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Abstract

Background: Plant secondary metabolites are critical to various biological processes. However, the regulations of
these metabolites are complex because of regulatory rewiring or crosstalk. To unveil how regulatory behaviors on
secondary metabolism reshape biological processes, we constructed and analyzed a dynamic regulatory network of
secondary metabolic pathways in Arabidopsis.

Results: The dynamic regulatory network was constructed through integrating co-expressed gene pairs and
regulatory interactions. Regulatory interactions were either predicted by conserved transcription factor binding
sites (TFBSs) or proved by experiments. We found that integrating two data (co-expression and predicted
regulatory interactions) enhanced the number of highly confident regulatory interactions by over 10% compared with
using single data. The dynamic changes of regulatory network systematically manifested regulatory rewiring to explain
the mechanism of regulation, such as in terpenoids metabolism, the regulatory crosstalk of RAV1 (AT1G13260) and
ATHB1 (AT3G01470) on HMG1 (hydroxymethylglutaryl-CoA reductase, AT1G76490); and regulation of RAV1 on
epoxysqualene biosynthesis and sterol biosynthesis. Besides, we investigated regulatory rewiring with expression,
network topology and upstream signaling pathways. Regulatory rewiring was revealed by the variability of genes’
expression: pathway genes and transcription factors (TFs) were significantly differentially expressed under different
conditions (such as terpenoids biosynthetic genes in tissue experiments and E2F/DP family members in genotype
experiments). Both network topology and signaling pathways supported regulatory rewiring. For example, we
discovered correlation among the numbers of pathway genes, TFs and network topology: one-gene pathways
(such as δ-carotene biosynthesis) were regulated by a fewer TFs, and were not critical to metabolic network
because of their low degrees in topology. Upstream signaling pathways of 50 TFs were identified to comprehend
the underlying mechanism of TFs’ regulatory rewiring.

Conclusion: Overall, this dynamic regulatory network largely improves the understanding of perplexed regulatory
rewiring in secondary metabolism in Arabidopsis.
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Background
The researches on mechanism, function and evolution
of plant secondary metabolism were traced back to
about 60 years ago [1,2]. Secondary metabolic pathways
lead to tens of thousands of products involved in various
biological responding processes, under stimuli of specific
external environmental stress elicitors as well as signal
molecules of normal growth and development [3,4].
Secondary metabolisms of Arabidopsis are classified into
five major groups (Additional file 1: Table S1): nitrogen-
containing secondary compounds biosynthesis (NSCB),
terpenoids biosynthesis (TB), sugar derivatives biosyn-
thesis (SDB), phenylpropanoid derivatives biosynthesis
(PDB) and flavonoids biosynthesis (FB) in AraCyc data-
base [5]. Most nitrogen containing compounds, playing
important roles in biological responses in plant defense
and human nutrition [6,7], are regulated by MYB and
bHLH members in transcription levels [8]. Sugar sec-
ondary derivatives, members of low molecular weight
metabolites (mainly cyclic sugar alcohols), are associated
with osmotic stress in higher plants [9]. Phenylpropa-
noids are constitutive compounds in certain tissues [10]
or responding factors induced by stresses (such as UV,
wounding, pathogen attack, low temperature and low
iron level) [10-13]. And these metabolites are regulated
by AtMYB21 (AT3G27810), AtMYB4 (AT4G38620), HY5
(AT5G11260), and CIP7 (AT4G27430) [8]. Flavonoids, a
major metabolic branch derived from phenylalanine and
malonyl coenzyme A, are regulated by MYB and bHLH
family members [14,15]. Terpenoids, the largest second-
ary metabolic family irreplaceable in inner communica-
tion with: environment; plant growth; and development
[16-18], are regulated by AP2/ERF, bHLH and MYB
members [19]. The significant functions of these com-
pounds make their regulators critical targets in genetic
engineering applications for improving plant qualities,
and for enzymes engineering TF is one kind of candi-
dates [20]. However, metabolic engineering primarily
concentrates on production of only one metabolite or a
single metabolic gene and normally generates unexpected
metabolic consequences–because metabolic pathways in
plant intertwine one another to form a complex network;
and perturbation of a single gene in the network usually
have extensively effects on metabolic flux [21,22]. There-
fore, regulatory mechanisms of biosynthetic genes are too
complex to comprehensively reveal because of ‘biodiver-
sity’ or ‘chemodiversity’, asking for system analysis rather
than independent experiments.
The first sequenced flowering plant Arabidopsis thaliana

is widely used as a model to systematically study gene
function and physiology in plant science [23,24]. With
high-throughput technologies such as microarray, Chip-
chip etc., numerous data have been generated in this
model plant, making it possible to explore biological
mechanisms in plant developmental and environmental
responses on genomic scale. Among these technologies,
gene microarray aims to investigate expression of genes
on a large scale in various treatments or developmental
stages [25-28]. Many approaches used microarrays in
systematic analysis of regulation over whole genome.
For instance, Bayesian was applied to build dynamic
regulatory network over time series microarrays, pre-
suming causal relationships between TFs and target
genes [29,30]. Other studies generated co-expression
data from microarrays and then utilized function specific
cis-elements (obtained from multiple sequence alignments
on promoter regions of co-expressed genes) to reconstruct
regulatory network, assuming that co-expressed genes are
co-regulated by the same TFs [31]. Also, researchers used
microarrays in expression quantitative trait locus (eQTLs)
analysis to identify hot spot regions where regulatory
genes locate. For example, researchers built genetic
regulatory network in flowering and single gene mu-
tants in Arabidopsis [32,33] and identified effects of TFs
on multiple metabolic phenotypes [34]. However, these
studies focusing on regulatory network–mainly stress
(drought, cold, dehydration, etc.) or development (flow-
ering, seed maturation, etc.) specific [35-38]–are limited
in: types of experiments, sizes of networks, families of TFs
and numbers of target genes. Besides, most available
regulatory databases only addressed on their particular
regulatory information (Additional file 2: Table S2).
These limitations in regulatory network analysis and data-
base specificity make it insufficient to systemically study
regulatory mechanism–neglecting dynamic changes,
biological responses and regulatory rewiring or crosstalk
between regulations. However, systematic researches of
transcriptional regulations on metabolic pathways are still
fewer than function studies (only focusing on one or
several TFs) [39,40].
Therefore, we developed a method to construct a dy-

namic regulatory network significant in biological function
by integrating regulatory interactions, large-scale micro-
array data and evolutionary conservation of TFBSs
(Figure 1A). This dynamic network is efficient in systemat-
ically exploring regulatory rewiring (or crosstalk) on
pathways to explain the mechanism of regulation. We
investigated the regulatory rewiring with expression,
network topology and upstream signaling pathways, which
largely improves the understanding of perplexed regula-
tory rewiring mechanism in secondary metabolism.

Results
Dynamic regulatory network reconstruction with
co-expression data and regulatory interactions
We reconstructed the regulatory network of secondary
metabolism in Arabidopsis thaliana through combining
co-expressed gene pairs with regulatory interactions
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Figure 1 Workflow of regulatory network construction. (A) General procedure of generating regulatory network of secondary metabolism.
(B) Strategy of processing microarrays. FC: fold change values; DEGs: differentially expressed genes; PCC: Pearson correlation coefficient; background
noise: frequencies of randomly generated gene pairs.
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(Figure 1A): either 422,967 predicted regulatory interactions
from AthaMap [41], which were then filtered by conserved
transcription factor binding sites (TFBSs); or 10,653 directly
experiment-proved ones from AGRIS [42,43].
We first used conserved TFBSs (see “Methods”) to

increase the confidence of regulatory interactions pre-
dicted in AthaMap from the perspective of evolution.
As expected, poplar (the closest species to Arabidopsis
among four used organisms in the evolutionary tree)
had more conserved TFBSs. In contrast, we did not
find any conserved TFBSs among TB orthologous
genes in chlamydomonas (the farthest species to Ara-
bidopsis among four used organisms in the evolution-
ary tree)–possibly owing to large evolutionary distance
between them. This verifies the rationale of our results
in conserved TFBSs computing.
Next, 72,416,247 significantly co-expressed gene pairs

and 14,306,661 most significantly co-expressed gene
pairs were obtained from microarray analysis (Figure 1B).
Based on these co-expressed gene pairs, we identified a
substantial amount of active regulatory interactions to con-
struct regulatory network. 28% of regulatory interactions
from AthaMap were maintained after being filtered with
significantly co-expressed gene pairs. At the same time,
among the regulatory interactions from AGRIS database,
about 39% were significantly co-expressed and 6% were
most significantly co-expressed–consistent with the
fundamental assumption of regulatory interaction pre-
diction: expression patterns of TFs and their target
genes were similar.
To validate our filtering strategies of AthaMap data, we

compared the proportion of direct regulatory interactions
(AGRIS) in the predicted ones (AthaMap) across different
data filtering strategies (Figure 2A) with five TFs: FUS3
(AT3G26790), AtLEC2 (AT1G28300), AG (AT4G18960),
AGL15 (AT5G13790) and HY5 (AT5G11260) in both
AGRIS and AthaMap. After being filtered by only TFBSs
alignments or significant co-expressed gene pairs, the
percentages of direct regulatory interactions were 5.46%
and 4.26% respectively. When being filtered by both
TFBSs alignments and significantly co-expressed gene
pairs, the fraction of direct regulatory interactions
increased to 12.10%. After adding evolutionary conser-
vation filtering, this percentage reached 14.53%. There-
fore, our filtering methods were efficient in predicting
highly confident regulatory interactions.
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Figure 2 Validation of filtering method in identifying high confident regulatory interactions. (A) The percentages of experiment-
confirmed regulatory interactions in regulatory interactions predicted by different data. To validate the filtering strategies of AthaMap data, the
proportion of direct regulatory interactions (AGRIS) in the predicted ones (AthaMap) across different data filtering strategies were computed with
the regulatory interactions of five TFs: FUS3 (AT3G26790), AtLEC2 (AT1G28300), AG (AT4G18960), AGL15 (AT5G13790) and HY5 (AT5G11260) present in
both AGRIS and AthaMap. (B) Literature evidences about the function of TFs’ target pathways that were consistent with phenotypes of TFs’ mutant.
The function of TFs’ target pathways were mined in literatures. The phenotypes of TFs’ mutant were obtained from AtPID (Arabidopsis thaliana Protein
Interactome Database). The percentages of target pathways whose functions were consistent to TFs’ mutant phenotypes were computed.
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To verify that our processed regulatory interactions
are more confident than raw regulatory interactions, we
first compared the numbers of target pathways in these
two datasets. We observed that the numbers of target
pathways in our result were smaller than that in both raw
dataset and random dataset (Additional file 3: Figure S1A).
And the raw dataset was not significantly different from
random dataset compared with our processed data
(Additional file 3: Figure S1B). Furthermore, to validate
the reliability of our proposed method in eliminating
low confident data in raw dataset, we mined function of
pathways (containing predicted target genes) from liter-
atures and checked their consistency with TFs’ mutant-
phenotypes in ATPID database [44]. Here we only chose
TFs with simple mutant-phenotypes (Additional file 4:
Table S3) to make the result more precise, ignoring
complex mutant-phenotypes associated with multiple
functions. The percentages of literature evidences in
our processed data were higher than that in the raw
dataset (Figure 2B): for each TF, functions of more than
half target pathways in processed regulatory interac-
tions were correlated with mutant-phenotype. In our
results, CDC5 (AT1G09770, cell division cycle 5, a MYB
family member) regulated 24 pathways, and 19 of them
were correlated with embryo development in litera-
tures–in accordance with embryonic defect, the phenotype
of CDC5 mutant in ATPID. AGL9 (AT1G24260, agamous-
like 9, a member of SEP3 family), whose mutant-phenotype
was about flowers in ATPID, regulated 57 pathways in
our result, and 40 of target pathways were associated
with flowers in literatures. AtLEC2 mutant affected normal
embryonic and cotyledonal development in ATPID, 17 of
the 19 pathways which were predicted to be regulated
by AtLEC2 were related to this TF’s mutant-phenotype.
These results indicate that our method is efficient
in identifying highly confident regulatory interactions
from raw dataset.

Regulatory rewiring under diverse conditions in TB
Based on the dynamic regulatory network, we analyzed
regulatory rewiring to demonstrate the dynamic changes
of regulation. In pathway level, according to the regula-
tion of TFs on target genes, we classified regulations into
three types: positive, negative or both positive and nega-
tive. Positive or negative regulation of a TF on a pathway
signifies that the regulations on different pathway genes
are constant and don’t change with experiments. Both
positive and negative regulation, considered as in-
constant and reciprocal regulation on different target
enzymatic genes, maintains the balance of metabolic
flux within pathways. For example, abscisic acid glucose
ester biosynthesis contains only one reaction, and the re-
action is catalyzed by abscisic acid glucosyltransferase that
is encoded by more than 20 genes. We found both positive
and negative regulations of RAV1 (AT1G13260, an AP2/
B3 domain TF) on this pathway, which could keep abscisic
acid glucosyltransferase steady.
Since TB is critical to plant, we took two examples in TB

sub-network to illustrate regulatory rewiring under diverse
experimental conditions. Generally, the occurrence of re-
wiring is caused by either regulatory interactions between
TFs or regulatory alterations under different conditions.
One example is the rewiring between the regulatory

crosstalk of RAV1 and ATHB1 (AT3G01470, a HD-ZIP
family member) on HMG1 (AT1G76490, a hydroxy
methylglutaryl-CoA reductase). RAV1 positively regu-
lated HMG1 gene in independence (Additional file 3:
Figure S2A) under many conditions: the grown stage of
leaves; tocopherols mutant VTE1 (vitamin E deficient 1)
gene; tocopherols mutant VTE2 (vitamin E deficient 2)
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gene; leaves responses to Phytophthora infestans and
COP9 (constitutive photomorphogenic 9) signalosome
mutants grown in dark, etc. However, the positive regula-
tion role of RAV1 on HMG1 gene altered when ATHB1
promoted the expression of HMG1 gene (Additional
file 3: Figure S2B) under a few conditions, like ABA1
(zeaxanthin epoxidase) gene mutant and hypoxia stress.
We found that the distance between two TFs’ binding sites
of HMG1 gene was within 200 bps, suggesting that the
binding of ATHB1 on HMG1 gene affect normal binding
of RAV1, and thereby change RAV1’s usual regulatory
function. It implies that the interactions between these
two TFs result in the alteration of RAV1 regulation on
HMG1 gene.
The example of epoxysqualene biosynthesis also dem-

onstrates the rewiring of regulatory crosstalk (Additional
file 3: Figure S3). Epoxysqualene biosynthesis pathway
is the upstream pathway, leading to sterol biosynthesis
(a major class of triterpenoids) and other triterpenoids
biosynthesis. The regulations of RAV1 on epoxysqualene
biosynthesis and sterol biosynthesis pathways were the
same in multiple experiments: Phytophthora infestans
plants, water treatment on leaves for 24 hours, MgCl2
treatment on leaves for 12 hours, etc. But RAV1 regu-
lated the two pathways differently under a few condi-
tions (such as seedling and CSN3 gene mutant in dark):
negatively regulated epoxysqualene biosynthesis but
positively regulated sterol biosynthesis, because of the
activation of some downstream biosynthetic genes reg-
ulated by RAV1 in sterol biosynthesis pathway. The
change of RAV1’s regulation would affect normal meta-
bolic distribution of sterol-related and the other triterpe-
noids, indicating the importance of regulatory rewiring in
controlling metabolic flux.

Variability of genes’ expressions revealing regulatory
rewiring
Significant variability in expressions of TF-encoding and
pathway genes could further reveal regulatory rewiring
by providing gene activities and functions specific to
experimental conditions. We investigated the changes
of gene activities and functions through differentially
expressed genes (DEGs) (see “Methods”).
Biosynthetic genes of FB, PDB and TB were signifi-

cantly differentially expressed in tissue experiments
(Figure 3), suggesting their dramatic changes in bio-
logical development of specific tissues. On the contrary,
genes in NSCB were significantly differentially expressed
in genotype experiments, indicating notable activities and
biological function of nitrogen-containing compounds in
plants of different genotypes.
The expressions of TF-encoding genes were also dif-

ferent under different experimental conditions. On one
hand, genes–primary in WRKY(Zn), NAC, AP2/EREBP
and MYB TF families–were widely differentially expressed
(Additional file 3: Figure S4), indicating their global roles
in regulations of downstream TFs or target enzymatic
genes. In WRKY(Zn) family, WRKY18 (AT4G31800) and
WRKY40 (AT1G80840) (which were induced by patho-
gen) [45], were greatly differentially expressed in genotype
and chemical experiments; whereas WRKY6 (AT1G62300,
associated with leaf senescence and defense) [46] was
significantly differentially expressed in tissue and chemical
treatments. Compared with WRKY(Zn) family, stress in-
duced NAC family members (ANAC072, AT4G27410;
ANAC019, AT1G52890; ANAC055, AT3G15500) [47]
were differentially expressed in grown stages. On the
other hand, TFs only differentially expressed in a few
experiments included E2F/DP family (regulating core cell
cycle) [48], C2H2(Zn) family (controlling flowering, ger-
mination and root development) [49-51] and ABI3/VP1
family (governing seed maturation) [52]. Those TFs were
possibly more specific to particular conditions. For in-
stance, a member of E2F/DP family (E2Ff, AT3G01330)
was more specific to genotype experiments; whereas a
member of C2H2(Zn) family (ID1, AT1G25250) was more
typical to tissues.
To explore the relationship between TFs and pathway

genes, we clustered them by expression profiles under
different experiment categories and took TB as an ex-
ample (Additional file 3: Figure S5). Firstly, we could not
distinguish TFs and biosynthetic genes by two separated
clusters. Secondly, one cluster was a union of similarly
expressed genes, and contained both TFs and enzymatic
genes, suggesting potential regulations between them in
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a cluster. Thirdly, clusters were different under five ex-
periment categories, indicating variability of potential
regulations depending on experimental conditions. This
variability reflects biodiversity to a certain extent, which
is in accordance with regulatory rewiring–emphasizing
the reasons of biological complexity.

Explanation of regulatory rewiring by network topology
Network topological properties could efficiently explain
regulatory rewiring based on network structure (Figure 4,
Additional file 3: Figure S6-S9). We compared the gen-
eral network properties of five secondary metabolic clas-
ses (Table 1). The numbers of TFs, genes and regulatory
interactions in TB were the highest, indicating that the
regulation of TB was the most complicated. In contrast,
these topology properties in SDB were the lowest,
revealing that the regulation of SDB was the simplest.
The number of positive regulations was larger than that
of negative regulations, and the number of inconsistent
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Table 1 Network properties of five secondary metabolic regulatory networks

No. of TFs No. of genes Average degree No. of negative regulation No. of positive regulation No. of inconsistent regulation

FB 25 57 4.15 47 101 22

NSCB 14 25 4.05 14 42 23

PDB 22 38 4.40 22 85 25

SDB 7 4 3.45 7 9 3

TB 32 72 4.12 58 118 38

FB, flavonoids biosynthesis; NSCB, nitrogen-containing secondary compounds biosynthesis; PDB, phenylpropanoid derivatives biosynthesis; SDB, sugar derivatives
biosynthesis; TB, terpenoids biosynthesis; TFs, transcription factor; Average degree, the mean value of nodes’ degree to present network density.
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correlated with the number of genes in this pathway
(Additional file 3: Figure S11B): the fewer genes in a
pathway, the fewer TFs regulating this pathway, suggesting
simpler regulation of this pathway. Besides, similar distri-
butions of TFs’ numbers (Additional file 3: Figure S12)
and pathway genes’ numbers (Additional file 3: Figure S13)
in terpenoids metabolism also demonstrate the rele-
vance; and the two numbers were all correlated with
topological property. For example, one gene pathways
(such as β-caryophtllene biosynthesis, δ-carotene bio-
synthesis and arabidiol biosynthesis) were regulated by
a small number of TFs, indicating simple regulations;
and these pathways were not critical to metabolic net-
work, because of their low degrees in topology (shown
as small nodes with light color in Additional file 3:
Figure S12-13). However, pathways with more genes
(like genranylgeranyl diphosphate, nonaprenyl diphos-
phate biosynthesis and epoxysqualene biosynthesis)
were regulated by more than 20 TFs and were hub path-
ways in terpeniod metabolism (shown as large nodes
with deep color in Additional file 3: Figure S12-13). The
regulations of these pathways were complicated so that
perplexing regulatory rewiring often occurred and led
metabolic fluxes flowing into disparate downstream
pathways. In other words, regulatory rewiring happened
with changing conditions, and in turn affected meta-
bolic flux within inner pathway or between different
downstream pathways. These examples demonstrate
that both simple and complex regulations can adapt
to function of metabolic pathways, either specific or
extensive.

Contribution of TFs’ upstream signaling pathways to
regulatory rewiring
Since signaling pathways regulate the activities of TFs,
they contribute to TF’s regulatory rewiring. To define
upstream signaling influences on TFs, we computed
significances of expression correlations between plant sig-
naling pathway genes and TFs (see “Methods”, Additional
file 3: Figure S14). Plant signaling molecules are mainly
metabolites, such as jasmonate (fatty acid deriva-
tives biosynthesis), ethylene (methionine biosynthesis),
brassinosteroid (terpenoids biosynthesis) and cytokinin
(terpenes biosynthesis). We found that TFs involved in
certain signaling pathways were truly significantly co-
expressed with related signaling pathway genes. For ex-
ample, AtMYC2 (AT1G32640, a MYC-related transcrip-
tional activator), in the downstream of jasmonate
signaling pathway, was significantly correlated with
genes in this pathway; ARR1 (AT3G16857, response
regulator 1) and ARR2 (AT4G16110, response regulator
1), activated by cytokinin indirectly, were significantly co-
expressed with cytokinin signaling pathway genes. These
results indicate the efficiency of predicting TFs’ up-
stream signaling pathways. Totally we found that 50
TFs were significantly correlated with 3 signaling path-
ways (Additional file 5: Table S4). Among the three sig-
naling pathways, jasmonate and cytokinin signaling
pathways were correlated with 45 TFs and 31 TFs respect-
ively while ethylene signaling pathway was only correlated
with 12 TFs: suggesting global regulatory function of jas-
monate and cytokinin compared to ethylene. In addition,
11 TFs were correlated with three signaling pathways, and
16 TFs were associated with both jasmonate and cytoki-
nin signaling pathways–indicating complicated regula-
tions of signaling pathways on these TFs. Besides, the rest
23 TFs were correlated with only one signaling pathway,
implying specific regulations of signaling pathways on
these TFs. For example, RAV1 was significantly corre-
lated with cytokinin signaling pathway, demonstrating
potential regulation of cytokinin on RAV1. Here, the
identification and summary of potential signaling path-
ways for TFs could largely improve the understanding
of TFs’ regulatory rewiring.

Discussion
Here we presented a method to construct dynamic regu-
latory network of secondary metabolic pathways. Based
on the dynamic regulatory network, we systematically
explored complicated regulatory rewiring or crosstalk
occurring under distinct experimental conditions, and
investigated the relationships between regulatory rewir-
ing and expression, network topology and signaling
pathway to unveil the complex regulatory mechanism.
The major assumption of our method is that active
regulatory interactions are co-expressed which was also
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Figure 5 Regulatory interactions between TGA and ATHB1 in
abscisic acid biosynthesis. The three abscisic acid metabolic
pathways are regulated differently by both TGA1 and ATHB1, The
two TFs reciprocally regulate CYP707A1 (AT4G19230, an abscisic acid
8’-hydroxylase) gene in phaseic acid biosynthesis pathway. The
regulation of ATHB1 on three pathways cooperates with its negative
regulation on TGA1’s expression.
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applied in previous studies [53-55]. The activation and
inhibition effects can be distinguished by correlation
coefficient of TFs and their target genes. Our method of
integrating multiple data is efficient in identifying high
confident regulatory interactions. As described in result,
regulatory interactions determined by three types of data
were more reliable than those predicted by single or two
type(s) of data. However, most significant co-expression
relations are not efficient in prediction because strict cri-
teria of co-expression would filter out gene pairs only
co-expressed in a few experiments (this is also why we
manipulated arrays within experimental comparisons
but not whole arrays).
Based on regulatory alterations at pathway level (rather

than genes), we mined regulatory rewiring to comprehen-
sively understand the regulation mechanism of biological
metabolic fluxes. For instance, co-regulation of two path-
ways may attribute to multi-functions of pathway genes
shared by these two pathways. Besides, some TFs were
considered as dominant regulators because of their fre-
quently changed activities: such as RAV1, which widely
regulates growth and developmental genes in Arabidopsis
[56]. Furthermore, our result explained the mechanism of
TFs regulation on metabolic pathways. For example,
flavonoid biosynthesis is influenced by AtLEC2, HY5
and AGL15 [57-59]. Based on our result we discovered
these TFs’ potential target genes, encoding flavanone
3β-hydroxylase, acetyl-CoA synthetase, 4-coumarate-
CoA ligase and naringenin chalcone synthase. And the
target genes encoding flavanone 3β-hydroxylase and
4-coumarate-CoA ligase could contribute to regulatory
rewiring of HY5, while genes encoding 4-coumarate-
CoA ligase and acetyl-CoA synthetase might be the
reason of AGL15’s regulatory rewiring.
Moreover, our work benefits plant metabolic engineer-

ing. A persuasive example is the regulatory crosstalk in
abscisic acid metabolism (Figure 5). Abscisic acid bio-
synthesis is followed by two downstream pathways,
abscisic acid glucose ester biosynthesis and phaseic acid
biosynthesis. The three pathways are regulated differently
by both TGA1(AT5G65210, a bZIP family member) and
ATHB1: TGA1 positively regulates three pathways, whereas
ATHB1 negatively regulates phaseic acid biosynthesis
and positively regulates the other pathways. ATHB1 and
TGA1 reciprocally regulate CYP707A1 (AT4G19230, an
abscisic acid 8’-hydroxylase) gene in phaseic acid bio-
synthesis pathway; and the distance between two TFs’
binding sites on CYP707A1 promoter is within 200 bps–
indicating spatial physical effects of the two TFs on their
normal binding processes [55,60]. Besides, regulation of
ATHB1 on three pathways cooperates with its negative
regulation on TGA1’s expression, suggesting ATHB1
should be a key factor in abscisic acid metabolic regu-
lation. Practically, we could overexpress ATHB1 to
increase the yield of abscisic acid glucose ester (playing
a potential physiological role under water stress) [61]
and inhibit phaseic acid metabolic branch at the same
time. In conclusion, this example of pathway crosstalk
provides a reference to biologists on how to control
metabolic products to improve desired plant traits in
metabolic engineering.
We also notice that some TFs are not included in our

result. This limitation attributes to restricted data sources
and incomplete knowledge of regulation mechanism.
Firstly, regulatory interactions collected from two data-
bases are incomplete. For example, both AthaMap and
AGRIS databses didn’t collect some well-known TFs
(such as MYB28, MYB29, MYB34, MYB90, MYB12,
MYB11, MYB4, MYB58, MYB63, TTG1, MYB75, etc.)
and complete regulatory interactions (such as TT8 and
TTG2, only have one target gene respectively in AGRIS
database). Besides, the number of available microarrays
is limited and insufficient to cover various experiments
where TFs function–so that some TFs were filtered in
microarrays analysis. Secondly, even if data collected in
the databases were complete, not all functional TFs can
meet our basic assumption and show significance in
co-expression, because present knowledge of regulation
is unable to definitely identify how well TFs’ expres-
sions reflect their function switches. Therefore, the
incompleteness of both data-collection and regulation
mechanisms impacts the results, which is a common
issue in systematic analysis.
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Conclusion
This systematic network-based bioinformatics approach
largely improves the understanding of perplexed regula-
tory rewiring mechanism in secondary metabolism and
provides useful references for biological experiments,
especially metabolic engineering. The approach of recon-
structing regulatory network and analyzing regulatory
rewiring can be applied to comprehend the whole me-
tabolism in Arabidopsis.

Methods
Data preparation
157 Affymetrix Arabidopsis ATH1 Genome Array plat-
form (GPL198) series of microarrays with complete
annotation and more than two duplications (Additional
file 6: Table S5) were downloaded from Gene Expression
Omnibus (GEO) [62]. Based on annotations, the experi-
mental conditions could be clustered into six categories:
biotic stresses, abiotic stresses, genotype experimental
comparisons, chemical treatments, tissue experimental
comparisons and grown stages. 1,097 experimental com-
parisons between two treatments within series (batches of
experiments) were made for further analysis (Additional
file 7: Table S6). Metabolic genes, enzymes and pathways
were collected from AraCyc, a biochemical pathway data-
base for Arabidopsis [5] (Additional file 8: Table S7).
TFBSs of TFs and 422,967 regulatory interactions
predicted by TFBSs alignments were collected from
AthaMap [41,63]. 10,653 direct regulatory interactions
between TFs and target genes confirmed by experi-
ments from Arabidopsis gene regulatory information
server (AGRIS), were used as both positive data and
supplement of predicted regulatory interactions. 5 sig-
naling pathways involving 93 genes in Arabidopsis
were collected from Database of Cell Signaling (http://
stke.sciencemag.org/cgi/collection/pw_plants) (Additional
file 9: Table S8).

Microarray data processing
Raw microarrays were preprocessed with RMA function
in Bioconductor. Then Limma package in Bioconductor
was applied to compute fold change values and P-values
of all genes in each experimental comparison. We
ranked genes in a descendent order by their absolute
fold change values and then selected the top ten percent
genes (absolute values of fold change larger than 1.7)
with adjusted P-value less than 0.01 as candidate dif-
ferentially expressed genes (DEGs). Raw P-values were
adjusted by Benjamini & Hochberg method in p.adjust
function. We kept the number of final DEGs no more
than 2,281 (ten percent of all genes designed on
GPL198 platform) to make DEGs more meaningful in
both technological and biological sense, in consider-
ation of microarray assumption that only a small
number of genes are differentially expressed under dif-
ferent conditions.

Computation of significantly and most significantly
co-expressed gene pairs
For each experimental comparison, we calculated Pearson
Correlation Coefficient (PCC) for each differentially
expressed gene pairs using cor function in R. Then we
tested the correlation coefficient by cor.test function in R
and maintained gene pairs with absolute value of correl-
ation coefficient bigger than 0.9 and adjusted P-value less
than 0.05 as correlated gene pairs. Raw P-values were
adjusted by Benjamini & Hochberg method in p.adjust
function. Considering that the correlated gene pairs
appearing only in one experimental comparison or one
series might occur by chance, we further measured the
statistical significance of correlated gene pairs as the
following procedure similar with previous method [64].
We randomly generated gene pairs, keeping the same
degree distribution and number of correlated gene pairs
within one experimental comparison or series; and then
calculated average frequencies of randomly generated
gene pairs for experimental comparisons and series
respectively. For each experimental comparison or series,
DEGs were designated with non-duplicate genes randomly
selected; and randomly co-expressed genes pairs were
generated by replacing DEGs of original co-expressed gene
pairs by the DEGs’ designated random genes. The fre-
quencies of these random gene pairs were then counted,
with mean value being defined as one random fre-
quency. After repeating this procedure for 100 times,
the mean values of random frequencies in experimental
comparisons (1.38) and series (1.63) were obtained re-
spectively, with standard deviation less than 0.01.
Therefore, correlated gene pairs present in 2 or more
experimental comparisons and series were defined as
significantly co-expressed gene pairs. Most significantly
co-expressed gene pairs were defined as the top ten
percent of all correlated gene pairs, the frequencies of
which were sorted in a descendent order.

Regulatory network reconstruction and analysis
Co-expressed gene pairs obtained above were used to
filter regulatory interaction pairs from both AthaMap
and AGRIS, resulting in two sets of co-expressed regula-
tory interaction pairs. The set of co-expressed regulatory
interaction pairs from AthaMap was further filtered by
conserved TFBSs. The conserved TFBSs were those
detected by sequence alignments in the upstream 3000 bps
of transcription starting sites of four sequenced species
(Populus trichocarpa, Sorghum bicolor, Brachypodium
distachyon and Chlamydomonas reinhardtii) whose
genome data were available from Phytozome database
(http://www.phytozome.net/). If TFBSs of TFs with

http://stke.sciencemag.org/cgi/collection/pw_plants
http://stke.sciencemag.org/cgi/collection/pw_plants
http://stke.sciencemag.org/cgi/collection/pw_plants
http://stke.sciencemag.org/cgi/collection/pw_plants
http://stke.sciencemag.org/cgi/collection/pw_plants
http://stke.sciencemag.org/cgi/collection/pw_plants
http://www.phytozome.net/
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co-expressed regulatory interactions were conserved in
these four organisms, related co-expressed regulatory
interaction pairs were maintained. As the procedure
described in Figure 1, we obtained complete regulatory
interactions used for building the regulatory network of
secondary metabolism in Arabidopsis. The final net-
work of metabolic pathways was constructed by map-
ping enzymatic genes to pathways (Additional file 10:
Table S9 and Additional file 11: Table S10). Then the
topology properties of this network were computed by
functions in igraph package in R, and network motif
analysis was carried out by FANMOD. Frequent regula-
tory patterns were defined as the regulatory interaction
pairs significantly simultaneously occurred.
The significance of co-expression relationship between

signaling pathways and TFs were tested by fisher.test func-
tion in R. Finally, the signaling pathways with adjusted
P-value less than 0.05 were regarded as significantly corre-
lated with TFs. Raw P-values were adjusted by Benjamini &
Hochberg method in p.adjust function.
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