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Abstract

Background: In Arabidopsis thaliana (A. thaliana) the WD40 protein TRANSPARENT TESTA GLABRAT (TTG1) controls
five traits relevant for the adaptation of plants to environmental changes including the production of
proanthocyanidin, anthocyanidin, seed coat mucilage, trichomes and root hairs. The analysis of different
Brassicaceae species suggests that the function of TTG1 is conserved within the family.

Results: In this work, we studied the function of TTGT in Arabis alpina (A. alpina). A comparison of wild type and
two Aattg! alleles revealed that AaTTG1 is involved in the regulation of all five traits. A detailed analysis of the five
traits showed striking phenotypic differences between A. alpina and A. thaliana such that trichome formation
occurs also at later stages of leaf development and that root hairs form at non-root hair positions.

Conclusions: The evolutionary conservation of the regulation of the five traits by TTG1 on the one hand and the
striking phenotypic differences make A. alpina a very interesting genetic model system to study the evolution of
TTG1-dependent gene regulatory networks at a functional level.
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Background
One approach towards a mechanistic understanding of
phenotypic changes is evolutionary developmental biology
(also called Evo-Devo) [1]. As most of our knowledge is
based on a few well-characterized model systems that are
separated by large evolutionary distances, evolutionary
comparisons are often descriptive and have little functional
depth. Typically Evo-Devo approaches aim to characterize
the key players or pathways known to be relevant for a
given process in one model organism in an evolutionarily
distantly related species. As outlined by Sommer [2] this
often leads to an almost descriptive list of the molecular in-
ventories rather than a functional understanding. For a
functional evolutionary comparison of developmental pro-
cesses it is necessary to study clearly homologous processes
in closely related species. This enables the understanding
of changes in the regulatory network at a mechanistic level.
We focused on the TTGI-dependent gene regulatory
network that is well-described in A. thaliana. Here it
controls five traits that all have an adaptive value for the
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plant and are likely to be variable on the one hand, but
also interdependent as they are controlled by the same
regulatory genes [3]. TTG1 encodes a WD40 protein [4].
In A. thaliana TTG1 acts together with R2R3-MYB and
bHLH proteins (called MBW complex) to regulate dif-
ferent aspects of epidermal cell differentiation including
the production of proanthocyanidin, anthocyanidin, seed
coat mucilage, trichomes and root hairs [5-12]. The bHLH
factor is represented by three homologous, partially re-
dundant acting genes. 778 regulates seed coat mucilage
production, seed coat pigment production and anthocya-
nin biosynthesis. EGL3 controls seed coat pigmentation,
anthocyanin biosynthesis, trichome and root hair develop-
ment and GL3 is involved in anthocyanin biosynthesis,
trichome and root hair development. High trait specificity
is found for the R2R3-MYB factors such that one specific
R2R3-MYB gene regulates each trait [3]. GL1 regulates
trichome initiation [13], WER the non-root hair develop-
ment [14], PAP1 and PAP2 anthocyanidin production
[15,16], TT2 pro-anthocyanidin production and MYB61
regulates seed coat mucilage production [17]. During
trichome and root hair development additional R3 single
repeat MYBs are important as negative regulators mediat-
ing cellular interactions during pattern formation [18-24].
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The function of the MBW complex in epidermal cell
differentiation is evolutionary conserved in plants, though
their regulation of anthocyanin and proanthocyanidin pro-
duction seems to be the most ancient function. This is
suggested by the finding that the MBW complex in maize
is only involved in anthocyanin production [25,26], in pe-
tunia in anthocyanidin and proanthocyanidin production
[27-29] and in A. thaliana in all five traits [6,7]. Based on
the phylogenetic tree of the MYB proteins, Serna and
Martin suggested that the additional role of the MBW
complex in trichome formation has been adopted after the
Asterid-Rosid division [5]. This view is supported by the
findings that GL1 (A. thaliana) or C1 (Zea mays) overex-
pression in tobacco has no effect on trichome formation
[30]. Conversely, overexpression of T7GI homologs from
various species has been successfully used to complement
the corresponding A. thaliana mutant phenotypes. These
include ANI1 from Petunia hybrida [27], PACI1 from
maize [31], GhTTGI and GhTTG3 from Gossypium hirsu-
tum ([32], InWDR1/Ca from Ipomoea nil [33], MtWD40-
1 from Medicago truncatula ([34], MdATTGI from Malus
domestica [35], WTTGI from Vitis vinifera L [36], and
PgWD40 from Punica granatum L. [37]. This indicates
that the biochemical function of TTGI1 is functionally
conserved over a large evolutionary distance.

Apart from A. thaliana, genetic data are available for
two other species within the Brassicaceae family. In
Brassica rapa it was shown that two traits, glabrous and
yellow seeds, strictly co-segregated and that these two
traits map to the Br77GI locus [38]. In addition a yel-
low seed mutation was mapped to the Br778 locus
suggesting that also the function of the corresponding
bHLH factor is conserved. In Matthiola incana it was
shown that a line displaying white flowers, yellow seeds,
seed mucilage defects and a glabrous phenotype exhibits
a relevant point mutation in the Mi77TGI gene [39].
Together these data indicate that a function of TTG1 in
the regulation of trichome, seed coat differentiation,
anthocyanin and proanthocyanin pathways is conserved
within the Brassicaceae.

As a complex gene regulatory network governs the
regulation of the TTGI1-dependent five traits it seems
very attractive to study network evolution in this family.
Towards this end it is desirable to systematically estab-
lish a second genetic model system enabling the func-
tional characterisation by mutant analysis. We chose A.
alpina for several reasons: On the one hand, A. alpina is
sufficiently closely related to enable the identification of
clear ortholog genes by sequence similarity and synteny
in the fully sequenced genome. On the other hand the
evolutionary distance of about 26 million years [40] to
40 million [41] between A. thaliana and A. alpina prom-
ised phenotypic variations for these traits and variations
in the underlying gene regulatory networks. Finally,

Page 2 of 13

A. alpina can be transformed by Agrobacterium medi-
ated gene transfer [42].

In this work we studied the function of TTGI in
Arabis alpina (A. alpina). We demonstrate that all five
traits are affected in two Aattgl alleles in A. alpina. As
considerable phenotypic variation was already observed
for some of these traits between different members of
the Brassicaceae family [43-45] we did a detailed pheno-
typic description of the five traits to provide a reference
for future studies. Our analysis revealed striking differ-
ences in the case of trichome and root hair patterning in
A. alpina as compared to A. thaliana.

Results

Identification of Aattg1 mutants in A. alpina

To initiate a genetic dissection of TTG1-dependent regu-
lation cascades in A. alpina, we identified the putative A.
alpina TTG1 gene by homology and synteny comparisons.
The A. alpina TTG1 gene (AaTTGI) has a putative coding
sequence of 1032 base pairs representing a putative pro-
tein of 343 amino acids. The AaTTGI gene shows 90%
sequence identity when compared to the A. thaliana
AtTTGI gene. The two flanking genes of AaTTGI are ho-
mologs of those two flanking AtTTGI: AT5G24530 and
AT5G24510 (Figure 1A). This indicates that AaTTG1 and
AtTTGI are orthologs. A comparison of the amino acid
sequence revealed differences in 12 amino acids and
two additional amino acids (Figure 1B, Additional file 1:
Table S1).

We identified two mutants in EMS mutagenized M2
populations of A. alpina showing a phenotype similar to
ttgl: glabrous trichomes and yellow seeds. One mutant
was recovered from the EMS treated wild-type back-
ground A. alpina Pajares (Paj) [42]. The other mutant
was found in a mutagenized A. alpina (Paj) background
carrying the pepI-1 mutation [42,47,48]. In the A. alpina
(pepl-1) background the TTGI gene contained a muta-
tion that would lead to a T to M exchange at position
222 of the TTG1 protein, which, however, does not
affect the function of TTG1 as this background shows
no effect on any assumed TTG1-dependent phenotype.
When sequencing the AaTTGI1 gene in the tfgl mutant
isolated from the Paj wild-type background we found a
mutation leading to a stop codon after 161 amino acids
in the second WD40 domain and called this allele Aattgl-
1. The putative ttgl allele induced in the pepl-1 back-
ground carried a mutation leading to a stop codon after
321 amino acids (called Aatzgl-2). As a premature STOP
codon two amino acids C-terminal to this position leads to
strong ttgl phenotypes in A. thaliana [4], it is conceivable
that also the A. alpina Aattgl-2 allele shows the observed
strong phenotypes (Figure 1B). Together these data indi-
cate that the two mutants identified by the trichome and
seed color phenotypes are two A. alpina Aattgl alleles. We
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Figure 1 Schematic presentation of AaTTG17 and AtTTG1. A) Genomic regions of the TTG1 loci including the neighboring genes in A. alpina
and A. thaliana. The black boxes represent the homologous flanking genes. The gene names used for A. alpina are derived from the
corresponding A. thaliana genes by exchanging the “At" for A. thaliana to “Aa" for Arabis alpina. As the distance between genes differs in the two
species they are shown with different types of dashed lines. B) Schematic presentation of the protein structures. The position of the WD40
domains was determined using the ELM [46]. Differences of amino acids between A. alpina and A. thaliana are indicated. The amino acid position
changed in mutant alleles in A. alpina (this work) and A. thaliana [4] have been marked by boxes.
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tested this by crossing Aattgl-1 and Aattgl-2 plants. F1
plants were glabrous confirming the allelism (Additional
file 2: Figure S1A-E). To test whether AaTTG1 protein
can rescue the Arabidopsis tfgl mutant phenotype we
expressed the Arabis alpina coding sequence under the
promoter of the Arabidopsis TTGI gene [49]. Towards
this end we used the wild type coding sequence from A.
alpina Pajares and pepl-1. We recovered 7 and four
lines, respectively, displaying partial rescue of the trich-
ome phenotype (Additional file 2: Figure S1F-H).

(Pro-) anthocyanidin production in A. alpina wild type
and Aattg1 mutants

Brown colour of Arabidopsis seeds is caused by oxidized
proanthocyanidins [50]. Screening for differences in seed
pigmentation revealed a group of mutants with transpar-
ent testa - including t£gl - that was impaired in flavon-
oid accumulation [51,52]. Most of these genes were
subsequently identified either as structural enzymes or

regulators (e.g. TTG1) of the proanthocyanidin path-
way [50].

Compared to the corresponding backgrounds, the
seed colour of both Aattgl mutants is yellowish, sharing
the transparent testa phenotype with the mutants in
A. thaliana (Figure 2A). This finding points to a lack
of proanthocyanidins. The majority of procyanidin is
found in the insoluble fraction of flavonoid extracts and
can be analyzed by acidic hydrolysis to cyanidin [53,54].
We hydrolyzed the insoluble substances upon extrac-
tion for visual inspection (Figure 2B). A pink staining
that is characteristic for cyanidin was obtained for the
backgrounds but not for the Aattgl mutants. In subse-
quent HPLC-MS analysis of extracted soluble, hydro-
lyzed flavonoids no cyanidin was detectable, proofing its
absence in Aattgl mutants (Figure 2C, Additional file 3:
Figure S2). In contrast, kaempferol, was detected in the
mutants and backgrounds, serving as a control for the
successful extraction of flavonoids. This indicates that
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Figure 2 (See legend on next page.)
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Figure 2 TTG1 is needed for the accumulation of anthocyanidins in A. alpina. Seeds (A-C) and seedlings (D-F) of Aattgi-1 and Aattgi-2 are
devoid of cyanidin - a late component of the (pro-) anthocyanidin biosynthesis pathway - but contain kaempferol — an early component of this
pathway. The genotype for each row in A-C and D-F is given on the right. A) stereo-microscopy of seeds. Aattg! mutants have a yellowish seed
colour as compared to the respective backgrounds indicating a lack of proanthocyanidin; B) extracted and hydrolyzed insoluble components of
the seeds’ (pro-) anthocyanidin pathway, presence (backgrounds) or absence (Aattg! mutants) of pink colour relates to the presence or absence
of (pro-) anthocyanidin in seeds; C), F) HPLC-MS analysis of extracted soluble, hydrolyzed components of the anthocyanidin biosynthesis pathway.
Shown are extracted ion chromatograms for m/z =287.055 +/- 0.005. Note that cyanidin and kaempferol have the same m/z value. Different
scales were chosen to highlight the absence of cyanidin in F). Full chromatograms are provided in Additional file 3: Figure S2. D) photography of
5 day-old seedlings grown on MS medium with 1% sucrose at constant light. E) zoom in on the petiole- and SAM-region of the seedlings shown
on the left in D). Aattg! mutants do not accumulate anthocyanidins in the seedling’s hypocotyl. All pictures within one subfigure were taken at
the same light settings. Bar in A: 1 mm; bar in C: 2 mm; 1: cyanidin (late biosynthesis compound); 2: kaempferol (early biosynthesis compound).

AaTTGI either regulates the activity of the AaLDOX (leu-
coanthocyanidin dioxygenase) enzyme that catalyses the
last step of cyanidin biosynthesis and/or earlier enzymes
of the pathway.

The so called late genes of the anthocyanidin biosyn-
thesis have been classified by their regulation through the
TTG1 containing MBW complexes [3,55-59]. Therefore,
our result identifies kaempferol as an early and cyanidin
as a late component of the proanthocyanidin biosynthesis
pathway in A. alpina.

The anthocyanidin biosynthesis pathway is part of the
proanthocyanidin biosynthesis pathway. Red colour of A.
thaliana hypocotyls and young leaves is the result of accu-
mulating UV-protective anthocyanidins and their deriva-
tives upon exposure to light or other stresses [60-62].

In A. thaliana, TTG1 as a general regulator also pro-
motes visible accumulation of purple anthocyanins in
the seedlings’ hypocotyls [3]. Our finding that Aattgl
confers a transparent testa phenotype to A. alpina seeds
suggests an absence of anthocyanins also in the hypo-
cotyl. It is, however, possible that a redundant regulator
exists for anthocyanin accumulation.

To address this, we grew seedlings of the Aattg! alleles
and their respective backgrounds under constant light
on plates supplemented with sucrose. We found that in
the hypocotyls of Aattgl mutant seedlings no visible
pink anthocyanin was accumulated in contrast to Paj
and pepl-1 (Figure 2D-E). Moreover, HPLC-MS analysis
for both Aattgl mutants showed that Aa7T7GI is also
essential for the accumulation of cyanidin in seedlings
and its function is not taken over by any other gene
(Figure 2F, Additional file 3: Figure S2).

Seed coat differentiation in A. alpina wild type and Aattg1
mutants

In A. thaliana, seed epidermal cells of the outer integu-
ment differentiate into highly specialized seed coat cells.
These are characterized by the formation of a central
column surrounded by a secondary cell wall (the colu-
mella) and the accumulation of polysaccharide mucilage
between the plasma membrane and the primary cell wall
that is released in the presence of water [63,64]. In A.

thaliana, ttgl mutants neither form a columella nor pro-
duce mucilage [51]. We compared columella formation
in the two t#tgl mutants with the respective genetic back-
grounds Paj and pepI-1 by staining with calcofluor white
(Figure 3), Ruthenium Red (Additional file 4: Figure S3)
and by Scanning Electron Microscopy analysis (Additional
file 5: Figure S4). Wild type and pepI-1 seeds have an ir-
regular but smooth surface with domes representing the
columella (Figure 3A-D, I-L). In the two corresponding
Aattgl mutants, the columella is completely missing indi-
cating that epidermal differentiation of the seed coat is af-
fected similar as observed in Atttgl mutants [51,63,64]
(Figure 3E-H, M-P).

Trichome patterning in A. alpina wild type and Aattg1
mutants

In A. thaliana, trichomes are initiated on young leaves
and become separated by division and expansion of the
epidermal cells lying in between [65]. At the first glance,
trichome initiation on A. alpina leaves is very similar to
the situation in A. thaliana (Figure 4A-C): At the base
of young leaves, we found incipient trichomes. These
comprise trichome stages preceding branch initiation
(Figure 4A). Mature trichomes with several branches were
found at the leaf tip and intermediate stages were ob-
served in the mid region (Figure 4B). Adult leaves are cov-
ered densely with trichomes (Figure 4C). However, we
noted one striking difference: on mature leaves we found
two classes of mature trichomes that differed in size and
height (Figure 4J). Our visual impression was that the lar-
ger trichomes (class 2) are arranged in a regular pattern
with the smaller trichomes (class 1) being scattered be-
tween them (Figure 4]). To test this, we systematically
measured the distances between the two classes of tri-
chomes. We analyzed three regions of the third leaf: a re-
gion at the base, in the middle and the tip. In all three
regions, on average the larger trichomes showed about
twice the distance from each other as compared to the dis-
tances in between smaller trichomes and between smaller
trichomes and the larger trichomes (Figure 4H). The same
pattern was also found on the second to the sixths leaves
indicating that it is a general feature (Figure 4I). These



Chopra et al. BVIC Plant Biology 2014, 14:16
http://www.biomedcentral.com/1471-2229/14/16

Page 6 of 13

Figure 3 Calcofluor white stained wild type and Aattg? mutant seeds. Fluorescence microscope (A,B,E,F,1,J,M,N) and CLSM (fluorescence
channel: C,G,K,0, transmission channel: D,H,L,P) pictures of the surface of A. alpina seeds stained with calcofluor white. A to D) wild type Paj.

I to L) pepl-1 mutant. Note, that in wild type and pep1-1 mutants the columella is seen as large domes. E to H) Aattg/-1 mutant induced in the
wild type Paj background. M to P) The Aattgi-2 mutant induced in the pepi-1 background. In both mutants only the rim of the epidermal cells is
left and columellas are absent. Scale bar: AELM =300 um, BF,GN =100 um, CD,GHKLOP =50 um.

distance patterns suggested to us two superimposed trich-
ome patterns. We therefore studied young leaf stages in
more detail using the analysis tool TrichEratops [66]. A
meta leaf was generated, in which the position of three de-
velopmental trichome stages are shown at their relative
positions on the leaf with respect to the basal-distal axis
(Figure 4E). As described in A. thaliana, we found a gen-
eral gradient of trichome developmental stages with ma-
ture trichomes at the tip and young trichomes at the base
of the leaf. In contrast to A. thaliana, we observed early
developmental stages of trichome development between
already mature trichomes (Figure 4B, F). These patterns
may either be explained by the formation of new tri-
chomes between more mature trichomes or by spatial
differences in the growth characteristics such that the
smaller trichomes are initiated normally, but grow slower.
During the course of our experiments we noted that all A.
alpina leaves are densely covered with trichomes on both
the adaxial and the abaxial sides (Figure 4G). This is in

contrast to A. thaliana where only late leaves produce ab-
axial trichomes as a consequence of the phase change
from vegetative to generative growth [67]. To analyse the
role of A. alpina TTGI in trichome formation we analysed
the two ttgl mutants Aattgl-1 and Aattgl-2. As known
from strong ttgl mutants in A. thaliana both alleles lacked
trichomes completely (Figure 4D).

Root hair patterning in A. alpina wild type and Aattg1
mutants

In A. thaliana, epidermal root cells are arranged in files.
Cells overlaying the cleft between two underlying cortex
cells are short and differentiate into hair cells (H-file)
[68]. Cells in all other files are long and do not develop
root hairs (called N-files). To understand root hair pat-
terning in A. alpina, we analysed file-specific root hair
production in two regions of the differentiation zone to
determine the temporal spatial development of the root
hair pattern (Figure 5A). Both, A. alpina Paj and pepl-1
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Figure 4 Trichome patterning in A. alpina. A-C) Three developmental stages of an A. alpina leaf. D) Aattgi-1 leaves. E) Meta leaf generated
using TrichEratops integrating the relative position of trichomes from 22 young leaves [66]. Red dots are incipient trichomes, blue dots
intermediate developmental stages and black dots represent mature trichomes. Note that incipient trichomes are found in a region in which
already mature trichomes have developed. F) Boxplot depicting the relative position (0 is the base of the leaf and 100 the tip of the leaf) of three
developmental classes of trichome development. Note that the average position of the three developmental classes is clearly distinct. “*” indicate
that all three classes are significantly different from each other according to Student’s t-test (P < 0.001). G) SEM picture of a leaf 3 from the side
showing that trichomes are found on the abaxial and adaxial side. H) Average minimum distance to the nearest neighboring trichome on
different regions of leaf 2. Distances between smaller trichomes (class 1) are shown in orange, distances between larger trichomes (class 2) in
pink and distances between the two classes in grey. 1) Average minimum distance to the nearest neighboring trichome on leaves 1 to 6. J) SEM
of an adult A. alpina leaf showing the large (pink arrow) and the small classes of trichomes (orange arrow). Scale bar= 100 um in A,B. Scale

showed a similar frequency of root hair cells in the lower
(Figure 5Ai) and in the upper region (Figure 5Aii) indi-
cating that the final root hair pattern is determined
already in the lower region (data not shown). Similar to
A. thaliana almost all cells in the H—position develop
into root hairs. However, in A. alpina cells in N-file po-
sitions also frequently form root hairs (Figure 5A, C, D).
We found between 30% (Paj) and 40% (pepl-1) of the

N-position cells to develop into root hairs (Figure 5D).
This finding raised the question, whether the cells in the
H- and N-positions also differ in other characteristics.
One difference reported in A. thaliana is the length of
the individual cells such that cells in N-files are about
twice as long as H-file cells [69]. As the cell length con-
tinuously changes along the root axis due to cell growth,
we did not measure the actual cell lengths, but rather
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** P<001.

Figure 5 Root hair patterning in A. alpina. A) Wild type A. alpina root; A(i), Higher magnification of the lower root hair differentiation zone;
A(ii), Higher magnification of upper root hair differentiation zone. Root hair file (H), Non-root hair file (N) and non-root hair file with root hair
stretches (D-file) is indicated by arrows. B) Aattg!-1 root; B(i), Higher magnification of the lower root hair differentiation zone; Biii), Higher
magnification of the upper root hair differentiation zone. C) Wild type A. alpina root cross section depicting one root hair at the H-position
over the cleft of two underlying cortex cells and a neighboring root hair in an N-position. D) Percentage of root hairs in root hair files (H) and
non-root hair files (N). E) Relative number of cells in H and N files. A ratio of about two reflects that the non-hair cells are twice as long as the
H-cells. F) Number of cells in continuous stretches of root hair cells in the N files. Scale bar: 100 um in A,B; Scale bar: 40 um in C. ***: P < 0.001,
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determined the H- to N-file cell number ratios. In A.
alpina Paj we found a ratio of 2.3, in pepI-1 the ratio
was 2.0, indicating that the N-file cells are approximately
twice as long as H-file cells (Figure 5E). During the
course of experiments we noticed that the cells carrying
a root hair in N position were not evenly distributed
along the file, but were arranged in continuous stretches
of N-file cells differentiating into root hairs. As depicted
in Figure 5F, more than 50% of all stretches consisted of 1
to 3 cells, indicating a higher probability for short (1-3)
than for long (>6) stretches. Typically, we found root hairs
in N-position always on only one side of an H-file. Out of
542 Paj H-file cells, just one was flanked symmetrically by
two N-file cells carrying a root hair (pepI-1: 20 out of
511). To study the function of A. alpina TTGI in root hair
patterning we studied root hair patterning in Aattgl-1 and
Aattgl-2. We found ectopic root hairs at N-positions simi-
lar as described in A. thaliana (Figure 5B, D).

Discussion
TTG1 containing MBW complexes regulate five differ-
ent traits in A. thaliana including proanthocyanidin,
anthocyanidin and mucilage production as well as trich-
ome and root hair patterning. Taking together the data
on single or multiple TTG1-dependent traits studied in
different Brassicaceae species indicates that 77GI has
the same range of functions as described in A. thaliana
throughout this family. For Brassica rapa a function in
trichome and seed color was reported [38]. In Matthiola
incana a role in (pro)-anthocyanin, mucilage and trich-
ome formation was shown [39]. In support of these find-
ings, we show that these four traits and in addition root
hair patterning are affected in two independent Aattgl
alleles in A. alpina.

These five traits have an adaptive value for the plant.
Therefore, on the one hand, variability between species
might be expected. On the other hand, these traits are
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regulated by differential TTG1 complexes encoded by
members of the TTG1 gene regulatory network. Due to
this genetic interdependence variability might be limited.
In support of these considerations we found no apparent
differences between A. alpina and A. thaliana for some
but not all traits.

According to Serna and Martin, the TTG1-dependent
regulation of (pro-) anthocyanidin production is a more
ancient trait than trichome formation [5]. In agreement
with this, the TTG1-dependent definition of early and late
substances between kaempferol and cyanidin is main-
tained in A. alpina as compared to A. thaliana [3,55-59].
Similarly, AaTTG1 is needed for columella formation as
described for A. thaliana [51].

While the phenotypes of these traits are generally very
similar to those in A. thaliana, we noted some striking
deviations for trichome and root hair patterning that are
not trivial to explain in the light of the known regulation
schemes. The observed two superimposed trichome pat-
terns can be explained in two ways. One possibility is that
small and large trichomes are initiated around the same
time and that the subsequent cell differentiation differs. In
this scenario, genes regulating cell differentiation and/or
morphogenesis would be differentially expressed in the
two types of trichomes. This could occur at different levels
including genes regulating differentiation such as MYB5
and MYB23 [70], GL2 [71,72], TTG2 [73] or genes con-
trolling endoreduplication such as for example the group
of KAK genes [74]. The second possibility is that trichome
initiation occurs in developmentally advanced stages of
leaf development. In A. thaliana this phenotype was found
in lines overexpressing the GL3/EGL3 homolog from
maize, the R-gene [75]. By analogy, the intercalation
phenotype in A. alpina could be explained by changes in
the spatial/temporal expression of A. alpina GL3. The for-
mation of root hairs in N-files is also not found in wild
type A. thaliana under normal conditions but is reminis-
cent of Atttgl and Atwer mutants [14,76]. Thus, one pos-
sibility to derive the wild-type pattern in A. alpina roots is
a reduction of the AaTTGI or AaWER activity. Given that
mutations reducing trichome number lead to the produc-
tion of additional root hairs because the MBW complex
serves to activate trichomes and non-root hair fates the
production of additional root hairs and extra trichome for-
mation between mature trichomes cannot easily be ex-
plained by the A. thaliana network.

Conclusions

Taken together, our results demonstrate that the pheno-
types of the five TTGI-dependent traits studied here are
in general very similar in A. thaliana and A. alpina. The
various phenotypic differences make A. alpina a very in-
teresting genetic model system to study the evolution of
gene regulatory networks at a functional level.
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Methods
Plant Material and growth conditions
The Aattgl alleles were isolated from EMS mutagenized A.
alpina Pajares [42] and pepl-1 populations. For root hair
file analysis, seeds were surface sterilized with 70% (v/v)
ethanol (5 min) and 2% sodium hypochlorite (w/v, 8 min).
Sterilized seeds were sown on 1x Murashige-Skoog plates
lacking sucrose and stratified at 4°C for 5 days. Plants were
grown on vertically positioned plates for 7 days under long
day (LD) conditions (16 h light, 8 h darkness) at 21°C. For
inter-species rescue experiments we used the Arabidopsis
ttgl-1 mutant (Ler background, [77]).

For soil-grown A. alpina, seeds were stratified in dark-
ness at 4°C for four days and then placed in growth
chambers under LD conditions at 21°C.

Sequence and synteny analysis

Extracted AaTTG1 (Paj and pepl-1) sequences were ana-
lysed on CLC DNA Workbench 5.6.1 (CLC bio, Aarhus,
Denmark) by comparison with CDS of AT5G24520 down-
loaded from TAIR (www.arabidopsis.org). NCBI Blastn
2.2.28 was used to confirm the synteny of the neighbouring
genes [78]. Primers rev_ttgl_arabis_out (5-GCAATCAA
GAATCTCTAGAACCAAG-3) and fwd_ttgl_arabis_out
(5-CAAATGTATGGACCGAATTATCAAG-3") were de-
signed outside the CDS of AaTTGI to sequence it from
the wild types and the mutants.

Trichome analysis

The first true leaf of soil-grown A. alpina was labeled as
leaf 1 and the following ones accordingly. When leaf 6
had reached a size of approximately 2 c¢cm in length,
leaves 1-6 were used for trichome analysis. For this, all
leaves of one developmental stage were photographed at
a magnification that enabled the distinction of different
trichome classes. The pictures where analyzed using the
TrichEratops software by marking the two different clas-
ses of trichomes [66]. The distance between trichomes
of one class and trichomes of different classes were cal-
culated with R (http://www.r-project.org/). Young leaves
were essentially analyzed as described previously [66].

Root hair file analysis

H-files of 7-day-old plate-grown seedlings were micro-
scopically identified by the position over cortical cell
boundaries. Following 10 to 15 H-file cells per root and
zone, the number of cells and root hairs in the flanking N-
files was determined. Further, the length of continuous
stretches of N-file cells carrying a root hair was deter-
mined. For cross-sections, all root tissues were fixed and
embedded as previously described [79]. Agarose was used
for mechanical fixation. 100 pm sections were made using
a Leica EM UC7 ultra microtome (Leica Microsystems,
Wetzlar, Germany) with glass knives.
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Flavonoid analysis
For extraction of flavonoids, seeds were homogenized in
100 pl MeOH/water/formic acid (50:49:1, v/v) with glass
beads in a tissue lyser (Qiagen, Hilden, Germany) at
30 Hz for 180 sec. Following centrifugation, the pellet
was extracted with 200 pl MeOH/water/formic acid
(50:49:1, v/v) over night at 4°C. 60 pul of centrifuged
pooled supernatants were mixed with 440 pul MeOH:
HClconc. (95:5, v/v), hydrolyzed for 90 min and diluted
1:1 with MeOH prior to LC-MS analysis. For photo-
graphy, pellets were treated in the same way with 200 pl
MeOH:HClconc. (95:5, v/v). For seedlings, 200 ul of
MeOH:HClconc. (95:5, v/v) were used for homogenization
and over night extraction followed by direct hydrolysis.
Mass analysis was done with a Dionex 3000 UPLC
(Thermo Scientific, Dreiech, Germany) - maXis 4G (Bruker
Daltonics, Bremen, Germany) LC-MS system equipped
with an Apollo II ESI source (Bruker Daltonics, Bremen,
Germany). 5 pl of samples were separated with a Poroshell
120, EC-C18, (3x50 mm, 2.7 um) C18 column (Agilent,
Waldbronn, Germany) and mix of solvent A water (0.1%
formic acid) and solvent B MeOH (0.1% formic acid) with
gradient profile (starting with 95:5, v/v, for 0.5 min; linear
gradient up to 0:100, A/B, over 3.9 min and maintained for
2 min and re-equalibration to 95:5, A/B with a total run-
time of 8.6 min) at a flow rate of 0.3 ml/min. LC-MS ana-
lysis, data processing and annotation of kaempferol and
cyanidin were carried out with Compass DataAnalysis Ver-
sion 4.0 SP5 (Bruker Daltonics, Bremen, Germany). Metab-
olites were identified by comparison to kaempferol and
cyanidin (Sigma, Germany).

Constructs and transformation

The binary vector , ,AtTTGIpAMPAT-GW [49] was
used to create ,,(AtTTG1:AaTTGI(Paj) and p, ,AtTTGI:
AaTTGI(pepI-1) using the Gateway® system (Invitro-
gen) using the following primers for the cloning of
AaTTGI: Fwd: GGGGACAAGTTTGTACAAAAAAGC
AGGCTTAATGGATAACTCAGCTCCAGA.

Rev: GGGGACCACTTTGTACAAGAAAGCTGGGT
TTCAAACTCTAAGGAGCTGCA. The constructs were
introduced in the A. thaliana ttgl-1 mutant (Ler back-
ground, [77]) by Agrobacterium-mediated (strain GV3101-
pMPI0RK) transformation using the floral dip method
described previously [80]. Transformants were selected in
the T1 generation on soil by screening for trichomes on
leaf number 3 or 4.

Photography and microscopy

Whole leaves were captured using a Canon EOS 5D Mark
(Canon, Krefeld, Germany). Dry A. alpina seeds were
mounted on a conductive carbon tab covered SEM stub
and analyzed using a FEI Quanta FEG 250 Scanning Elec-
tron Microscope (SEM; FEL, Eindhoven, The Netherlands)
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at an accelerating voltage of 15 kV. A. alpina seeds were
stained with 0.01% (w/v) aqueous solution of calcofluor
white (Fluroscent Brightner, Sigma-Aldrich, Germany)
overnight and analysed by creating manual z-stacks with
Leica DM5000B microscope fitted with a LEICA DFC 360
FX camera and a Leica LAS AF software (Leica Microsys-
tems, Wetzlar). Optical sections of the calcofluor white
stained seeds were obtained by confocal laser scanning
(CLSM) microscopy using the Leica TCS SPE CLSM,
Leica LCS software (Leica Microsystems, Wetzlar). 0.05%
(w/v). Aqueous ruthenium red (Sigma-Aldrich, Germany)
stained seeds (overnight) were analysed with a conven-
tional light microscope, Leica DMRE microscope, Leica
LCS software (Leica Microsystems, Wetzlar). Root hair
files were analyzed by creating z-stacks by conventional
light microscopy using a Leica DM5000B fluorescence
microscope (Leica Microsystems, Wetzlar). Images were
processed using Image] (Rasband, W.S. Image], U.S.
National Institutes of Health, Bethesda, Maryland, USA,
http://imagej.nih.gov/ij/, 1997-2012) and Photoshop 7.0.1,
Adobe. Pictures of seeds (Figure 2) and of the adult leaf
(Figure 4C) were acquired using a Leica stereomicroscope
(MZ FLIII) with the MultiFocus and Montage option
of the Leica Application Suite V3 (Leica Microsystems,
Wetzlar, Germany).

Statistical analysis and software

Statistical analysis was done as described before [81].
We used the Tricharatops [66] and R software (http://
www.r-project.org/) to create the meta leaf, box plots
and graphs for the analysis of the minimum distance to the
nearest neighbouring trichome. Microsoft Excel (Microsoft,
Redmond, USA) was used for the diagrams analyzing the
root hair pattern.

Additiona files

Additional file 1: Table S1. Comparison of amino acid (aa) sequences
between AtTTGT and AaTTGl.

Additional file 2: Figure S1. Complementation test between the
Aattgl-1 and AattgT1-2 mutant alleles and rescue experiments in A.
thaliana. First true leaves of A) wild type Paj, B) Aattgi-1, C) pep1-1, D)
Aattgi-2, E) First true leaf of a F1 plant from the cross between Aattg -1
and Aattgi-2. Leaves are glabrous indicating allelism. Scale bar=1 mm. F)
A. thaliana ttgi-1 rosette leaves. Plants are completely devoid of
trichomes in this allele. G) A. thaliana Atttg1-1 poAtTTGT:AATTGT™ plant
showing partial rescue of the trichome phenotype. H) Atttgi-1 p AtTTGI:
AaTTG17P"! plant showing partial trichome rescue. Scale bar =1 mm.

Additional file 3: Figure S2. HPLC-MS analysis of cyanidin and
kaempferol in seeds and seedlings of A. alpina - full chromatograms.
Shown are total ion chromatogram (TIC, left) and extracted ion
chromatogram (EIC, right) for 750 nM cyanidin (MeOH), 750 nM
kaempferol (MeOH) and for all samples shown in Figure 2C and

Figure 2F. The m/z value for cyanidin ([M]+) and kaempferol ((M + H]+) is
287.055. EICs for m/z =287.055 +/— 0.005 were generated based on the
corresponding TICs using the Compass DataAnalysis software Version 4.0
SP5 (Bruker Daltonics, Bremen, Germany). In the TIC the retention time
and in the EIC the peak of cyanidin and kaempferol is marked. 1: cyanidin;
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2: kaempferol. Dashed lines mark the begin and end of each sample. Before
the first dashed line the mass calibration for each run can be seen in the
TIC.

Additional file 4: Figure S3. Ruthenium red stained seeds of wild type
and Aattg! mutants. Light microscopy image of the surface of A. alpina
seeds. The dome shaped columella is stained with ruthenium red
labeling the seed coat mucilage. A) Wild type Paj. B) pep7-1 mutant. C)
Aattg!-1 mutant induced in the wild type Paj background. D) Aattg1-2
mutant induced in the pepT-1 background. Note, the absence of
ruthenium red stained columellas in both mutants. Scale bar =500 um,
inset =50 pum.

Additional file 5: Figure S4. SEM pictures of wild type and Aattg]
mutant seeds. Scanning Electron Micrographs of the surface of A. alpina
seeds. A, B) wild type Paj and pep1-T mutant, respectively. Note, that the
surface is irregularly but smooth and that the columella is seen as small
domes. C, D) Aattgi-1 mutant induced in the wild type Paj background
and the Aattgl-2 mutant induced in the pepi-1 background. Only the rim
of the epidermal cells is left. Columellas are absent. Scale bar: 100 pum.
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