across genotypes is observed in all major tissue types. We
also carried out this analysis for the small RNAs included
on the array (Additional file 10). Similar to gene expression,
we observed both tissue and genotype-specific expression
of the small RNAs (Additional file 11). For purposes
of functional crop improvement, these results highlight
Figure 5 Number of tissue-specific genes in across sorghum ideotype
forage sorghum; Common: number of genes in common among all three
the significance of intra-species variation in sorghum and
the importance of selecting the appropriate genotype for
targeted changes to gene expression via transgenic and
breeding approaches.
To illustrate the expression dynamics among tissues,

we also calculated the relative gene expression levels
(Z-scores) of each of the major tissues (Figure 6). Con-
sistent with previous studies, tissues with a relatively
higher number of tissue-specific genes (e.g. leaf, root,
shoot tip, pith) had a wide distribution of genes deviat-
ing from their mean expression. Stem-associated tissues
had similar expression profiles and gene expression was
closer to the overall average across tissue types [24,38].
We next attempted to determine whether functional

gene classes were over-represented in specific genotypes.
GO analysis did not reveal statistical differences in the
enrichment of GO slim terms using agriGO (Fisher’s
exact test and the Yekutieli (false-discovery rate under
dependency) multi-test adjustment method) [39]. How-
ever, this can partially be attributed to the incomplete
s. AR2400: biomass sorghum; Fremont: sweet sorghum; PI152611:
ideotypes.



Figure 6 Distribution of global gene expression across sorghum tissue types. Histograms of relative expression levels (measured by Z-
scores) in each tissue type. For each of these tissues, Z scores were calculated as follows: Z = (X-Xmean)/SD, where X is the average expression of a
given gene in a tissue, and Xmean and SD are the mean expression and standard deviation respectively of that gene across all the selected tissues.
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annotation of the sorghum genome, as well as stage and
tissue-specific expression not captured in our sample
collection.
To identify genotype-specific expression patterns, we

examined the expression of several known sugar metab-
olizing enzymes and sucrose transporters in sorghum
with the hypothesis that differential expression of these
genes would be observable across genotypes (Additional
file 12). Differential expression between sweet and grain
sorghum has recently been shown [21,40], and our re-
sults further validate this observation, with the majority
of sugar-related genes showing differential expression
among tissues and genotypes. For example, sweet and
high biomass varieties showed consistently higher ex-
pression of SPS2 and SPS5, sugar phosphate enzymes
thought to play significant roles in sucrose biosynthesis,
compared to grain varieties (Figure 7). A comprehensive
gene list and more detailed expression analysis of sugar
related genes across genotypes may provide insight into
the mechanisms governing trade-offs in sorghum grain
yield and stem sugar content.
We further analyzed tissue-specific transcripts to iden-

tify shared and specifically expressed genes in multiple
tissues (Figures 8 and 9). To avoid variation in gene ex-
pression due to genotypic differences, we chose samples
from the genotype Atlas for this analysis. We identified
587, 489, and 698 genes that are specifically expressed in
leaf, stem and root and 232 and 688 unique genes that
are expressed in shoot and shoot tips, respectively
(Figure 8). We also identified 960 genes that are specific-
ally expressed in stem rind (predominantly lignified
sclerenchymatous cells) as compared to 928 genes that
are specifically expressed in stem pith (predominantly
non-lignified parenchymatous cells; Figure 9). This data-
set provides a unique opportunity to discover target sets
of genes in core sorghum varieties that may be useful for
modulating gene expression in a tissue-dependent man-
ner. For example, these rind and pith-specific genes can
be studied as potential candidate genes for biomass con-
tent and targets for compositional modification of biofuel
feedstocks. Further, identification of promoter elements
and corresponding DNA-binding regulatory proteins that
regulate tissue-specific expression of genes could be iden-
tified from these data. As a direct application of this study,
we are currently analyzing the promoter regions of candi-
date genes that are differentially expressed in the rind ver-
sus pith region of stem tissues.

Tissue-specific expression of genes involved in the
phenylpropanoid-monolignol pathway
To exemplify the functional utility of this data, we
highlighted the expression data of 10 key enzymes



Figure 7 Hierarchical clustering of samples based on expression of sucrose metabolizing enzymes and sucrose transporter genes.
Color bar key: Blue: sweet sorghum; red: grain sorghum; green: high biomass sorghum. Outlined in blue, the expression of sucrose phosphate
synthase genes, SPS2 and SPS5, is consistently lower in grain types sweet and high biomass lines. Sugar metabolism gene list is appropriated
from current literature [40].
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associated with the phenylpropanoid-monolignol biosyn-
thesis pathway (Additional file 13). Currently, one of the
primary strategies for bioenergy feedstock improvement is
through lignin modification. Alterations in lignin content
and composition aim to improve the digestibility of forage
and saccharification efficiency of lignocellulosic biofuels
[41,42]. Thus, modifying the expression of genes in the lig-
nin biosynthesis pathway is an attractive approach to
achieving this goal.
Annotated in several databases, the majority of known

and putative genes and homologs were analyzed
for: phenylalanine ammonia-lyase (PAL, 9 sequences),
coumaroyl shikimate 3’-hydroxylase (C3’H, 1), ferulate
5-hydroxylase (F5H, 3), cinnamate 4-hydroxylase (C4H,
3), 4-coumarate:CoA ligase (4CL, 5), cinnamoyl CoA
reductases (CCR, 3), hydroxycinnamoyl CoA:shikimate
hydroxycinnamoyl transferase (HCT, 1), caffeoyl-CoA 3-
O-methyltransferase (CCoAMOT, 6), caffeic acid 3-O-
methyltransferase (COMT, 1), and cinnamyl alcohol
dehydrogenase (CAD, 1). Similar to previous studies in
maize and switchgrass, the highest expression of these
genes was found in the roots and stems [8,43]. Further,
hierarchical clustering reveals that the expression of lignin
biosynthesis genes varies with developmental stage, as well
tissue type and genotype (Figure 10). Distinct expression
signatures of gene homologs as well as clustering of
above-ground vegetative tissues according to develop-
mental stage has precedence in maize and, in general,
most of the lignin genes showed organ-specific ex-
pression patterns consistent with studies in related
species [24,38].
Conclusions
Comprehensive transcriptome profiling provides a global
overview of gene networks and allows for the discovery of
functional connections between genes, mRNAs and their
regulatory proteins. In the present study, we constructed a
gene expression atlas covering an array of tissues, develop-
mental stages and genotypes using the first commercially
available sorghum microarray (Sorgh-WTa520972F). We
observed tissue and genotype-specific expression patterns



Figure 8 Number of shared and specific expression profiles of genes expressed in multiple tissue types (Atlas genotype).
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of relevant metabolic pathways that highlight the signifi-
cance of intra-species variation in sorghum.
Developed as a new resource for crop breeding and

genomic discovery, Sorgh-WTa520972F is produced by
Affymetrix and is available to the public research com-
munity. We are currently utilizing this microarray to
identify differential gene expression related to key meta-
bolic processes (e.g., starch/lignin biosynthesis) for the
identification of regulatory regions. Additional avenues
for future study with this array are wide-ranging and can
include gene expression profiling during abiotic/biotic
stress, plant infection and disease establishment to in-
vestigate genetic mechanisms and applications to plant
breeding and crop improvement. Detailed expression
analysis of small RNAs included in the array design
may also reveal key insights in diverse biological pro-
cesses, including RNA-guided gene regulation. Sorgh-
WTa520972F can also be utilized in quantitative trait
locus (QTL) mapping and validation methods (e.g., iden-
tify differentially expressed genes from ‘tolerant’ versus
‘sensitive’ varieties). Minimal costs associated with mic-
roarray analysis allow for the generation of high-
throughput expression profiles or combinations of
profiles of elite breeding lines for accelerated crop-
breeding efforts. Applications of this resource can target
numerous agronomic traits in sorghum as well as provide
insight in closely related grasses (e.g., sugarcane, switch-
grass, Miscanthus x giganteus) for improved feedstock
development.

Methods
Tissue collection
To study the sorghum transcriptome and build the
present gene expression atlas, we collected 78 samples
from various developmental stages and tissue types
(Additional file 1). Six diverse sorghum genotypes
were grown in Chromatin’s greenhouse and field sites
(Champaign, IL). These six genotypes were chosen to rep-
resent ideotypes of sorghum cultivation, including sweet,
grain and high biomass sorghum varieties. Greenhouse
grown seedling shoot and root samples were collected at
10DAP, which is roughly five days after plant emergence.



Figure 9 Number of shared and specific expression profiles of genes expressed in multiple stem tissues (Atlas genotype).
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Whole leaf and meristematic shoot tip samples were col-
lected at 38DAP. This time-point captures the active
growth phase of vegetative structures, including leaves,
shoots and tillers. The stem tissue samples were collected
at two time points: 61 and 70DAP. At 61DAP, the stem is
fully formed in both flowering and non-flowering types. In
flowering types, the head is also fully formed, and the
period between 61 and 70DAP is a stage of active metab-
olism, capturing the transition between flowering (61DAP)
and active grain filling (70DAP) [45]. The stem tissue was
further dissected into the pith and the rind. As a bioenergy
crop, the majority of fermentable sugar available in
sorghum is present in the pith. The majority of lignin,
however, is found in the rind [46]. Two tissue types
(shoot and root) were represented by two biological
replicates.

Microarray design
A whole-transcriptome exon array for Sorghum bicolor:
Sorgh-WTa520972F was designed and utilized for the
present expression study. The array contains 1,026,373
probes covering 149,182 exons (27,577 genes) across the
Sorghum bicolor nuclear, chloroplast and mitochondrial
genome. The sequences used to construct the probesets
included all identified Sorghum bicolor exons from the
Sbi1 assembly and Sbi1.4 annotation (http://phytozome.
net). We also added sequences for putative non-coding
RNAs in Sorghum bicolor that may play a role in gene
regulation (e.g., rRNAs, tRNAs, snoRNAs and microRNAs).
Confirmed functional small RNAs in closely related species
(maize, sugarcane) were also included in our array design
(http://bioinformatics.cau.edu.cn/PMRD, http://www.ncrna.
org/frnadb) (Additional file 10).

RNA Isolation and hybridization
Total RNA from all tissue types was extracted using a
NucleoSpin RNA Plant Kit (Maxherey-Nagel, Germany).
RNA integrity, as indicated by the detection of discrete
ribosomal subunits, was verified electrophoretically. The
RNA quality and quantity was further validated with a
NanoDrop spectrophotometer (NanoDrop Technologies,
Wilmington, DE). Prior to hybridization, the total RNA
profile was also analyzed with Agilent 2100 Bioanalyzer
(Agilent technologies, Waldbronn, Germany). Synthesis
of cDNA, probe labeling and hybridization was per-
formed by Precision Biomarker (Precision Biomarker Re-
sources, Inc. Evanston, Illinois)

Data extraction and evaluation of gene expression
Background correction and normalization were per-
formed using a robust multi-chip average (RMA) algo-
rithm in the Bioconductor Affy package [13]. Present
calls for expressed genes were determined following
established methods [24]. In brief, an expressed gene
was identified by a RMA-normalized linear expression
of >/= 320 in at least one of the 78 samples. The expres-
sion cut-off was five times the mean RMA-normalized
signal from 576 negative-control oligos selected from

http://phytozome.net/
http://phytozome.net/
http://bioinformatics.cau.edu.cn/PMRD
http://www.ncrna.org/frnadb
http://www.ncrna.org/frnadb


Figure 10 Hierarchical clustering of tissues based on expression of phenylpropanoid-monolignol biosynthesis pathway genes.
*Constitutively expressed genes: Ubiquitin: Sb10g027470; EIF4A1: Sb04g003390. Color bar key: Blue: sweet sorghum; red: grain sorghum; green: high
biomass sorghum. The color scale indicates the relative gene expression (Z-scores). Red, yellow, and green represent high, medium, and low levels of
gene expression, respectively. The phenylpropanoid-monolignol pathway and enzyme nomenclature is appropriated from current literature [44].

Shakoor et al. BMC Plant Biology 2014, 14:35 Page 12 of 14
http://www.biomedcentral.com/1471-2229/14/35
the intronic regions of known constitutive genes (e.g.,
actin, ubiquitin, and eIF4a1). A mean signal intensity of
64 was determined for the negative control oligos ana-
lyzed across all 78 slides. Constitutively expressed genes
were identified by a RMA-normalized linear expression
value of >/= 320 in all 78 samples.

Principal component analysis, hierarchical clustering
and z-scores
To study the biological relatedness and identify expression
trends among the samples, we utilized the cmdscale func-
tion and then plotted using R. We used RMA-normalized
log2 normalized expression values in the PCA analysis.
Hierarchical clustering was performed using RMA-nor-
malized log2 normalized expression values and clustered
using Pearson’s correlation analysis. The Z scores were cal-
culated as follows: Z = (X-Xmean)/SD, where X is the average
expression of a given gene in a tissue, and Xmean and SD are
the mean expression and standard deviation respectively of
that gene across all the selected tissues.

GO Slim enrichment analysis
We evaluated enrichment of GO slim terms of biological
process category (http://geneontology.org/GO.slims) in
agriGO (http://bioinfo.cau.edu.cn/agriGO/) by Fisher’s
exact test (p-value ≤0.05) and the Yekutieli (false-discovery
rate under dependency) multi-test adjustment method [39].
qRT-PCR
The relative mRNA expression was measured using Peltier
Thermal Cycler PTC-200 PCR machine (MJ Research,
Waltham, MA, USA) and the SuperScript III Platinum
SYBR Green One-Step qRT- PCR kit (Invitrogen, Carlsbad,
CA). Three independent reverse transcription reactions
were performed for each RNA sample, and qRT-PCR was
carried out under the following conditions: 100 nanograms
of each RNA sample was reverse transcribed at 60°C for 3
minutes, and reverse transcription was followed by initial
activation at 95°C for 5 minutes, and 40 amplification cycles
at 95°C for 15 s and 50°C for 30s. Results were analysed
using MJ Opticon Monitor 3.1.32 software, and relative ex-
pression of mRNA was calculated by the comparative Ct
method (2-[Δ][Δ]Ct) [47]. Gene expression values across tis-
sue types were normalized to ubiquitin expression.
Availability of supporting data
The transcriptome dataset supporting the results of
this article is available through NCBI's Gene Expression
Omnibus (GEO) under accession number GSE49879,

http://geneontology.org/GO.slims
http://bioinfo.cau.edu.cn/agriGO/
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and the Sorghum Genome Array is available through
Affymetrix (http://affymetrix.com).
Additional files

Additional file 1: Sorghum samples included in the gene
expression atlas.

Additional file 2: Phenotypic characteristics of sorghum genotypes
included in gene expression atlas.

Additional file 3: Correlation of RNA expression between Illumina
RNA sequencing and Affymetrix GeneChip microarray platform.
Each point represents a sorghum gene identified in grain sorghum leaf
tissue of BTx623 by RNA-Seq, and by microarray in R159. RNA-Seq expres-
sion levels were measured using RPKM [19] and array levels were mea-
sured using the mean intensity of sense probes within exons. The
Spearman’s coefficient is 0.61, which is consistent with previous studies
and indicates that the platforms correlate well on similar samples.

Additional file 4: Pearson's correlation coefficient of the biological
replicates.

Additional file 5: A: Expression dynamics across multiple tissue
types detected by microarray and qRT-PCR. B: Pearson's correlation
between expression levels determined by microarray and qRT-PCR.

Additional file 6: Expression of sorghum homologs with
established patterns of expression in related species.

Additional file 7: Number of genes expressed in each of the 78
samples. Total: number of gene expressed in at least one organ (19,354;
70% of all genes on the array). Common: genes expressed in all 78 tissue
types (4526; 15% of all genes on the array).

Additional file 8: Gene Ontology classifications in the biological
processes category identified using the AgriGO Singular Enrichment
Analysis (SEA).

Additional file 9: Identification of stably expressed genes.

Additional file 10: List of small RNAs (sorghum, maize and
sugarcane) included in microarray design.

Additional file 11: Number of tissue-specific small RNAs across
sorghum ideotypes. AR2400: biomass sorghum; Fremont: sweet
sorghum; PI152611: forage sorghum; Common: number of genes in
common among all three ideotypes.

Additional file 12: Expression of select sucrose metabolizing
enzyme/transporter genes.

Additional file 13: Expression of select phenylpropanoid-monolignol
biosynthesis pathway genes.
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