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Functional analysis of COPT and SPA orthologs
from Physcomitrella and rice during
photomorphogenesis of transgenic Arabidopsis
reveals distinct evolutionary conservation
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Abstract

Background: Plants have evolved light sensing mechanisms to optimally adapt their growth and development to the
ambient light environment. The COP1/SPA complex is a key negative regulator of light signaling in the well-studied
dicot Arabidopsis thaliana. COP1 and members of the four SPA proteins are part of an E3 ubiquitin ligase that acts in
darkness to ubiquitinate several transcription factors involved in light responses, thereby targeting them for degradation
by the proteasome. While COP1 is also found in humans, SPA proteins appear specific to plants. Here, we have
functionally addressed evolutionary conservation of COPT and SPA orthologs from the moss Physcomitrella, the
monocot rice and the dicot Arabidopsis.

Results: To this end, we analyzed the activities of COP1- and SPA-like proteins from Physcomitrella patens and
rice when expressed in Arabidopsis. Expression of rice COP1 and Physcomitrella COP1 protein sequences
predominantly complemented all phenotypic aspects of the viable, hypomorphic cop7-4 mutant and the null,
seedling-lethal copT-5 mutant of Arabidopsis: rice COP1 fully rescued the constitutive-photomorphogenesis phenotype
in darkness and the leaf expansion defect of cop! mutants, while it partially restored normal photoperiodic flowering in
cop!. Physcomitrella COP1 partially restored normal seedling growth and flowering time, while it fully restored normal
leaf expansion in the copl mutants. In contrast, expression of a SPA ortholog from Physcomitrella (PpSPADb) in
Arabidopsis spa mutants did not rescue any facet of the spa mutant phenotype, suggesting that the PpSPAb
protein is not functionally conserved or that the Arabidopsis function evolved after the split of mosses and seed
plants. The SPAT ortholog from rice (OsSPAT1) rescued the spa mutant phenotype in dark-grown seedlings, but did
not complement any spa mutant phenotype in light-grown seedlings or in adult plants.

Conclusion: Our results show that COP1 protein sequences from Physcomitrella, rice and Arabidopsis have been
functionally conserved during evolution, while the SPA proteins showed considerable functional divergence. This
may - at least in part - reflect the fact that COP1 is a single copy gene in seed plants, while SPA proteins are
encoded by a small gene family of two to four members with possibly sub- or neofunctionalized tasks.
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Background

Since plants use sunlight as their primary source of energy
they have evolved mechanisms of light sensing in order to
optimally adjust their growth and development accord-
ingly. Light-adapted responses are particularly obvious
during seedling growth. Dark-grown seedlings usually
exist under soil cover and therefore respond with etiola-
tion, showing a long hypocotyl, small and closed cotyle-
dons, an apical hook and a lack of chlorophyll synthesis.
Light-grown seedlings, in contrast, are green and exhibit a
short hypocotyl, open, expanded and green cotyledons
and no apical hook. Other light-induced responses in-
clude phototropism, leaf expansion, the shade avoidance
response and photoperiodic flowering [1,2]. To sense
the light, plants have several classes of photoreceptors:
the red (R) and far-red (FR) sensing phytochromes, the
blue (B)/UV-A responsive cryptochromes, phototropins
and ZEITLUPE family members and the recently identi-
fied UV-B sensing UV-RESISTANCE LOCUS 8 (UVRS)
protein [3-6].

The molecular events during light signal transduction are
best understood in the model species Arabidopsis. After ac-
tivation by light, phytochrome and cryptochrome photore-
ceptors inhibit the activity of a key negative regulator of
light signal transduction, the CULLIN4 (CUL4)-dependent
E3 ubiquitin ligase complex CONSTITUTIVELY PHOTO-
MORPHOGENIC1/SUPPRESSOR OF PHYA-105 (COP1/
SPA). In darkness, COP1/SPA acts to ubiquitinate activa-
tors of the light response, such as the transcription factors
ELONGATED HYPOCOTYL5 (HY5), LONG HYPO-
COTYL IN FR 1 (HFR1), B-BOX DOMAIN PROTEINS
(BBX) proteins, PRODUCTION OF ANTHOCYANIN
PIGMENT1 (PAP1) and PAP2 as well as several photore-
ceptors, thereby targeting them for degradation in the pro-
teasome. In light-grown plants, in contrast, COP1/SPA
activity is suppressed and the target proteins can accumu-
late and mediate light-regulated gene expression and
photomorphogenesis [7-11]. Hence, mutants defective in
COP1I or in all four members of the SPA gene family show
constitutive photomorphogenesis, exhibiting features of
light-grown seedlings in complete darkness [12,13]. Besides
controling seedling growth in response to light, the
COP1/SPA complex is involved in multiple other light-
induced responses, such as anthocyanin biosynthesis, leaf
expansion, shade avoidance responses and photoperiodic
flowering [7,11,14-19]. COP1/SPA also acts downstream
of the UV-B receptor UVRS, but in contrast to R and B
signaling - where COP1 acts as a repressor of light signal-
ing - COP1/SPA functions as a positive regulator of the
UV-B response [20].

The COP1/SPA complex likely forms a tetramer with
two COP1 and two SPA proteins. COP1 and SPA proteins
interact with each other via their respective coiled-coil do-
mains [21-24]. COP1 and the four SPA proteins (SPA1-
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SPA4) share further structural similarity in that they con-
tain related C-terminal WD-repeat domains which have
dual roles in substrate recruitment and binding of DAM-
AGED DNA-BINDING PROTEINI (DDBI1) of the CUL4
complex [11]. In their N-termini, COP1 and SPA proteins
have distinct sequences, with COP1 containing a RING
finger domain and SPA proteins carrying a kinase-like do-
main [25,26]. The mechanisms involved in light-mediated
inhibition of COP1/SPA activity are not well understood
but likely involve light-induced interaction of crypto-
chromes with SPA1, light-induced degradation of SPA1
and SPA2 as well as light-mediated nuclear exclusion of
COP1 [27-33].

The four SPA proteins share highest sequence similarity
to each other in their WD-repeat domain. Sequence con-
servation of the N-terminal domain is relatively low and
mostly limited to the kinase-like domain. Based on se-
quence similarity, the four SPA proteins fall into two sub-
groups with SPA1 and SPA2 forming one subgroup and
SPA3 and SPA4 forming the other subgroup [13]. Genetic
analysis of spa mutants indicated that the four SPA genes
have partly redundant but also distinct functions in plant
growth and development [13,27,34].

COP1 functions have also been described in other flow-
ering plant species. In rice, the COPI ortholog PETER
PAN SYNDROME]1 (PPS) shortens the juvenile phase, a
phenotype not reported for Arabidopsis, and delays flow-
ering in short and long day [35]. The COPI ortholog of
pea, LIGHT-INDEPENDENT PHOTOMORHOGENESISI
(LIPI), regulates seedling growth by affecting gibberellic
acid levels [36,37]. In apple, MdCOP1 affects anthocyanin
levels in the fruit peel [9]. COPI also exists in non-plant
lineages, e.g. humans, where hCOP1 acts as an E3 ubiqui-
tin ligase to control the protein stability of a number of
transcription factors, e.g. p53 or cJun [38]. SPA genes, in
contrast, appear to be specific to plants, which indicates
that human COP1 functions without a need for SPA pro-
teins. This suggests that SPA genes might have evolved to
place COP1 activity under the control of light. Indeed, the
N-terminus of SPA1 was shown to be involved in the
blue-light dependent interaction of SPA1 with crypto-
chrome photoreceptors [31,32].

Whole genome sequencing has shown that COPI1 and
SPA genes exist in early diverged land plants, such as in the
moss Physcomitrella patens. There are a number of light re-
sponses known in Physcomitrella, such as chloroplast
movement, phototropism, caulonema branching and game-
tophore growth [39] as well as UV-B responses akin to
those in Arabidopsis [40]. While COPI is a single copy
gene in rice and Arabidopsis [11], genome sequence infor-
mation predicted a total of nine paralogs in P. patens
[41,42]. Both the rice and Physcomitrella genomes contain
two SPA-related genes each [41-43]. Physcomitrella has
functional phytochrome and cryptochrome photoreceptors
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[39,44-47], allowing the possibility that PpCOP1 and PpSPA
genes may also function in light signal transduction
in Physcomitrella.

To address the evolutionary conservation of COP1 and
SPA protein sequences, we expressed COPI and SPA cod-
ing sequences from rice and Physcomitrella in the respect-
ive copl and spa mutant backgrounds of Arabidopsis. Our
results show that COP1 sequences are functionally much
more conserved than SPA sequences, suggesting that gene
duplication of SPA genes in the flowering plant lineage
has contributed to divergence of SPA gene functions.

Results

A comparison of Physcomitrella, rice and Arabidopsis
COP1 and SPA protein sequences

Based on the v1.6 genome annotation currently avail-
able [48], the Physcomitrella genome contains 9 COPI-
like genes (Figure 1; Additional file 1: Figure S1), as was
predicted previously based on v1.2 [41]. The predicted
PpCOP1 protein sequences share 61-82% amino acid
sequence identity among each other and 55-64% amino
acid sequence identity with the Arabidopsis COP1 pro-
tein. The COP1 ortholog from rice (PPS [35], here for
clarity from now on referred to as OsCOP1) and Arabi-
dopsis COP1 share approx. 70% identical amino acids.
Like Arabidopsis COP1, all predicted PpCOP1 proteins
and OsCOP1 contain a RING finger motif, at least one
coiled-coil domain and a WD40 repeat domain (Figure 1;
Additional file 1: Figure S1C; Additional file 2: Figure S2,
Additional file 3: Figure S3).

While the COPI gene family has expanded in Physco-
mitrella as compared to a single COP1 gene reported in
flowering plant species, there are only two predicted
SPA genes in Physcomitrella. These two PpSPA genes
are very similar to each other (89% amino acid identity
of the predicted proteins), suggesting that they repre-
sent recent duplication events based on an ortholog of
AtSPA1/2 (Figure 1; Additional file 1: Figure S1A, B;
Additional file 4: Figure S4). We named the two Physco-
mitrella SPA genes PpSPAa (Pp1s59_66V6.1) and PpSPAb
(Pp1s30_295V6.1). There are two predicted rice SPA pro-
teins of which each groups with one subclass from Arabi-
dopsis (AtSPA1/2, AtSPA3/4) (Figure 1; Additional file 1:
Figure S1A, B), evidencing that two paralogs were already
present in the last common ancestor of monocots and di-
cots. The SPA1/SPA2-like rice SPA was more similar to
Arabidopsis SPA1 than to Arabidopsis SPA2. We therefore
refer to this rice SPA as rice SPAl-like or OsSPA1
(0s05g49590.1). The predicted SPA3/SPA4-like SPA from
rice equally resembles Arabidopsis SPA3 and SPA4 protein
sequences. We therefore refer to it as rice SPA3/4-like or
OsSPA3/4 (0s01g52640.1). The predicted domain struc-
tures of Physcomitrella and rice SPA proteins are similar
to those from Arabidopsis SPA proteins: they all contain
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an N-terminal kinase-like domain, a coiled-coil domain
and seven WD40-repeats (Figure 1; Additional file 1:
Figure S1C, Additional file 3: Figure S3, Additional file
4: Figure S4). Similar to Arabidopsis SPA proteins, the
kinase-like domains from rice and Physcomitrella SPA
proteins share only limited sequence conservation with
bona fide Ser/Thr kinase consensus motifs because
amino acid residues that are normally highly conserved
in Ser/Thr kinases are not conserved in PpSPA and
OsSPA proteins. Nevertheless, sequences in the kinase-
like domain that are conserved among the four Arabi-
dopsis SPA proteins are also highly conserved in OsSPA
and PpSPA proteins (Additional file 4: Figure S4). All
SPA sequences in Arabidopsis, rice and Physcomitrella
contain a predicted coiled-coil domain (Additional file
3: Figure S3), though the sequence of the respective
coiled-coil domain is not strongly conserved among
Arabidopsis, rice or Physcomitrella SPA proteins. This
suggests a structural rather than sequence-based con-
servation of this domain in the SPA proteins. The SPA
protein sequences are most conserved within the
WD40-repeat domain, with Physcomitrella SPAa and
SPAb showing 65% amino acid identity with AtSPA1 -
compared with 42% when aligning the complete protein
sequences.

Rice and Physcomitrella also contain predicted orthologs
of the Arabidopsis RUP genes. Arabidopsis RUP proteins
consist of COP1/SPA-like WD40 repeats and function as
negative regulators of UV-B signaling [49,50]. The rice
genome contains 1 ortholog of RUP, while Physcomitrella
has two predicted RUPs (Figure 1; Additional file 1: Figure
S1, Additional file 5: Figure S5).

Functional analysis of COP1-like proteins from rice and
Physcomitrella in the hypomorphic cop7-4 mutant

of Arabidopsis

In order to address the evolutionary conservation of COP1
and SPA function, we expressed the coding sequence of
Physcomitrella, rice and - as a control - Arabidopsis COPI
and SPA genes in transgenic Arabidopsis copl and spa mu-
tants, respectively, to subsequently evaluate whether the
transgenes complement the respective mutant phenotypes.
Though protein detection in the transgenic plants is desir-
able, we did not add an epitope tag to the coding se-
quence because a tag might negatively affect protein
function. Among the nine PpCOPI genes, we chose the
one with the highest sequence similarity to AtCOPI,
based on BLAST scores, for the complementation study
(Pp1s135_17V6.1, PpCOP1a, Figure 1). The coding se-
quences of OsCOP1, PpCOPla and AtCOPI were
placed under the control of the 35S constitutive pro-
moter and introduced into the hypomorphic copl-4
mutant and into the copI-5 null mutant of Arabidopsis.
While the copl null mutant is seedling lethal, the copI-
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Figure 1 Cladogram representing the COP1 and SPA gene family phylogeny in Arabidopsis, rice and Physcomitrella and overview of
their protein domain structure. The cladogram combines the phylogenetic relationships between the species analyzed which were obtained
by Bayesian inference and maximum likelihood. Branch lengths are not in proportion to evolutionary times. Grey diamond represents root of the
phylogeny set by the RUP gene family as an outgroup. Numbers on internal branches indicate Bayesian inference prosterior probabilities (support
values) in percent (upper number) or maximum likeliood bootstrap support values in percent (lower number). Next to each protein name
obtained by the used sequence databases an alias was attached. Protein domains important for COP1 and SPA gene function obtained by
InterProScan5 were plotted next to each protein; red rings, IPRO13083 — Zinc finger, RING/FYVE/PHD — type; orange circles, IPRO01841 — Zinc
finger, RING — type; light green rings, IPR011009 — Protein kinase — like domain; green circles, IPRO00719 — Protein kinase domain; blue boxes
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4 mutant is viable, producing a truncated COP1 protein
lacking the C-terminal WD-repeat domain [12,51].
copl-4 mutant seedlings undergo constitutive photo-
morphogenesis in darkness, exhibiting short hypocotyls
and open cotyledons (Figure 2A [51]). Transgenic copl-4
seedlings expressing the Arabidopsis COPI gene or rice
COP1I ortholog fully etiolated in darkness and thus resem-
bled the wild type. Hence, AtCOP1 and OsCOPI fully
complemented the copI-4 mutant phenotype in darkness.
Transgenic copl-4 seedlings carrying the PpCOP1a trans-
gene showed a partial rescue of the copI-4 mutant pheno-
type in darkness: PpCOPla lines exhibited a longer
hypocotyl than copl-4 in darkness but failed to fully

etiolate, as indicated by the open cotyledons and the lack
of an apical hook (Figure 2A). Of 25 independent
PpCOPla lines investigated, none showed a full rescue of
the cop1-4 mutant phenotype in darkness. When grown in
light of low to intermediate fluence rates, copl-4 mutant
seedlings exhibited a shorter hypocotyl than the wild type
([51], Figure 2B). This mutant phenotype was similarly
complemented by all three transgenes, AtCOPI, OsCOPI
and PpCOPIla (Figure 2B).

Besides the constitutive photomorphogenesis in seed-
lings, copI-4 mutants exhibit mutant phenotypes in the
adult plant: copl-4 mutant plants are small and dwarfed
and they flower earlier than the wild type, particularly
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Figure 2 Complementation analysis of Arabidopsis cop7-4 hypomorphic mutants carrying the rice, Physcomitrella or Arabidopsis COP1

transgene. A, B. Visual phenotype of cop-4 mutant Arabidopsis seedlings that are homozygous for the transgenes AtCOP1 (Arabidopsis COPT),
OsCOPT (rice COP1) or PpCOP1a (Physcomitrella COPT). Seedlings were grown in darkness (A) or red light (B, 5 umol m~2s7") for four days. Three

Plants were grown in short day.

independent transgenic lines and, as controls, wildtype Col (WT) and a cop’-4 mutant are shown. C. Visual phenotype of copl-4 mutant
Arabidopsis plants. Genotypes were as in B. Plants were grown in short day for four weeks. D, E. Scatter plot representing leaf length (D) and
flowering time (E) of 25-27 individual, i.e. independent T1 primary transformants and 15 individual wild-type and cop1-4 mutant control plants.

under short day conditions [51]. Transgenic AtCOPI,
OsCOP1 and PpCOPla copl-4 mutant lines were similar
in size as the wild type and flowered at a similar time as
the wild type (Figure 2C,D,E). For each of the three trans-
genes, about half of the transgenic T1 plants showed full
rescue of the copI-4 mutant adult phenotypes (Figure 2D,
E). Hence, OsCOPI and PpCOPIa, like AtCOPI, were able
to fully complement the copl-4 mutant phenotypes in
adult plants.

Functional analysis of COP1-like proteins from rice and
Physcomitrella in the cop7-5 null mutant of Arabidopsis
Since the copl-4 mutant allele expresses a truncated
COP1 protein retaining the N-terminal part of COP1 in-
cluding the coiled-coil domain [51], rescue of the copl-4
mutant phenotype by expression of OsCOPI or PpCOPla

might depend on the presence of the truncated COP1-4
protein, especially since the retained coiled-coil domain
might allow protein-protein interaction with OsCOP1 and
PpCOPla. We therefore introduced the transgenes also
into the copI-5 null mutant background by transforming
copl-5/+plants and by crossing transgenic copl-4 mutants
with cop1-5/+plants. Homozygous copI-5 (-/-) mutant
seeds in the progeny could be easily recognized by their
black seed color, though they mostly failed to germinate
[51]. Assuming Mendelian segregation of the seedling-
lethal copI-5 mutant phenotype, the penotypic effect of
the transgenes should be analyzable in the respective T2
generations based on the segregation ratio of mutant and
wild-type phenotypes. However, we found a much reduced
transmission frequency of the copl-5 mutant allele when
compared to the COPI wild-type allele, thus making the
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analysis of segregating populations ambiguous. We there-
fore generated homozygous copI-5 mutant lines that were
also homozygous for the respective transgene. Figure 3A
shows that AtCOPI1 and OsCOPI fully restored a wild-
type phenotype in dark-grown homozygous copI-5 mutant
seedlings. Hence, the AtCOPI and OsCOPI transgenes
not only rescued the seedling-lethal phenotype of cop1-5
but also fully complemented its fusca phenotype of consti-
tutive photomorphogenesis and strong anthocyanin pro-
duction which was described for strong cop! alleles [51].
PpCOP1a copl-5 seedlings, in contrast, showed open cot-
yledons and a slightly shorter hypocotyl than the wild type
when grown in darkness (Figure 3A,B). Thus, expression
of PpCOPIa resulted in partial complementation of the
copl-5 mutant phenotype. In light-grown seedlings, the
control construct AtCOPI fully complemented the cop1-5
mutant phenotype. In contrast, B- and FR-grown OsCOPI
copl-5 and PpCOPla copl-5 seedlings were even taller
than wild-type seedlings, especially at higher fluence rates,
indicating a reduced response to B and FR when com-
pared to the wild type (Figure 3B; Additional file 6: Figure
S6). In R, all transgenic seedlings behaved similar to the
wild type (Additional file 6: Figure S6).

Since all three transgenes rescued the seedling-lethal
phenotype of copI-5, we were able to analyze the activity
of the transgene also in the adult stage. Transgenic
OsCOP1 copl-5, PpCOPla copl-5 and AtCOPI copl-5
plants were of similar size as the wild type (Figure 2C,D).
With respect to flowering time, transgenic AtCOP1 copI-5
lines flowered at a similar time as the Ws wild type while
transgenic OsCOPI copl-5 and, in particular, PpCOPla
copl-5 lines flowered earlier than the wild type and the
AtCOPI copl-5 transgenic lines (Figure 2E). These results
indicate that the COP1 sequences from rice and Physco-
mitrella only partially rescued this aspect of the copl-5
mutant phenotype.

Rice and Physcomitrella SPA protein-coding sequences do
not complement the light hypersensitivity-phenotype of
the Arabidopsis spal spa3 spa4 triple mutant

To analyze functional conservation of rice and Physcomi-
trella SPA1-related protein-coding sequences we expressed
OsSPA1 and PpSPAb ORFs in an Arabidopsis spa mutant.
The two Physcomitrella SPA proteins, SPAa and SPAb are
highly similar to each other (89% amino acid sequence
identity) and both share equal sequence similarity to the
Arabidopsis SPA1. We therefore chose only one of these
SPAs, SPAD, for our analyses. As controls, we included the
Arabidopsis SPA1 and SPA4 ORFs because these two SPAs
are representative for the partially distinct functions of the
four SPA genes [13,15,34]. We transformed these con-
structs into the spal spa3 spa4 triple mutant because this
mutant is a viable spa mutant showing defects in multiple
phenotypes including seedling deetiolation, leaf expansion
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and flowering time control [13,15]. Initially, we expressed
the SPA coding sequences under the control of the 35S
promoter. However, the Arabidopsis 35S::AtSPAI and 35S::
AtSPA4 constructs produced very low complementation
rates (<10% of transgenic plants) in the spa triple mutant,
an observation we had made before [52]. We therefore pro-
ceeded to express the respective SPA coding sequences
under the control of the endogenous Arabidopsis AtSPAI
and AtSPA4 5° and 3’ regulatory sequences which previ-
ously produced very high complementation rates among
transgenic spa mutant plants (>90%) [27,52]. For linguistic
simplicity, we will refer to these regulatory sequences as
promoters” from now on.

spal spa3 spa4 triple mutant seedlings etiolate normally
in darkness, but have a severely reduced hypocotyl length
in weak light when compared to the wild type. Hence, this
mutant is strongly hypersensitive to light ([13], Figure 4A).
Expression of AtSPA1 from the AtSPA1 promoter fully re-
stored the spa3 spa4 phenotype in the spal spa3 spa4 mu-
tant, thus reflecting the activity of the native SPA1 gene.
In contrast, expression of rice OsSPAI or Physcomitrella
PpSPAD from the AtSPAI promoter did not alter the spal
spa3 spa4 mutant seedling phenotype in any of the 20 in-
dependent transgenic lines analyzed for each construct
(Figure 4A). Similarly, when PpSPAb was expressed from
the Arabidopsis AtSPA4 promoter, no change in the spal
spa3 spa4 mutant phenotype was observed, while expres-
sion of the control construct AtSPA4::AtSPA4 caused an
elongation of the hypocotyl when compared to the spal
spa3 spa4 progenitor, though the effect of AtSPA4::AtSPA4
was consistently weaker than that of AtSPAI1::AtSPA1, as
expected [13].

In the adult stage, none of the constructs containing the
OsSPA1 or PpSPAb coding sequences complemented the
dwarfism or the early flowering time of the spal spa3
spa4 mutant (Figure 4B,C,D). Expression of the control
constructs AtSPAI::AtSPA1 or AtSPA4:AtSPA4, in con-
trast, rescued these facets of the spal spa3 spa4 mutant
phenotype to the expected degree [13,15].

To confirm that OsSPAI and PpSPAD genes are indeed
expressed in the transgenic plants, we analyzed SPA tran-
script levels by semiquantitative RT-PCR. Figure 5 shows
that all transgenes were expressed. This indicates that the
failure of OsSPA1 and PpSPAb coding sequences to com-
plement the spa triple mutant phenotype was not caused
by a lack of expression of the respective SPA genes.

Functional analysis of SPA orthologs from rice and
Physcomitrella in the constitutively photomorphogenic
spal spa2 spa3 mutant of Arabidopsis

Since Arabidopsis spal spa3 spa4 mutant seedlings ana-
lyzed above etiolate normally in darkness, this back-
ground precludes a genetic complementation analysis in
dark-grown seedlings. We therefore introduced the SPA
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constructs also into the spal spa2 spa3 triple mutant
which undergoes constitutive seedling photomorpho-
genesis in darkness (Figure 6), while it develops nor-
mally as an adult plant [13,15].

Expression of the control constructs (AtSPAI:AtSPAI;
AtSPA4::AtSPA4) fully complemented the spal spa2 spa3
mutant phenotype in darkness: all of the AtSPAI::AtSPAI
lines (12/12 independent lines total) and most of the
AtSPA4::AtSPA4 lines (10/11 total) exhibited normal sko-
tomorphogenesis in darkness (Figure 6). When expressing
the rice SPA1 (AtSPA1:OsSPAI), several transgenic lines
showed partial (8/22 total) or full (1/22 total) complemen-
tation of the spal spa2 spa3 mutant phenotype in dark-
ness (Figure 6). Hence, OsSPA1 appears to be functional
in Arabidopsis, though at a much reduced efficiency when
compared to AtSPA1. In contrast, none of the 25 trans-
genic lines expressing Physcomitrella PpSPAb under the
AtSPA1 or AtSPA4 promoters showed any rescue of the
spal spa2 spa3 mutant phenotype: these transgenic spal
spa3 spa4 seedlings underwent constitutive photomorpho-
genesis in darkness very similar to the spal spa2 spa3

mutant progenitor (Figure 6). Hence, PpSPAb was non-
functional in Arabidopsis. Again, all transgenes were
expressed in the respective transgenic lines, as indicated
by the presence of the transgene-encoded transcripts
(Figure 7).

Discussion

The COP1/SPA complex of Arabidopsis is a well-
characterized key negative regulator that actively sup-
presses the light signaling cascade in dark-grown plants by
ubiquitinating transcription factors which mediate the
various light responses. The E3 ubiquitin ligase activity is
conserved in the mammalian ortholog of COP1 which,
however, appears to function without a need for SPA pro-
teins since SPA genes appear to be specific to plants. SPA
protein sequences are distinct from COP1 in that they
carry a kinase-like domain in the N-terminus [13,26]. This
kinase-like domain is conserved in Physcomitrella, rice
and Arabidopsis SPA proteins and shows a similar diver-
gence in sequence from bona fide Ser/Thr kinase motifs in
all three species. This finding suggests on one hand that
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this kinase-like domain is of functional importance - though
its exact role has so far remained elusive [31,32,34,53] - and
on the other hand that early in land plant evolution this
domain was already divergent in sequence from normal
protein kinases.

Our functional analysis clearly shows that PpCOPla
from Physcomitrella is able to mostly replace the functions
of COP1 in Arabidopsis. Similarly, rice OsCOP1 was able
to mostly complement all aspects of the Arabidopsis copl
mutant phenotype. These findings suggest that COP1 is
under strong negative selection in seed plants. Physcomi-
trella PpSPAD, in contrast, was incapable of complement-
ing any of the spa mutant phenotypes in transgenic
Arabidopsis, strongly suggesting that the PpSPAb protein
is non-functional in Arabidopsis. Similarly, expression of
the rice OsSPA1 protein in Arabidopsis spa mutants failed
to complement any phenotypes of light-grown spa mutant
plants and complemented the phenotype of dark-grown
seedlings at a much reduced efficiency. These results sug-
gest that SPA-like sequences underwent considerable
functional divergence during evolution. However, since we
cannot determine the PpSPAb and OsSPA1 protein levels
in the transgenic Arabidopsis plants we cannot exclude
the possibility that the apparent inactivity of PpSPAb and
OsSPA1 in Arabidopsis are due to inefficient translation of
the respective mRNAs or due to instability of the respect-
ive proteins in Arabidopsis when compared to the native
Arabidopsis SPA1 protein. To fully understand the
functional conservation between SPA1 from moss, rice
and Arabidopsis, it will also be necessary to genetically
identify OsSPA1 and PpSPA1 function in rice and Phys-
comitrella, respectively. Moreover, a protein-protein

interaction analysis among the respective COP1 and
SPA orthologs will be helpful in analyzing OsSPA1 and
PpSPAD activity in Arabidopsis.

We can only speculate why the COPI gene appears to
be subject to much less functional divergence than SPAI.
One likely reason is the fact that COPI is a single-copy
gene in flowering plants while SPA proteins are encoded
by a small gene family comprising two to four members.
Gene duplication is a powerful driving force of neo- and
subfunctionalization during plant evolution [54]. The four
SPA genes of Arabidopsis are indeed not fully redundant
but have partially distinct functions during Arabidopsis
development [13,15]. At least some of the functional di-
vergence, the one between Arabidopsis SPAI and SPA2,
has been mapped to the respective SPA protein se-
quence rather than the promoter sequences [27]. Hence,
evidence strongly suggests that the four Arabidopsis
SPA proteins are not identical in function but provide
some degree of specificity to the COP1/SPA E3 ligase
activity. The failure of PpSPAb and OsSPA1 to fully re-
place AtSPA1 in Arabidopsis supports that such func-
tional divergence has occurred in the course of land
plant evolution. While this is very reasonable, it is
nevertheless significant that COPI coding sequences
did not functionally co-diverge with SPA sequences, es-
pecially considering that both proteins carry very simi-
lar WD40-repeat domains in their C-termini which
both are able to bind and thereby recognize the same
substrate proteins [11]. Hence, COP1 must provide a
core function to the COP1/SPA complex that hinders
evolutionary divergence, and this core function is likely
modified by divergent SPA proteins.
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OsSPA1 was capable of restoring a wild-type phenotype
in dark-grown spa triple mutant seedlings — though at low
efficiency - but not in light-grown seedlings or adult
plants. We consider two possible scenarios to explain this
dark-specific complementation by OsSPA1: OsSPA1 activ-
ity may be reduced when compared to AtSPA1 and there-
fore be solely sufficient to restore SPA function in
darkness but not in the light. This would be consistent
with previous observations showing that mutations in a
single SPA gene caused a mutant phenotype only in the
light but not in darkness [24,55]. Hence, full SPA activity
is much more critical in light-grown seedlings than in
dark-grown seedlings, probably because the light-induced
inactivation of the COP1/SPA complex causes additional
stress on the activity of the complex. Alternatively,
OsSPA1 may be hyperinactivated by Arabidopsis photore-
ceptors and, therefore, lack any activity in the light. This
behavior is found in the Arabidopsis SPA2 protein which
also shows high activity primarily in dark-grown seedlings
[27]. Though the OsSPA1l sequence is more similar to
Arabidopsis SPA1 than to SPA2, we do not exclude this
possibility. Knocking out the OsSPA1 gene in rice would
allow to distinguish between these two possibilities.

The degree of complementation by COPI orthologs var-
ied with respect to the different aspects of the copl mu-
tant phenotype. Most evidently, expression of OsCOP1 or
PpCOP1la in light-grown copl-5 seedlings caused a re-
duced response to B and FR, a phenotype that is reminis-
cent of AtCOP1 overexpression rather than of reduced
COP1 activity. This observation suggests that OsCOP1
and PpCOPIla maintain higher activity in the light than
AtCOP1 and are therefore incompletely inactivated by
Arabidopsis photoreceptors when compared to the native
Arabidopsis COP1 protein. Hence, photoreceptor and
COP1 sequences appear to have co-evolved to allow opti-
mal adaptation of seedling growth to the ambient light en-
vironment. When analyzing adult growth and development,
PpCOP1a and OsCOP1 fully complemented the cop1-5 leaf
expansion phenotype while they only partially complemen-
ted the early-flowering phenotype of copI-5. Since these
phenotypes are mediated by distinct substrates, it is evident
that the COP1-like proteins from rice and Physcomitrella
do not polyubiquitinate all substrates of Arabidopsis COP1
equally well. Hence, functional conservation of COP1 may
have varied with respect to the different substrates of
COP1. Orthologs of known COP1/SPA substrates exist in
P. patens, such as two PpHY5 and three PpCO-like
(PpCOL) proteins [56-58]. A role of PpHY5 in moss light
responses was described [58]. Hence, if PpCOP1la acts as a
light-regulated ubiquitin ligase in mosses as well, it may in-
deed mediate degradation of the PpHY5 protein. In the fu-
ture, it will be interesting to elucidate whether there is a
COP1/SPA E3 ligase in Physcomitrella and, if so, which
substrates are recognized.
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Conclusions

Our results show that COP1 protein sequences from
Physcomitrella, rice and Arabidopsis are functionally con-
served, while the sequences of the SPA proteins showed
considerable functional divergence. This may - at least in
part - reflect the fact that COPI is a single copy gene in
flowering plants, while SPA proteins are encoded by a
small gene family of two to four members, thus possibly
allowing sub- or neofunctionalization. Light responses are
very distinct in mosses and angiosperms [39]. Whether
these differences reflect distinct signaling pathways includ-
ing the recruitment of different transcription factors into
the light signaling network needs to be resolved.

Methods

Sequences and ortholog prediction

Arabidopsis protein sequences correspond to the loci SPA1
(At2g46340.1), SPA2 (At4gl1110.1), SPA3 (At3gl5354.1),
SPA4 (At1g53090.1) and COPI (At2g32950.1) of the anno-
tated Arabidopsis Col genome TAIR10 annotation [59]. Rice
proteins correspond to the loci OsCOP1 (0Os02g53140.1),
OsSPA1 (0s05g49590.1) and OsSPA3/4 (Os01g52640.3) of
the Rice Genome Annotation Project Release 7 [60].
However, based on an amino acid sequence alignment
with all other SPAs from Arabidopsis, Physcomitrella
and rice, the corresponding reference sequence of
OsSPA3/4 (0s01g52640.3) lacks a part of the WD40 repeat
domain. Here we used an alternatively spliced sequence,
0s01g524630.1, from Genome Annotation Project Release
5 which contains additional WD40 repeats and in our opin-
ion reflects the full-length OsSPA3/4 protein. Physcomi-
trella proteins correspond to the loci indicated in Figure 1.
They are derived from the cosmoss.org Physcomitrella
patens V1.6 genome annotation [48].

To conduct a phylogentic reconstruction of the COPI1/
SPA genes in Arabidopsis, rice and Physcomitrella, first an
all-against-all blast search was performed. To find hom-
ologous sequences between these species, blastp + version
2.2.9 [61] was used to build a blast database with protein
sequences as indicated in Additional file 7: Table S1 and a
blastp search was performed with an e-value cutoff of 10
by using the BLOSUM®62 matrix. The resulting blastp re-
sults were then filtered by applying a changed version of
formula (2) as indicated by [62]. These filtered blastp re-
sults were then used with proteinortho version 4.26 [63]
to detect co-orthologs within and between these species
by using the following options [-e = 0.01; —id = 11; —cov =
0.25; —conn=0.1; -m=0.75; —pairs; -selfblast; —blas-
tdone]. The proteinortho results were filtered for COP1
(AT2G32950.1), SPA1 (AT2G46340.1), SPA2 (AT4G11110.1),
SPA3 (AT3G15354.1), SPA4 (AT1G53090.1), RUP1 (AT5G
52250.1), RUP2 (AT5G23730.1) and all resulting co-orthologs
were used for further analysis and were screened for protein
domains by InterProScan version 5 [64]. The program ncoils
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(based on [65]) is used by InterProScan with default set-
tings to predict coiled-coils domains. In addition to stand-
ard settings we used different sliding window parameters
[14,21,28] for the coiled-coils domain predictions which
are highlighted in Additional file 3: Figure S3. For the
phylogenetic reconstruction RUP1 and RUP2 were chosen
as an outgroup gene family since both also contain WD40
repeats like the COP1/SPA genes but lack functional do-
mains further upstream. These genes could be used to
root COP1/SPA phylogenetic trees.

Phylogenetic analysis

A multiple sequence alignment (MSA) was calculated with
MAFFT L-INS-i version 7.037b [66], ProbCons version
1.12 [67], Muscle version 3.8.31 [68] and T-coffee version
8.99 [69] with default settings and subsequently combined
into an optimal alignment using the combiner function of
T-coffee. The MSA was visualized and manually curated
using Jalview version 2.8 [70] (Additional file 2: Figure S2,
Additional file 4: Figure S4, Additional file 5: Figure S5).
The JTT + G + I + F model was selected as the best fitting
amino acid substitution model according to the Bayesian
Information Criterion in ProtTest version 3.3 [71]. To re-
construct the phylogeny we used MrBayes 3.2.2 [72] and
RAxML version 8.0.2 [73].

For MrBayes we initiated two runs of four Markov-
chain Monte Carlo (MCMC) chains of 2 x 107 generations
each from a random starting tree, sampling every 1,000
generations [additional settings: rates = invgamma, ngam-
macat = 4, aamodelpr = JTT]. A 25% burn-in was chosen
and convergence was assessed by standard deviation of
split frequencies falling below 0.005.

RAXxML conducted 1,000 non-parametric bootstrap infer-
ences with the rapid hill-climbing mode using the PROT-
GAMMAIJTTF model [additional settings: —-d -b -#1000].
The bootstrap replicates were used to build a consensus
tree applying the majority rule option (-m PROTGAM-
MAIJTTF -] MR). Phylogenetic trees were rooted by the
RUP outgroup gene family and visualized with Figtree ver-
sion 1.4.0 (http://tree.bio.ed.ac.uk/software/figtree/).

Plant material, light sources and growth conditions

All mutant genotypes used were described previously:
copl-4 (Col-0), copl-5 (Ws) [51], spal-7 spa3-1 spad-1
and spal-7 spa2-1 spa3-1 (both Col) [34]. Light sources,
seedling growth conditions and determination of seedling
and adult traits were described previously [27].

Plasmid constructions, plant transformations and
selection of transgenic plants

All ORF clones were designed based on the sequence infor-
mation provided in the databases described above. To gen-
erate COPI expression clones, AtCOPI, OsCOP1 and
PpCOPla ORFs were amplified using gene-specific primers
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with attached attB sites and the amplified sequences were
subsequently cloned into the pDONR221 entry vector by
Gateway cloning according to the manufacturer’s instruc-
tions. AtCOP1 and PpCOPIla ORFs were amplified from
¢DNA derived from Arabidopsis seedlings or Physcomi-
trella gametophores, respectively. OsCOPI was amplified
from a full-length cDNA clone obtained from National In-
stitute for Agrobiological Sciences (NIAS), Japan. The ob-
tained Entry clones were recombined with the pGJ2169
GW binary destination vector (kindly provided by George
Coupland) containing the 35S promoter before the Gateway
cassette. The final destination vectors were transformed
into homozygous copl-4 and heterozygous copl-5/+
mutants. Transgenic plants were selected on Basta herbi-
cide. In the copI-4 background, at least 25 independent
transgenic lines per construct were analyzed in the T1
(flowering time, leaf size) and T2 (seedling deetiolation)
generations. In the copI-5 background, lines homozygous
for copl-5 and the respective transgene were generated by
selecting for kanamycin resistance (copI-5), the absence of
the native COPI transcript and the presence of the intro-
duced transgene (Basta resistance).

SPA expression clones were constructed as follows:
First, 2260 bp or 1309 bp of the Arabidopsis SPAI or
SPA4 5" regulatory regions preceding the ATG start
codon, respectively (pSPA1, pSPA4), were amplified from
previously constructed plasmids using primers containing
HindIII or Sdal restriction sites, respectively, and subse-
quently cloned into unique HindIII or Sdal restriction sites,
respectively, of the pGWB1 destination vector [74]. These
modified pGWB1 destination vectors now have Gateway
cassettes after the pSPAI or pSPA4 promoters, respectively.
Second, Entry clones carrying the ORFs of SPA sequences
were generated after amplifying the ORF of AtSPAI and
AtSPA4 from Arabidopsis cDNA, the OsSPA1 ORF from a
full-length cDNA clone obtained from NIAS, Japan, and
the Physcomitrella SPAb ORF from ¢cDNA synthesized
from Physcomitrella gametophores (for all primer se-
quences, see Additional file 8: Table S2). Third, the modi-
fied pGWBI1 destination vectors described above were
recombined with the Entry clones containing the ORFs
from AtSPA1, OsSPA1, PpSPAb and AtSPA4, respectively,
using Gateway LR technology to generate pSPAI::AtSPA1/
OsSPA1/PpSPAb vectors and pAtSPA4::AtSPA4/PpSPAb
vectors. These binary vectors were transformed into
Arabidopsis spal spa3 spa4d and spal spa2 spa3 mutants.

RNA isolation and transcript analysis

RNA was isolated and reverse-transcribed as described pre-
viously [27]. SPA ORFs were amplified by semi-quantitative
RT-PCR using gene-specific primers (Additional file 8:
Table S2). PCR products were resolved by agarose electro-
phoresis and subsequent staining with ethidium bromide.
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Availability of supporting data
The data sets supporting the results of this article are
included within the article and its additional files.

Additional files

Additional file 1: Figure S1. Phylogeny and domain structure of COP1
and SPA gene family in Arabidopsis, rice and Physcomitrella. A.
Phylogenetic tree based on Bayesian inference created with COP1 and
SPA homologs in three plant species. The Bayesian consensus phylogeny
was constructed on a manual curated multiple sequence alignment
rooted by the RUP gene family as an outgroup. Numbers on internal
branches indicate Bayesian posterior probabilities. Line thickness
corresponds to posterior probabilities. Detailed settings used for tree
construction and tree plotting can be obtained from the methods
chapter. B. Phylogenetic tree based on maximum likelihood created with
COP1 and SPA homologs in three plant species. Consensus tree build by
the majority rule of bootstrap replicates. Numbers on internal branches
indicate support values of bootstrap in percent. Line corresponds to
bootstrap support values. Detailed settings used for tree construction and
tree plotting can be obtained from the methods chapter. C. Protein
domains important for COP1 and SPA gene function obtained by
InterProScan5. For each protein the domain structures obtained by
InterProScan5 were plotted next to each protein. Individual domain
position corresponds to their absolute position along the analyzed
protein; red boxes, IPR013083 — Zinc finger, RING/FYVE/PHD — type;
orange boxes, IPR001841 — Zinc finger, RING — type; light green boxes,
IPROT1009 — Protein kinase — like domain; green boxes, IPRO00719 —
Protein kinase domain; blue boxes, IPR015943/IPR017986 — WD40/YVTN
repeat — like — containing domain; light blue boxes represent number of
WD40 repeats, SM00320 — WDA40 repeat; grey boxes represent number
of coiled-coil occurrence based on Coils prediction.

Additional file 2: Figure S2. Multiple sequence alignment of
Arabidopsis, rice and Physcomitrella COP1 protein sequences. Sequence
alignment displayed using Jalview version 2.8. Protein stretches
belonging to InterProScan5 domain IPRO01841 — Zinc finger, RING — type
are highlighted in orange; predicted occurrence of coiled-coil domains
are highlighted in grey; WD40 repeats, SM00320 — WDA40 repeat are
highlighted in light blue.

Additional file 3: Figure S3. Prediction of coiled-coil domains in
Arabidopsis, rice and Physcomitrella COP1 and SPA protein sequences.
Prediction of coiled-coil domains were obtained from COILS (version 2.2)
with three different sliding window parameters and the MTIDK matrix.
Results indicating prediction probabilities for each window were plotted
alongside the protein length. Next to each protein name obtained by the
used sequence databases an alias was attached.

Additional file 4: Figure S4. Multiple sequence alignment of Arabidopsis,
rice and Physcomitrella SPA-related protein sequences. Sequence alignment
displayed using Jalview version 2.8. Protein stretches belonging to InterProS-
can5 domain IPR011009 — Protein kinase — like domain are highlighted in light
green; IPR0O00719 — Protein kinase domain are highlighted in green; predicted
occurrence of coiled-coil domains are highlighted in grey; WD40 repeats,
SM00320 — WDAO0 repeat are highlighted in light blue.

Additional file 5: Figure S5. Multiple sequence alignment of Arabidopsis,
rice and Physcomitrella RUP1-related protein sequences. Sequence alignment
displayed using Jalview version 2.8. Protein stretches representing WD40
repeats, SM00320 — WD40 repeat are highlighted in light blue.

Additional file 6: Figure S6. Hypocotyl elongation response of
wild-type and transgenic copT-5 mutant seedlings to Rc (A) and FRc (B).
Transgenic seedlings express AtCOP1, OsCOPT or PpCOP1 under the
control of the 35S promoter. Two to three independent transgenic lines are
shown. cop1-5 mutant seeds failed to germinate due to the seedling-lethal
phenotype and are therefore not shown. Error bars indicate the standard
error of the mean (SEM).

Additional file 7: Table S1. List of sequence databases used.
Additional file 8: Table S2. Primer sequences.
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