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Abstract

stress responses.

Phytohormones

Background: Ca**, a versatile intracellular second messenger in various signaling pathways, initiates many responses
involved in growth, defense and tolerance to biotic and abiotic stress. Endogenous and exogenous signals induce
cytoplasmic Ca** ([Ca”]cyt) elevation, which are responsible for the appropriate downstream responses.

Results: Here we report on an ethyl-methane sulfonate-mediated Arabidopsis mutant that fails to induce [Ca2+]Cyt
elevation in response to exudate preparations from the pathogenic mibrobes Alternaria brassicae, Rhizoctonia solani,
Phytophthora parasitica var. nicotianae and Agrobacterium tumefaciens. The cytoplasmic Ca** elevation mutant1 (cycam1)
is susceptible to infections by A. brassicae, its toxin preparation and sensitive to abiotic stress such as drought and salt.
It accumulates high levels of reactive oxygen species and contains elevated salicylic acid, abscisic acid and bioactive
jasmonic acid iso-leucine levels. Reactive oxygen species- and phytohormone-related genes are higher in A. brassicae-
treated wild-type and mutant seedlings. Depending on the analysed response, the elevated levels of defense-related
compounds are either caused by the cycam mutation and are promoted by the pathogen, or they are mainly due to
the pathogen infection or application of pathogen-associated molecular patterns. Furthermore, cycam shows altered
responses to abscisic acid treatments: the hormone inhibits germination and growth of the mutant.

Conclusions: We isolated an Arabidopsis mutant which fails to induce [Ca”]Cyt elevation in response to exudate

preparations from various microbes. The higher susceptibility of the mutant to pathogen infections correlates with the
higher accumulation of defense-related compounds, such as phytohormones, reactive oxygen-species, defense-related
mMRNA levels and secondary metabolites. Therefore, CYCAM1 couples [Ca”]Cyt elevation to biotic, abiotic and oxidative
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Background

Plants have evolved effective mechanisms to perceive,
transduce and respond to a wide variety of biotic and abi-
otic signals by modulating cytosolic Ca** levels ( [Ca2+]cyt)
(cf [1-7]). Ca®* is a tightly regulated ion within cellular
compartments, and the spatial and temporal control of its
concentration makes it a versatile signalling component in
plants [5,8]. Under resting conditions, the [Ca2+]cyt is
maintained below 100 nM, 10* times less than in the apo-
plastic fluid and 10* to 10° times less than in vacuoles,
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endoplasmic reticulum and chloroplasts [2,5]. The Ca%*
signaling system is composed of a receptor, a system for
generating the transient increase in [Ca2+]cyt through
Ca”**-pumps and -channels in response to a stimulus,
recognition of the specific Ca**-signature by sensor
proteins and transduction of the information to targets,
and cellular systems responsible for returning [Caz*]Cyt
to its pre-stimulus level [9,10]. In plants, increase in
[Ca2+]cyt arises from the influx of Ca®* from the apo-
plast and/or from internal stores through specific chan-
nels like cyclic nucleotide gated channels, glutamate
receptor channels or two pore Ca”* channels [1,9-11].
H*/Ca®* antiporters and Ca®>*-ATPases pump the Ca**
ions back into the apoplast and/or intracellular stores
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once the receptor is no longer activated by ligand bind-
ing [10].

[Ca2+]cyt elevation is one of the earliest physiological
events in root and leaf cells in response to pathogenic
stimuli. Upon perception of signals from pathogenic fungi
or/and their pathogen-associated molecular patterns
(PAMPs), [Ca\2+]Cyt levels transiently increase in the host
cells within seconds [4,12-15]. Plants discriminate both
the nature and strength of these stimuli to mount an ap-
propriate rapid adaptive response for their survival [16].
Recognition and perception of fungal pathogens via their
PAMPs or effectors induces [Ca2+]cyt elevation which
leads to the activation of defence-signalling cascades
against the attempted pathogen invasion [12,17,18].

Here, we report on an Arabidopsis mutant which was
isolated due to its failure to induce [Ca2+]cyt elevation in re-
sponse to exudate components from Alternaria brassicae
(Berk.) Sacc. A. brassicae is a necrotrophic deuteromycete
fungus which causes black spot disease in crucifers includ-
ing A. thaliana. It is a seed-, air- and soil-borne fungus that
penetrates through all plant parts and causes lesions on
leaves, stems, siliques and roots [19]. The disease progres-
sion ultimately results in plant death, mostly caused by
host-specific toxins (Tox) [19-23]. These are low molecular
weight secondary metabolites of different chemical classes
which can be isolated from liquid cultures or germinating
spores [22-25]. The two well known phytotoxins destruxin
B and sirodesmin PL from A. brassicae induce phytoalexin
and camalexin biosynthesis in crucifers [23,26].

We demonstrate that besides these Toxs, non-toxic low
molecular weight exudates components from A. brassicae
also induce [Caz+]cyt elevation in Arabidopsis stably
expressing the Ca®* reporter protein aequorin. We have
isolated and characterized a cytosolic calcium elevation
mutantl (cycaml) which does not induce [Ca%]cyt eleva-
tion in response to the non-toxic exudate components.
Further characterization of cycaml demonstrated that it
also fails to induce [Ca2+]cyt elevation in response to exud-
ate preparations from Rhizoctonia solani, Phytophthora
parasitica var. nicotianae and Agrobacterium tumefaciens.
The mutant is susceptible to infection by A. brassicae and
sensitive to abscisic acid (ABA), drought and salt stress.
Thus, the mutated gene couples [Ca2+]cyt elevation to bi-
otic and abiotic stress responses.

Results

Exudate components from A. brassicae induce [Caz‘”]cyt
elevation in Arabidopsis roots

Under resting conditions, 18 d-old transgenic apoaequorin-
carrying A. thaliana roots in the Col-0 background
(pPMAQ?2) [27,28] gave [Ca2+]cyt values of 70+ 0,6 nM (n =
16). A rapid and transient increase in the [Ca%]cyt concen-
tration is observed 40 sec after the application of a cell wall
extract (CWE), a water-diffusible exudate preparation from
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mycelia (EPM), germinating spores (EPS) or a Tox prepar-
ation from A. brassicae to the roots (Figure 1). Discharge at
the end of the experiment demonstrates that less than 5%
of the reconstituted aequorin was consumed after the
stimuli, which ensures that the amount of aequorin in the
sample is not limiting for the Ca®* signal [16]. After a lag
phase of 15 — 20 sec, the levels of [Ca2+]cyt begin to rise
and reach a peak of ~300 — 400 nM after 40 to 70 sec
(Figure 1). Subsequently the Ca®* levels steadily decreased.
No [Ca2+]cyt elevation is observed with the water control
treatment (Figure 1) and barely any [Ca2+]cyt elevation is
observed in response to the CWE, EPM and EPS in the
cotyledons of 18 d-old seedlings, while the Tox preparation
induces [Caz+]cyt elevation in the cotyledons although at
lower rates than in the roots (Figure 1, insets). For all
stimuli, the magnitudes of the [Ca2+]cyt responses are dose-
dependent (Additional file 1: Figure S1).

The A. brassicae exudates and Tox preparations showed
very similar [Ca2+]cyt elevation kinetics which did not
change after heat treatment (20 min at 121°C by autoclav-
ing) indicating that the components are thermostable
(Additional file 1: Figure S2). After ethyl acetate extraction
the Ca®" activity in the aequous phase was comparable to
the activity in the starting fraction, while barely any activity
was detectable after evaporating the ethyl acetate and re-
solving the residual material in an equal volume of distilled
water. This indicates that most of the activity remained in
the aqueous phase. Similar results were obtained after
extracting the CWE, EPM and EPS preparations with
methanol, whereas extraction of the Tox preparation with
methanol resulted in a supernatant and precipitate fraction
which showed [Ca2+]cyt inducing activities (Additional file 1:
Figure S2). This suggests that the [Ca2+]cyt activity induced
by the Tox preparation is different from those induced by
the three other preparations. Size separation of the fungal
components demonstrates that all compounds are <3 kDa
(Additional file 1: Figure S2).

A Ca**-based screen to isolate mutants defective in [Ca®"]y
elevation to the CWE

96-well plates in combination with a plate-reader lumin-
ometer equipped with an automatic injection system were
used to screen for Arabidopsis mutants which do not
show [Caz+]cyt elevation in response to the A. brassicae
CWE. The screen was performed with roots from individ-
ual 18-day-old M, seedlings, after ethyl methane sulfonate
(EMS) mutagenesis of transgenic apoaequorin-carrying
M; seeds in the Col-0 background [27,28]. After recording
the background [Ca2+]cyt level for 1 min, the response to
the CWE was measured for 10 min. Roots which did not
respond to the stimulus were used for the total discharge
reaction to ensure that the lack of [Ca2+]cyt elevation is
not caused by a mutation in the apoaequorin gene.
Screening of approximately 150.000 individual M, plants
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Figure 1 A. brassicae-CWE, -EPM, -EPS and -Tox induce [Caz"]cyt elevation in A. thaliana seedlings expressing cytosolic aequorin. Roots
of 18-day old pMAQ?2 in Col-0 seedlings were dissected and incubated overnight in 7.5 uM coelenterazine. The roots were challenged with 50 pl
of the CWE (A), EPM (B), EPS (C) or Tox (D) preparations. [Ca“]Cyt level was calculated from the relative light unit (RLU) at 5 s integration time for
10 min. The arrow indicates the time (60 s) of addition of the stimuli/water. The inset shows the mean peak values + SEs of [Caz*]cyt elevation in
leaves and cotyledons (cotyl.) with the same dose of stimuli. Sterile water was used as control and gave background readings. All curves and
values represent average of five independent experiments with eight replications in each experiment.
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identified 12 mutants which completely failed to induce
[Ca2+]cyt elevation in response to the CWE; they were
named cytoplasmic calcium elevation mutants (cycam)
(Figure 2). They were transferred to soil to obtain M3 and
M, seeds. Three putative mutants did not survive in soil.
For the other lines, the phenotype was confirmed with the
M3 and M, lines. None of them showed a visible pheno-
type under our growth conditions when compared to WT.
Genetic analyses of crosses uncovered that four cycam
mutants were allelic. Two of them, cycamI-1 and cycam1-
2, were randomly chosen and used for further analyses.
When cycaml-1 and cycaml-2 were backcrossed to WT
(Col-0) or WT (La), [Caz*]cyt elevation to the CWE was
restored in ~25% of F, progenies, indicating that the mu-
tations are recessive.

cycam1 does not respond to the EPM and EPS, but
responded to the Tox preparation.

The c¢ycaml-1 and cycamlI-2 roots did not respond to
the Ca®*-inducing EPM and EPS preparations from A.

Time (min)

Figure 2 Mutants which do not respond to A. brassicae CWE.
18-day old M2 seedlings from the individual M1 plants were used
for the mutant screening. About 70% of the roots from the individual
M2 seedlings was dissected and incubated in 7.5 uM coelenterazine
overnight and challenged with the CWE. cycam1, cycam2 and cycam3
did not respond to the CWE.
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brassicae, but showed a WT response to the Tox prepar-
ation (Figure 3A-D). To test whether the [Ca2+]cyt re-
sponses induced by the CWE, EPM, EPS or the Tox
preparations show a refractory behaviour, roots of WT
and the two cycaml alleles were challenged first with ei-
ther the CWE, EPM or EPS and subsequently with either
the same stimulus or one of the other two stimuli. Ten
min after the first stimulus, when the [Ca2+]cyt level is on
its descent, the second stimulus was applied. Figure 3E

Page 4 of 19

demonstrates that a second stimulus with the CWE to
WT plants showed a weaker response. The same was
observed for EPM or EPS, and any combination of the
three stimuli CWE, EPM and EPS (data not shown). The
comparable [Ca2+]cyt responses with refractory features
for the three stimuli indicate that CYCAM1 is involved in
all responses. Therefore, the three preparations contain
either the same compound or all of them require
CYCAM1 for [Ca2+]cyt elevation in Arabidopsis roots.
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Figure 3 Response of WT and cycam1 to different A. brassicae-derived stimuli. The roots of 18-day old WT and cycam1 seedlings were

dissected and incubated overnight in 7.5 uM coelenterazine. The roots of WT, cycam1-1 and cycam1-2 were challenged with 50 ul of CWE (A),
EPM (B), EPS (C) or Tox (D). The mutants did not respond to the CWE, EPM and EPS (A-C) but responded to the Tox preparation (D). pMAQ2 in
Col-0 seedlings served as control. Refractory behavior of the fungal stimuli to [Ca”}m changes in WT and cycam1-2 were determined by competition
assays (E-H). WT and mutant roots were first treated either with the CWE, the EPM or EPS and subsequently 10 min later with CWE (E) or the Tox
(E-H). The CWE-induced [Caz*]Cyt change is refractory to consecutive applications of CWE but non-refractory to the second treatment with Tox in WT
roots (E). The CWE, EPM or EPS induce [Ca2*]m changes in WT, but not cycam1-2 roots, while both WT and mutant responded to subsequent treatment
with the Tox (E-H). All curves represent average of four independent experiments with eight replications in each experiment.
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When the Tox preparation is applied as a second stimu-
lus, a strong [Ca2+]cyt elevation without refractory feature
is observed in WT roots, irrespective of whether CWE,
EPM or EPS were the first stimuli. The Tox-induced
response occurs also in the cycamli-1 and cycamlI-2 seed-
lings (Figure 3F-H). Therefore, the Tox preparation-
induced [Ca2+]cyt response is independent of CYCAMI.
Finally, we used flg22 to stimulate [Ca2+]cyt elevation in
the cycaml roots and leaves. No difference to the WT is
observed (data not shown).

We applied staurosporine, a protein kinase inhibitor
[29-31], to WT roots before the [Ca2+]cyt response was
induced by the four A. brassicae-derived preparations. 5
UM staurosporine was used, because the basal level of
[Ca2+]cyt and the total aequorin discharge was not chan-
ged at this concentration [cf. 32]. Application 1 h prior
to the treatment with one of the four Ca**-inducing stimuli
significantly reduced [Caz+]cyt elevation (Additional file 1:
Table S1). This suggests that the CWE-, EPM-, EPS- and
Tox-induced [Ca2+]cyt elevation requires kinase activity.

cycam1 is also impaired in the [Caz"]cyt response to
exudate preparations from other microbes

Since cycaml was isolated by a screen in which [Ca2+]cyt
elevation was impaired in Arabidopsis roots, we further
tested CWE and EPM preparations from other microbes
with the potential to interact with roots, such as from
Rhizoctonia solani, a necrotrophic fungus, Phytophthora
parasitica var. nicotianae, a hemibiotrophic oomycete,
and Agrobacterium tumefaciens, a tumor-inducing bac-
terium. Interestingly, cycaml did not respond to the
CWE and EPM preparations from these fungi as well,
and less to a CWE from A. tumefaciens, even though
these preparations induced [Ca2+]cyt elevation in WT
(Additional file 1: Figure S3A-E). A CWE preparation
from the root-colonizing fungus Mortierella hyalina [33]
induced [Ca2+]cyt elevation in the roots of the WT and
c¢ycaml mutant (data not shown). Therefore, CYCAM1
is involved in [Ca%]cyt elevations in response to differ-
ent, but not all microbes.

To test whether the [Ca2+]cyt responses induced by the
CWEs and EPMs from these four microbes show a
refractory behaviour, roots of WT and the two cycaml
alleles were challenged first with the CWE from A. bras-
sicae and subsequently with either the CWE or EPM
from one of the other microbes. The second stimulus
showed always a weaker response. Any combination of
the stimuli confirmed that CYCAM1 is involved in all
responses.

cycam1 is highly susceptible to A. brassicae and its Tox
preparation

Since the cycaml mutants were obtained by screening
the EMS mutated pMAQ2 line with the A. brassicae
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CWE, we tested whether they are more susceptible to A.
brassicae infections than WT. 14 d-old seedlings or
leaves from 4 week-old plants were infected with A.
brassicae. Roots were infected by exposing them to a 5
mm fungal plug (cf. Material and Methods, Figure 4A).
The leaves of the seedlings and adult plants were infected
with 5 pl of a spore suspension (Figure 4B-C). The disease
progression in the leaves measured as percentage disease
index was determined 3, 5, 7 and 10 days after infection
(Figure 4D). The experiments demonstrated that cycami-
1 and cycamI-2 were more sensitive to A. brassicae infec-
tion than WT (Figure 4A-D). The higher transcript level
of the A. brassicae Atrl marker gene in cycaml indicates
that the mutant cannot efficiently restrict fungal growth
(Figure 4E). Comparable results were obtained when the
leaves were infected with the Tox preparation (Figure 4C).
This can also be demonstrated by growing WT and
cycaml seedlings on media containing low concentrations
of the Tox preparation (Figure 4F). False colour images of
the plates representing Fs/Fm values confirm that WT
seedlings barely suffer under the applied Tox concentra-
tion while cycamlI-1 and cycami-2 do (Figure 4F). Taken
together, CYCAMI1 is essential to establish resistance
against A. brassicae infection and its Tox preparation.
Since the CWE, EPM and EPS fractions, which induce
[Ca2+]cyt elevation, do not induce toxic effects on the
plants or effect seedling’s growth, while the Tox prepar-
ation induces [Ca2+]cyt elevation and toxicity (Figure 4Q),
their roles are different.

To test whether the lack of the Ca®* response to exud-
ate preparations from the pathogens R. solani and P.
parasitica var. nicotianae has an influence on the resist-
ance of Arabidopsis, 14 d-old cycamiI-1, cycamlI-2 and
WT seedlings were exposed to a fungal plug of these
pathogens. The disease progression was significantly fas-
ter for the mutants compared to WT (Additional file 1:
Figure S4). These data support the idea that cycaml is
more susceptible to pathogens.

cycaml is sensitive to ABA, salt and drought stress

When WT, cycamli-1 and cycamli-2 plants were grown
on MS medium with 100 nM ABA, 100 mM NaCl or
350 mM mannitol for 3 weeks, their fresh weights were
reduced compared to plants which were not exposed to
stress. However, the extent of the reduction was much
stronger for the mutant than for WT (Figure 5). The im-
paired fitness of the mutants can be demonstrated by
measuring chlorophyll (Chl) fluorescence parameters
which show that the efficiency of the photosynthetic
electron flow is more impaired in stress-exposed mu-
tants than in WT plants (Additional file 1: Figure S5).
This indicates that cycaml-1 and cycaml-2 are more
sensitive to ABA, salt and mannitol stress than WT.
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(See figure on previous page.)

seedlings per treatment in each experiment (** P < 0.01).

Figure 4 cycam1-1 and cycam1-2 are highly susceptible to A. brassicae and its Tox. (A) The roots of 14-day old cycam! and WT seedlings
grown under LD conditions were exposed to a fungal plug for 7 d. (B) The leaves of 14-day old cycam1 and WT seedlings were inoculated with
5 ul spore suspension containing 10%10° cfu mlI™" and incubated for 7 d. Detached leaf assays with mature leaves were performed with fungal
spores and Tox (C). Mature leaves from 4 week-old cycam1 and WT plants were dissected, inoculated with 10 pl spore suspension containing
10%10° cfu ml™' or 10 ul Tox preparations and incubated for 5 d. (D) The Percentage Disease Index (PDI) was determined 3, 5, 7 and 10 days after
infection (dai) of leaves as shown in panel C, left. The mock treatment was performed with sterile water. Bars represent means + SEs, based on

4 x 24 leaves. Asterisks indicate significant differences as determined by the Student's t-test (** P <0.01). (E) A. brassicae AbreATR1 transcript levels
are higher in cycam1-1 and cycam1-2 than in WT leaves 5 dai. —Ab, unifected control, +Ab, A. brassicae-infected leaves. The plant GAPDHC gene
served as control. The gel pictures are representative of 4 independent experiments with 3 replications each. (F) 14-day old WT, cycam1-1 and
cami-2 seedlings, which were either grown on MS medium (left) or MS medium supplemented with A. brassicae Tox preparation (Tox, right). The
bottom pictures show Chl fluorescence images of the seedlings shown on the top. (G) Fresh weight of seedlings which were grown as demonstrated in
panel (F). In addition to the Tox, also the CWE, EPM or EPS preparations were tested. Data are means + SEs from 5 independent experiments with >40

cycam1 accumulates reactive oxygen species (ROS)

The amount of ROS in unchallenged cyam1 roots is com-
parable to the amount in WT roots. However, after expos-
ure to A. brassicae spores (Figure 6A) for 2 days or an A.
brassicae Tox treatment (Figure 6B), the ROS level in-
creases to significantly higher levels in the cycaml roots
compared to the WT control. A stimulatory effect of the
A. brassicae treatment was also observed for the expres-
sion of marker genes for different ROS species, although
the pattern does not always match the pattern observed
for the accumulation of the ROS species (Figure 6C).
A. brassicae significantly stimulated the expression
of REDOX-REGULATED TRANSCRIPTION FACTORI
(RRTFI), a marker gene for singlet oxygen accumulation,
OXIDATIVE SIGNAL INDUCIBLE1 (OXII), a root spe-
cific marker gene for H,O, accumulation, JASMONATE-
REGULATED GENE21 (JRG21), DISEASE-RESISTANCE
RESPONSIVE (DSR) and DARK-INDUCIBLE11 (DIN11),
which represent general ROS marker genes (Figure 6C)

[34-37]. A lower, but significant response was also ob-
served for INDOLE GLUCOSINOLATE O-METHYL
TRANSFERAEI (OMT1), a marker gene for O3. A com-
parative analysis of the mRNA data shown in Figure 6C
demonstrates that some genes are already upregulated in
unchallenged cycaml seedlings relative to the WT control
and this effect is further promoted by the pathogen (e.g.
JRG21, OX11, DIN11I), while in other cases it is primary
the pathogen infection that stimulates the accumulation
of the mRNAs in the mutant seedlings (most obvious for
RRTFI). Apparently, the ROS-related genes respond dif-
ferently to changes in the ROS levels, which might be due
to the different regulation in response to the different
ROS. Furthermore, the higher ROS levels after A. brassi-
cae infection may be partially caused by less efficient ROS
scavenging, since the mRNA levels for several ROS scav-
enging enzymes which are upregulated in WT roots after
A. brassicae infection, are not upregulated in the roots of
the ¢ycam1 mutant (Figure 6D).
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Figure 5 cycam1 seedlings are sensitive to abiotic (ABA, NaCl and mannitol) stress. WT and cycam] seedlings were grown on MS medium
supplemented with 100 nM ABA, 100 mM NaCl or 350 mM mannitol for 21 days before their fresh weights were determined. WT and cycam1
seedlings grown on MS medium alone served as control. The values are means + SEs of four independent experiments with > 40 seedlings of
each line per experiment. Asterisks indicate significant differences as determined by the Student’s t-test (** P < 0.01).
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sis.org/). The mRNA levels of mock-treated WT seedlings were taken as 1.0 and the other values are expressed relative to it. All values are means + SEs
relative to the level of the root GAPDHC mRNA levels. Based on 3 independent experiments with 24 seedlings per experiment. Asterisks indicate
significant differences, as determined by Student’s t-test (* P < 0.05; ** P < 0.01).
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Phytohormone levels are altered in cycam1

The phytohormones salicyclic acid (SA), jasmonic acid (JA)
and ABA play crucial roles in regulating growth and devel-
opment and coordinate the plants responses to biotic and
abiotic stresses [38-40]. SA-, JA- and ABA-dependent stress
responses are regulated by [Caz*]Cyt levels in plants
[15,41-46]. To check whether the SA, JA and ABA levels
are altered in the mutant, their levels were first measured in
14 d-old cycami-1, cycami-2 and WT seedlings grown on
MS medium. The SA and ABA levels were slightly, but sig-
nificantly higher in cycamlI-1 and cycaml-2 seedlings not

exposed to stress compared to the WT control (Figure 7A).
The JA level and that of its precursor cis-12-oxo-phytodie-
noic acid (cis-12-OPDA) were not affected by the mutation
(Figure 7A). However, the inactive form jasmonoyl-
isoleucine (JA-Ile) conjugate, (-)-JA-Ile [47], and the bio-
active form (+)-7-iso-JA-lIle [48] were higher in cycamiI-1
and cycam1-2 compared to the WT (Figure 7A). This sug-
gests that JA-modifying enzymes, but not JA synthesis, are
targets of the cycaml mutation. In conclusion, the levels of
SA, ABA and the bioactive (+)-7-iso-JA-Ile are higher in the
Ca®" mutants, even when they are not exposed to stress.
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(* P<0.05 ** P<001).

Figure 7 Phytohormone levels in WT and cycam1 seedlings. WT, cycam1-1 and cycam1-2 seedlings were grown on MS medium under LD
condition for 14 days. SA, ABA, JA, cis-OPDA, (-)-JA-lle and (+)-7-iso-JA-lle levels were determined in total seedlings. The values are means + SEs of
four independent experiments with five replications in each experiment (A). The leaves of 12-day old WT, cycam1-1 and cycam1-2 seedlings
grown on MS under LD conditions were inoculated with a fungal spore suspension containing 10* to 10° cfu ml™" and incubated under LD
conditions for 3 additional days. SA, ABA, JA and (+)-7-iso-JA-lle levels were determined in total seedlings. The values are means + SEs of four
independent experiments with five replications in each experiment (B). Asterisks indicate significant differences, as determined by Student's t-test

A. brassicae infection induced SA, ABA and JA accu-
mulation in WT and cycaml seedlings (Figure 7B). Induc-
tion of the phytohormone levels is quite similar in WT
and the cycaml mutant, when the %-stimulation by the
pathogen is considered, except that the biologically active
form of JA, (+)-7-iso-JA-Ile, is induced more strongly in
infected WT than cycaml seedlings (Figure 7B). The
levels of SA, ABA and JA are almost identical in WT and
mutant seedlings, while those of (+)-7-iso-JA-Ile are twice
as high in the mutant compared to the WT control
(Figure 7B). The SA-inducible NPRI and PRI (Additional
file 1: Figure S6A), the ABA-inducible BGI, NCED3 and
TOCI (Additional file 1: Figure S6B) and the JA-inducible
JAZ1 were not or not significantly higher expressed in the
unchallenged allelic mutants compared to the unchal-
lenged WT control, whereas a minor stimulation could be
observed for the JA-inducible MYC2, VSP2, Thi2, PDF1.2
and JASMONATE_REGULATED GENE21 (JRG21, Additional
file 1: Figure S6C). Furthermore, in almost all cases, the
% induction of these mRNA levels by A. brassicae, three
days after infection of the leaves with the spores, is com-
parable for WT and mutant seedlings. Therefore, it ap-
pears that the higher mRNA levels are mainly caused by
the pathogen and not by the mutation. No significant
differences could be detected for the ABAI and ABA2
mRNA levels.

The elevated phytohormone levels in unstressed
c¢ycam1-1 and cycamI-2 prompted us to investigate the re-
sponse of the Ca®* mutant to exogenous application of
SA, methyl jasmonate (MeJA) and ABA. The phytoho-
mones were added to the MS medium in optimized con-
centrations. Application of SA or MeJA (5 and 100 pM,
respectively) did not cause any difference in the growth of
WT and cycaml seedlings. However, ABA (100-200 nM)
inhibited germination and growth of cycami-1 and
cycam1-2 more than WT. At 200 nM ABA, the expansion
of cycaml, but not WT cotyledons was strongly inhibited
(Figure 8A). Three weeks after treatment with 100 nm
ABA, the biomass of cycaml seedlings was less than half
of the biomasses of WT seedlings (Figure 8B). Thus, the
elevated ABA level already present in the mutants in
addition to the exogenous application of ABA is deleteri-
ous for the mutants. It is interesting to note that also in
the presence of ABA, no Ca®* response was observed in
the cycaml mutant in response to the fungal stimuli.

A. brassicae affects camalexin and glucosinolate levels
Camalexin and glucosinolates are major sulphur contain-
ing secondary metabolites involved in plant defense in Ara-
bidopsis [49,50]. A. brassicae infection induced both
camalexin and indolic glucosinolates (iGLS) and their
biosynthesis genes in the WT and mutant (Figure 9A-C).
The induction of the aliphatic glucosinolates (aGLS)
3-methylthiobutyl-GLS, 4-methyl sulfinylbutyl-GLS, 4-
methylthiobutyl-GLS and 8-methylsulfinyl-octyl-GLS (data
not shown) was not significantly different between WT and
mutant seedlings, while the aGLS 5-methylsulfinylpentyl-
GLS (5MSOP) and 7-methylsulfinylheptyl-GLS (7MSOH)
levels were higher in the WT than the mutants (Figure 9D).
The expression of MYB28, MYB29 and BCAT4 which are
involved in aGLS biosynthesis [49] were also upregulated in
the WT and not in the mutant after A. brassicae infection
(Figure 9E). This shows that aGLS biosynthesis is less effi-
ciently induced in cycaml.

Discussion

Exudate preparations from A. brassicae, R. solani, P. para-
sitica, and A. tumefaciens induce [Ca2+]cyt elevation in Ara-
bidopsis roots as monitored with the bioluminescent Ca**
binding protein aequorin (Figure 1-3, Additional file 1:
Figures S1 and S3). Characterization of the Ca>* signatures
induced by these stimuli demonstrates that they resemble
those described for many MAMPs from various plant spe-
cies: B-glucan from P. sojae in soybean cell cultures [51],
pep-13 from Phytophthora sojae in parsley cell cultures
[12], harpin from Pseudomonas syringae pv. phaseolina in
tobacco [52], a yeast elicitor and chitosan in Arabidospsis
[18], cryptogein from P. cryptogea and oligosaccharides in
tobacco cell cultures [2,14], pep-25 from P. sojae in Arabi-
dopsis seedlings [15], INF1 from P. infestans and boeh-
merin from P. boehmeriae in tobacco [53], flg22 from
flagellated bacteria and elf18 from the elongation factor Tu
in Arabidopsis seedlings [54,55].

Here we describe an A. thaliana mutant which fails to
induce [Caz+]cyt elevation in Arabidopsis roots in response
to the exudate preparations from pathogenic root-
interacting microbes. The chemical components which in-
duce [Ca2+]cyt elevation are either present in cell wall
preparations from these microbes or released into the
medium from mycelia or germinating spores. Although
these chemical mediators have not yet been determined,
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Figure 8 ABA inhibits germination and growth of cycam1 seedlings. WT, cycami-1 and cycam1-2 seedlings were grown on MS medium
supplemented with 50, 100 and 200 nM ABA under LD conditions. ABA (100-200 nM) inhibited germination and growth of cycami-1 and
cycam1-2 more than the WT (A). At 200 nM ABA, the expansion of cycam1, but not WT cotyledons was inhibited (A). Fresh weight of WT,
cyaml-1 and cycam1-2 seedlings exposed to 100 nM ABA (or mock treatment) for 3 weeks. (B). Asterisks indicate significant differences, as

100 nM ABA

the shape of their Ca>* signatures, their dose-dependency
and refractory nature demonstrate that they require
CYCAML1 for function (Figure 3). The cycaml mutant is
not impaired in the response to flg22 and to a CWE from
the root-colonizing fungus M. hyalina, indicating some
specificity of Arabidopsis response to pathogen exudates.
Like flg22 and the Myc factor [31,56,57], the active com-
ponents in the A. brassicae exudate preparations are
thermostable, hydrophilic, polar and of low molecular
weight (Additional file 1: Figure S2).

Interestingly, the CWEs, EPM and EPS preparations
from A. brassicae induce [Ca2+]cyt elevation (Figure 1), but
not the typical disease symptoms of the fungus in Arabi-
dopsis, while the Tox preparation from A. brassicae
induces [Caz‘r]Cyt elevation (Figure 1) and is toxic
(Figure 4C, F). Toxs from pathogenic fungi including A.
brassicae are known to disrupt membranes [21,22] which
might also contribute to the Ca** influx into the cyto-
plasm. This might also explain the slower recovery of the

Ca®* signal after Tox application than after application of
CWE, EPM and EPS preparations. The Ca”>* response in-
duced by the non-toxic CWE, EPM or EPS might establish
a first line of defense that is then followed by a second
stronger response induced by the Tox.

CYCAM1 also plays a role in abiotic stress as demon-
strated by the increased sensitivity of c¢ycam1 seedlings to
ABA, salt and mannitol applications (Figure 5). [Ca2+]cyt
elevation is well documented in response to drought stress
[18,58,59]. Both ABA and H,O, induce [Ca2+]cyt elevations
in guard cells to regulate stomata aperture [1,18,60,61].
Sustained [Ca”]Cyt elevations induced by mannitol are
required for tolerance to drought and osmotic stress in
Arabidopsis [58,59]. Therefore, CYCAML1 is involved in
both biotic and abiotic stress responses. It appears that
the higher stress sensitivity of cycam1 is associated with
imbalances in redox and ROS homeostasis since the
mutant accumulates more ROS after A. brassicae infec-
tion than the WT (Figure 6A). Since this response can
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Figure 9 Induction of camalexin, indolic glucosinolates (iGLS), aliphatic glucosinolates (aGLS) and the genes involved in their
biosynthesis in WT and cycam1 after A. brassicae infection. The leaves of 12-day old WT, cycam1-1 and cycami-2 seedlings grown on MS
under LD conditions were transferred to PNM media as described in Methods, inoculated with a fungal spore suspension containing 10* to 10°
cfu ml™" and incubated under LD condition for additional 3 days before determination of camalexin (relative quantification) (A), iGLS (B) and
aGLS (D) levels. iGLS are 13M (indolyl-3-methyl-GLS), 4MOI3M (4-methoxyindolyl-3-methyl-GLS) and TMOI3M (1-methoxyindolyl-3-methyl-GLS).
aGLS are 5MSOP (5-methylsulfinylpentyl-GLS) and 7MSOH (7-methylsulfinyl-heptyl-GLS). mRNA levels of camalexin and iGLS (C) and aGLS (E)
biosynthesis genes in the leaves of WT, cycam1-1 and cycam1-2 2 dai with A. brassicae. Mock treatment was performed with sterile water. The
abbreviations of the gene and annotation numbers are given. The mRNA levels for each cDNA were normalized with respect to the plant
GAPDHC message levels. The mRNA level for mock-treated WT seedlings was set as 1.0 and the other values refered to it. The values are

means + SEs of four independent RT-PCR experiments with three replications in each experiment. For (A), (B) and (C), all values (+ A. brassicae)
are significantly different from the values (- A. brassicae) with P < 0.01. For (D) and (E), asterisks indicate significant differences, as determined by
Student’s t-test (* P> 0.1; ** P <0.01).

also be induced by the Tox (Figure 6B), the pathogen is  A. brassicae-exposed WT and mutant seedlings (Figure 6C)
not required. Several ROS marker genes representative  [62]. Since the % induction is comparable in WT and
for different ROS species are more strongly upregulated  mutant seedlings, the expression is promoted by the
in the A. brassicae-exposed mutant than in the WT  mutation and this effect is further stimulated after patho-
(Figure 6C) which is consistent with the idea that a gen-  gen infection. The higher ROS accumulation is partially
eral stress response cannot be efficiently repressed in the  caused by the inability of the mutant to efficiently scavenge
mutant. A quite strong stimulatory effect by A. brassicae  the accumulation of ROS, several genes for ROS scaven-
in the mutant is observed for RRTFI, a marker gene for  ging enzymes which are upregulated in WT roots, are not
singlet oxygen accumulation, while OXI1, which codes for  upregulated in the mutant roots (Figure 6D).

a root-specific kinase induced in response to H,O, treat- To initially characterize the role of CYCAM1, we mea-
ment and H,O,-generating stimuli, JRG21, a general ROS ~ sured the ABA, SA and JA levels in untreated mutant
marker, the bHLH transcription factor gene Atigl0585  seedlings and those exposed to A. brassicae infections or
and DIN11I are already higher in the unchallenged mutant  to the Tox preparations. These three hormones play key
compared to the WT control and further upregulated in  roles in mediating disease responses to necrotrophic and
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biotrophic pathogens. cycaml accumulates higher ABA,
SA and bioactive JA derivative levels compared to WT
(Figure 7A). Interaction studies with biotrophic, hemibio-
trophic and necrotrophic pathogens on ABA-deficient mu-
tants demonstrate that ABA is a negative regulator of plant
defense [42,63-65]. The hypersusceptibility of cycaml to A.
brassicae, its Tox and the other microbes tested confirms a
link between CYCAMI1-mediated [Ca2+]cyt elevation, ABA
and innate immunity. The ABA level was higher in the two
allelic cycaml mutants when they were not exposed to
stress (Figure 7A), and these mutants become even more
sensitive to exogenously applied ABA compared to WT
(Figure 8A). The ABA biosynthesis genes BG1, NCED3 and
TOCI were higher in A. brassicae-exposed cycaml mutants
than in the WT, whereas the ABAI and ABA2 mRNA
levels did not show a significant difference (Additional
file 1: Figure S6B). BG1, a B-glucosidase located in the
endoplasmic reticulum, hydrolyzes glucose conjugated, bio-
logically inactive ABA to produce active ABA [66]. NCED3,
a 9-cis-epoxycarotenoid dioxygenase and TIMING OF
CAB EXPRESSION1 (TOC1) are involved in de novo ABA
synthesis [64,67]. Therefore, elevated ABA levels in A. bras-
sicae-exposed cycaml mutants may be caused by a higher
de novo synthesis and the conversion of inactive ABA to its
active form. Exposure of cycaml with elevated ABA levels
to even more exogenously applied ABA leads to more se-
vere lesions, as shown by the germination and growth as-
says on ABA-containing media (Figure 8).

A. brassicae infection induced SA (Figure 7B) and SA-
responsive gene PRI (Additional file 1: Figure S6A) in
cycaml and WT seedlings. SA has both negative and
positive roles in plant defense against fungal and bacter-
ial pathogens [40,68 and references therein]. The
phospholipase D1 (pldf1) mutant and mutants im-
paired in phosphatidic acid (PA) biosynthesis were more
susceptible to B. cinerea infection compared to the WT
and this was associated with a higher SA level in the in-
fected mutant plants [69], similar to our observations
with cycaml. PLDB1 binds Ca®*, hydrolyzes phospho-
lipids to generate PA and is involved in hormone signal-
ing [53] and the response to disease resistance [69-71].
Therefore, the slightly elevated SA levels in unchallenged
cycaml suggest that [Ca2+]cyt elevation restricts SA
accumulation, which becomes harmful if the mutant is
exposed to SA-stimulating biotic and abiotic stress.

JA, methyl-JA and other bioactive derivatives are im-
portant molecules in regulating induced defense re-
sponses against necrotrophic pathogen infection [38,72].
A. brassicae infection induced higher JA levels in cycaml
than in WT seedlings, while the levels in unchallenged
WT and mutant seedlings is almost identical (Figure 7B).
Therefore, JA may act as a positive regulator of
enhanced susceptibility to A. brassicae in cycaml. The
role of JA in disease susceptibility to A. alternata f. sp.

Page 13 of 19

lycopersici (AAL) and its AAL-Tox is well established for
tomato [73]. Furthermore, JA promoted AAL-Tox-
induced cell death through JA INSENSITIVE1 (JAIl)
receptor-dependent JA signalling [74]. The expression of
the JA-responsive genes MYC2, VSP2, JAZI, Thi2.1 and
PDF1.2 was slightly higher in A. brassicae infected
cycam than WT seedlings (Additional file 1: Figure S6C).
The higher mRNA levels for the marker genes of the
MYC (VSP2) and ERF (PDF1.2) branch of the JA path-
way in cycaml suggests that both branches are regulated
by CYCAMI. In addition, the expression of the JRG21, a
common ROS marker gene involved in biotic and abiotic
stress and JA signaling [36,37], was higher in unchallenged
cycaml and WT seedlings, and the presence of A. brassi-
cae led to a similar %-age increase in the mRNA levels for
both WT and mutant seedlings (Additional file 1: Figure
S6C). These findings suggest that CYCAML is involved in
control of JA accumulation and signaling. Furthermore,
the aGLS biosynthetic genes BCAT4 (BRANCHED-
CHAIN AMINOACID AMINO TRANSFERASE4), MYB28
and MYB29 [75] were higher in A. brassicae-infected W'T
seedlings compared to A. brassicae-infected cycaml
seedlings (Figure 9E). This suggests that the aGLS-
synthesizing genes play an important role in defense
against A. brassicae infection in Arabidopsis mediated
through CYCAM1.

Conclusions

We isolated a mutant which does not induce [Caz+]cyt
elevation in response to different pathogenic fungal exu-
dates. CYCAML is involved in [Ca2+]cyt-mediated abiotic
and biotic stress responses (Figure 10). The cycaml mu-
tant accumulates higher levels of the biologically active
phytohromones SA, ABA and (+)-7-iso-JA-Ile, is sensi-
tive to exogenous ABA applications and accumulates
more ROS than WT after A. brassicae infection, al-
though the ROS levels in the unchallenged WT and mu-
tant seedlings are comparable. The Ca** response in the
WT can be induced by the non-toxic CWE, EPM or EPS
which might establish a first line of defense, followed by
a stronger defense response induced by the Tox.

Methods

Plant material and growth

Transgenic Arabidopsis thaliana expressing cytosolic
apoaequorin (Aeq®") in Col-0 background (pMAQ?2)
was a gift from Prof. Marc Knight [32]. Mutagenesis was
performed using 0.2% ethyl-methane sulfonate (w/v). Indi-
vidual M, seeds were grown on Hoagland (HL) medium
containing 1% agar in square plates (120 x 120 x 16 mmy;
Nerbe Plus GmbH Germany). After stratification at 4°C
for 48 h, plates were kept vertically to grow the roots on
the surface of the medium and incubated for 18 days
under long day (LD) conditions (16h/8h, light/dark;
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temperature, 20 + 1°C; light intensity, 80 umol m™> sec™)
[32,76].

Mutant screen and [Ca®*].,, measurement

Aequorin based luminescence measurements were per-
formed using 16-day old individual M, plants grown in
Hoagland medium [32,76]. pMAQ2 plants served as
control [30]. For [Ca2+]cyt measurements, approxi-
mately 70% of the roots per seedling were dissected and
incubated overnight in 150 ul of 7.5 M coelenterazine
(native CTZ, P.J.K. GmbH, Germany, No 102171) in
the dark at 20°C in a 96 well plate (Thermo Fischer Sci-
entific, Finland, Cat. no. 9502887). For cotyledon as-
says, the same protocol was used except that the root
material was replaced by 3 leaves of the seedlings
grown under the same conditions. For the leaf assay, ~
1/32 part of a fully developed leaf (without middle rib)
of 4 week-old plants grown in pots under LD condi-
tions were used. Bioluminescence counts from roots or
cotyledons/leaves were recorded as relative light units
(RLU) with a microplate luminometer (Luminoskan
Ascent, version 2.4, Thermo Electro Corporation,
Finland). The mutant screen was performed with the
CWE from A. brassicae; the putative M, mutants were
rescued and transferred to pots containing garden soil
and vermiculite at 9:1 (v/v) for further screening and
validation. The mutant seedlings were grown in a
temperature-controlled growth chamber under short day
(SD) condition (8h/16h, light/dark; temperature, 20 + 1°C;
light intensity, 80 pmol m™2 sec™") for 4 weeks followed by
LD condition in Aracon tubes. The seeds were harvested
from individual M3 plants and again screened to obtain
homozygote mutants.

Growth and maintenance of fungi

A. brassicae (FSU-3951) was obtained from Jena Micro-
bial Resource Centre, Jena, Germany. The fungus was
grown on potato dextrose agar (PDA) medium (pH 6.5-
6.7) at 20+1°C in a temperature-controlled chamber
under 12/12 h light/dark and 75% relative humidity for 2
weeks. To maintain the virulence, the fungus was inocu-
lated to Arabidopsis seedlings and re-isolated from the
infected tissues periodically [77].

Preparation of A. brassicae spore suspension

A. brassicae sporulates heavily in Potato Dextrose Broth
(PDB; pH 6.5-6.7). A two-week-old fungal plug (5 mm
diameter) was inoculated to PDB and incubated for 2
weeks. The medium was removed by filtering through 4
layers of sterilized nylon membrane and the hyphae and
spores were washed 3 times with sterile H,O to remove
the residual medium. The spores and hyphae were gently
homogenized with 50 ml of sterile H,O and filtered
through four layers of sterilized nylon membrane. The
spore concentration was adjusted to 10*-10° colony form-
ing units (cfu) ml™" by serial dilutions and counting with a
Haemocytometer. For uniform dispersion of spores, 1-2
drops of Tween-20 was added to 100 ml of spore
suspension.

Inoculation of A. brassicae to roots, cotyledons and
mature leaves

For root infection, 12-day old seedlings were transferred
to fresh PNM plates with a sterilized nylon membrane
[78]. A five mm fungal plug from 2-week-old A. brassicae
was kept 1 cm away from the roots. The plates were sealed
with Parafilm and incubated in a temperature controlled
growth chamber under LD condition. Leaf infections were
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performed 48 h after the transfer of 12-d old seedlings to
PNM plates. Six leaves in the middle whorl of the seed-
lings were inoculated with 5 ul of spore suspension con-
taining 10*-10° cfu ml™". Infection of mature leaves was
performed with detached leaves. They were detached from
4 week-old plants grown under SD condition at 20°C and
80 pumol m™> sec”’. Sterile Whatmann filter paper was
placed on a Petri dish and 1 ml of sterile H,O was added
to soak the filter paper. Five detached leaves were kept on
the soaked filter paper and inoculated with 10 pl of the
spore suspension containing 10* to 10° cfu ml™" directly
on to leaves. Mock treatment was performed with sterile
H,O. The plates were sealed with Parafilm and incubated
under LD conditions as described above. The progression
of disease development was determined as Percentage
Disease Index (PDI) at 3, 5, 7 and 10 days after infection
using standard disease intensity grades. For the Tox treat-
ment, 10 ul of the A. brassicae Tox preparation was
applied directly on the detached leaves; mock treatment
was performed with sterile H,O.

Preparation of CWE from A. brassicae and A. tumefaciens
The CWE was prepared according to Anderson-Prouty
and Albersheim [79] with modifications [32,76]. Mycelia
from liquid cultures were harvested by filtration through
4 layers of nylon membrane (pore size, 70 um; mesh
count, 92 cm™Y; Sefar GmbH, Switzerland) and washed 5
times with sterile H,O. The mycelia were homogenised
in sterile H,O (1:5; w/v) with a Waring blender, and the
homogenate was filtered through four layers of nylon
membrane. The residue was collected and again washed
three more times with sterile H,O; twice with chloro-
form/methanol (1:1) and finally twice with acetone. The
myecelial cell wall (CW) was air-dried for 2 h under ster-
ile conditions. The CWE was prepared from the dried
mycelial CW by suspending 1 g of CW material in 100
ml sterile H,O and autoclaving for 30 min. After cool-
ing, the extract was filtered through 4 layers of nylon
membrane, then through 2 layers of Whatman filter
paper and finally filter-sterilised using a 0.22 pm filter to
remove undissolved substances. The fungal CWE was
further purified by passing it through a reversed phase
Supelclean LC-18 SPE cartridge (10 g bed weight; 60 ml
volume; 60 A pore size; Sigma-Aldrich, Taufkirchen,
Germany, Cat. No. 57136). The fractions were identified
by [Ca2+]cyt elevation measurements and combined
[76,80]. Two-day old spores of A. tumefaciens grown on
yeast extract broth were harvested by centrifugation for
preparing their CWE.

Preparation of water diffusible exudate preparations from
mycelia (EPM) and germinating spores (EPS)

A. brassicae mycelium, propagated on PD broth for 14
days, was filtered through four layers of sterilised nylon
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membrane and intensively washed seven times with ster-
ile H,O to remove the medium and spores. After air
drying of the mycelium for 1 h, it was re-suspended in
sterile H,O and incubated at 20°C in a horizontally
rotating shaker with 60 rpm. After 48 h, the mycelium
was removed from the water by filtering through 4 layers
of sterile nylon membrane, then through 2 layers of filter
paper and finally filter-sterilized using a 0.22 micron
pore size filter. The crude water-diffusible fraction was
further purified by passing it through a Reverse Phase
Supelclean LC-18 Cartidges to obtain the active and par-
tially pure fractions as described above [76,80]. For the
preparation of a water diffusible exudate fraction from
germinating spores, 10”-10% cfu ml™" of the fungus were
incubated in distilled water for 48 h at 20°C. During
shaking with 60 rpm, more than 90% of the spores ger-
minated. They were filtered through 4 layers of sterile
nylon membrane, then 2 layers of filter paper and filter-
sterilized using a 0.22 micron pore size filter. The filtrate
was finally purified by passing it through a Reversed
Phase Supelclean LC-18 cartidge.

A. brassicae Tox preparation

A Tox fraction from A. brassicae culture filtrate was
generated as described by Vidhyasekaran et al. [81] with
modifications. Erlenmeyer flasks (250 ml) with 100 ml of
PDB were inoculated with a 5-mm disc of mycelium
grown on PDA plates and incubated at 22°C, relative
humidity 75%, and 12h/12h light/dark cycle with a light
intensity of 80 pmol m™2 sec™'. After 4-5 weeks, the cul-
ture filtrates were collected by filtering through 8 layers
of sterile nylon membrane and twice through 2 layers of
Whatman filter paper. The culture filtrate was concen-
trated to 1/10™ volume in vacuum at 40°C using a
Rotavapor (Biichi Laboratoriums-Technik AG, Flawil,
Switzerland). An equal volume of methanol (HPLC
grade) was added and mixed well, and the solution was
stored overnight at 4°C. Precipitates were removed by
filtration through 4 layers of nylon membrane and then
through Whatman filter paper. The aqueous fraction
was extracted three times with equal volumes of trichloro-
methane, ethyl acetate, n-hexane and petroleum ether
using a separation funnel. After filtration through 4 layers
of nylon membrane, the aqueous fraction was centrifuged
at 10,000 rpm for 10 min and the supernatant was filter-
sterilized using a 0.22 pM filter. The Tox preparation was
further purified by passing it through a Sephadex G100
column and the active fractions were collected and lyophi-
lised. The powder was re-suspended in sterile H,O and
further purified by passing it through a reversed phase
Supelclean LC-18 SPE cartridge. The active fractions were
collected and used as stimulus for [Ca2+]cyt measurements
and physiological studies.
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Germination, growth of seedling and root assays

The surface-sterilized seeds of WT (pMAQ2) and the
c¢ycaml mutant were placed on MS medium [82]. For
drought stress experiments, different concentrations of
mannitol or NaCl were added before autoclaving. Differ-
ent concentrations of ABA were added after autoclaving.
As control, WT and cycaml mutants were grown on MS
medium alone. After cold treatment at 4°C for 48 h, plates
were incubated at 20°C under LD condition and 80 pmol
m 2 sec”!, as described in the text. For root assays, differ-
ent concentrations of filter-sterilized methyl-JA and SA
solutions were added to sterilized HL medium to obtain
the required final concentrations and seeds were plated on
it [45].

Measurement of photosynthesis parameter

False color pictures of Chl fluorescence images represent-
ing Fs/Fm values of seedlings in plates were obtained as
described by Wagner et al. [83]. Blue represents low Fy/F,,
values above a threshold of 0.06 and red represents high
F,/F,, values with an upper threshold limit of 0.17.

Phytohormone measurement

100 mg of leaf material was frozen in liquid nitrogen
and kept at -80°C. After grinding with mortar and pestle,
the leaf material was extracted with 1.2 ml of methanol
containing 24 ng of 9,10-D,-9,10-dihydrojasmonic acid,
24 ng Dy-salicylic acid (Sigma-Aldrich), 24 ng De-
abscisic acid (Santa Cruz Biotechnology, Santa Cruz,
U.S.A.), and 4.8 ng of JA-13Cq-1le conjugate as internal
standards. JA-'?Ce-Ile conjugate was synthesized as de-
scribed by Kramell et al. [84] using 13C,-1le (Sigma-
Aldrich). The homogenate was mixed for 30 min and
centrifuged at 14,000 rpm for 20 min at 4°C. The super-
natant was collected. The homogenate was re-extracted
with 500 pl methanol, mixed well, centrifuged and su-
pernatants were pooled. The combined extracts was
evaporated in a speed-vac at 30°C and re-dissolved in
250 pl methanol. Chromatography was performed on an
Agilent 1200 HPLC system (Agilent Technologies).
Separation was achieved on a Zorbax Eclipse XDB-C18
column (50 x 4.6 mm, 1.8 pm, Agilent). Formic acid
(0.05%) in water and acetonitrile were employed as mo-
bile phases A and B, respectively. The elution profile
was: 0-0.5 min, 5% B; 0.5-9.5 min, 5-42% B; 9.5-9.51 min
42-100% B; 9.51-12 min 100% B and 12.1-15 min 5% B.
The mobile phase flow rate was 1.1 ml/min. The column
temperature was maintained at 25°C. An API 3200 tan-
dem mass spectrometer (Applied Biosystems) equipped
with a Turbospray ion source was operated in negative
ionization mode. The instrument parameters were opti-
mized by infusion experiments with pure standards,
where available. The ionspray voltage was maintained at
-4500 eV. The turbo gas temperature was set at 700°C.
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Nebulizing gas was set at 60 psi, curtain gas at 25 psi,
heating gas at 60 psi and collision gas at 7 psi. Multiple
reaction monitoring (MRM) was used to monitor analyte
parent ion — product ion: m/z 136.9 — 93.0 [collision
energy (CE) - 22 V; declustering potential (DP) - 35 V]
for SA; m/z 140.9 — 97.0 (CE - 22 V; DP - 35 V) for D4-
SA; m/z 209.1 — 59.0 (CE - 24 V; DP - 35 V) for JA; m/
z 213.1 — 56.0 (CE - 24 V; DP - 35 V) for 9,10-D2-9,10-
dihydrojasmonic acid; m/z 263.0 — 153.2 (CE - 22 V; DP -
35 V) for ABA; m/z 269.0 — 159.2 (CE - 22 V; DP - 35 V)
for D6-ABA; m/z 322.2 — 130.1 (CE - 30V; DP - 50V) for
JA-Ile conjugate; m/z 328.2 — 136.1 (CE - 30V; DP - 50V)
for JA-"*Ce-Ile conjugate. Both Q1 and Q3 quadrupoles
were maintained at unit resolution. Analyst 1.5 software
(Applied Biosystems) was used for data acquisition and
processing. Linearity in ionization efficiencies were veri-
fied by analyzing dilution series of standard mixtures. Phy-
tohormones were quantified relative to the signal of their
corresponding internal standard. For quantification of 12-
oxophytodienoic acid, cis-OPDA, 9,10-D,-9,10-dihydro-
JA was used as the internal standard applying an experi-
mentally determined response factor of 1.

Quantification of camalexin by LC-MS

Samples were freeze-dried until constant weight and
ground to a fine powder. Ten to fifty mg of freeze-dried
and pulverised material was used for camalexin meas-
urement by LC-MS analysis. Camalexin was analysed in
the flow-through samples resulting from the extraction
procedure for glucosinolate analysis (see below). In glu-
cosinolate extraction, the raw extract was loaded onto
DEAE Sephadex, and the resulting flow-through was
collected in a 96 deepwell plate and directly analysed by
LC-MS/MS. Chromatography was performed on an Agi-
lent 1200 HPLC system (Agilent Technologies, Boblin-
gen, Germany). Separation was achieved on a Zorbax
Eclipse XDB-C18 column (50 x 4.6 mm, 1.8 um, Agilent,
Germany). Formic acid (0.05%) in water and acetonitrile
were employed as mobile phases A and B, respectively.
The elution profile was: 0-0.5 min, 5% B; 0.5-1 min, 5-
100% B in A; 1-2 min 100% B and 2.1-4. 5 min 5% B.
The mobile phase flow rate was 0.8 ml/min. The column
temperature was maintained at 25°C. An API 3200 tan-
dem mass spectrometer (Applied Biosystems, Darmstadt,
Germany) equipped with a Turbospray ion source was
operated in positive ionization mode. The instrument
parameters were optimized by infusion experiments. The
ionspray voltage was maintained at 5500 V. The turbo gas
temperature was set at 700°C. Nebulizing gas was set at 70
psi, curtain gas at 35 psi, heating gas at 70 psi and collision
gas at 2 psi. Multiple reaction monitoring (MRM) was
used to monitor analyte parent ion — product ion: m/z
201.09 — 59.01 [collision energy (CE) 45 V; declustering
potential (DP) 51 V]. Both Q1 and Q3 quadrupoles were
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maintained at unit resolution. Analyst 1.5 software
(Applied Biosystems, Darmstadt, Germany) was used for
data acquisition and processing. Linearity in ionization
efficiencies was verified by analyzing dilution series of
samples containing camalexin. A relative quantification of
camalexin was performed by calculating peak area per mg
of fresh weight.

Determination of glucosinolates (GLS)

Samples were freeze-dried until constant weight and
ground to a fine powder. Ten to fifty mg of freeze-dried
and pulverised material per plant was used for GLS ana-
lysis. GLS were extracted with 1 ml of 80% methanol solu-
tion containing 0.05 mM intact 4-hydroxybenzyl GLS as
internal standard and desulfated with arylsulfatase (Sigma-
Aldrich) on a DEAE Sephadex A 25 column. The eluted
desulfoglucosinolates were separated using high perform-
ance liquid chromatography (Agilent 1100 HPLC system,
Agilent Technologies, Waldbronn, Germany) on a re-
versed phase column (Nucleodur Sphinx RP, 250 x 4.6
mm, Macheray-Nagel, Diiren, Germany) with an water-
acetonitrile gradient (1.5% acetonitrile for 1 min, 1.5-5%
acetonitrile from 1-6 min, 5-7% acetonitrile from 6-8 min,
7-21% acetonitrile from 8-18 min, 21-29% acetonitrile
from 18-23 min, followed by a washing cycle; flow 1 ml
min ). Detection was performed with a photodiode array
detector and peaks were integrated at 229 nm. We used
the following response factors: a-GLS 2.0, iGLS 0.5 [85]
for quantification of individual GLS.

Quantitative ROS measurements

Quantitative ROS measurement were performed using the
Amplex Red hydrogenperoxide/peroxidase assay kit (Mo-
lecular Probes) according to the manufacturer’s instruc-
tions (http://tools.invitrogen.com/content/sfs/manuals/mp
22188.pdf). ROS measurements were performed using
the substrate carboxy-H,DFFDA (Molecular Probes) ac-
cording to the manufacturer’s instructions (https://tools.
invitrogen.com/content/sfs/ manuals/mp36103.pdf). The
plant material was incubated in 20 pM carboxy-H,DFFDA
prepared in KRPG buffer for 30 min in the dark. The
fluorescence intensity was quantified with a fluorescence
microplate reader (TECAN Infinite 200) with an excita-
tion at 485 nm and emission at 530 nm. The reaction mix-
ture without the substrate and plant material served as
control.

Quantitative reverse transcription-PCR Analysis

Total RNA was extracted using RNeasy Plant Mini kit
with DNAse I treatment (Qiagen). cDNA was synthe-
sised with the Omniscript cDNA synthesis kit (Qiagen)
and 1 pg RNA. The oligonucleotide primers are given
in Additional file 1: Table S2. The mRNA levels for
each cDNA probe were normalized with respect to
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the GAPDHC message levels and expressed relative to
the WT control [71]. Real-time quantitative RT-PCR was
performed using the iCycler iQ real-time PCR detection
system and iCycler software version 2.2 (Bio-Rad). For
the amplification of the PCR products, iQ SYBR Super-
mix (Bio-Rad) was used according to the manufacturer’s
instructions in a final volume of 23 ul. The iCycler was
programmed to 95°C 2 min, 32x (95°C 30 s, 56°C 30 s,
72°C 30 s), 72°C 10 min followed by a melting curve
program (55-95°C in increasing steps of 0.5°C). All re-
actions were repeated twice. The mRNA levels for each
cDNA probe were normalized with respect to the
GAPDHC message levels. Fold induction values were
calculated with the AACP equation of Pfaffl [86]. The
ratio of a target gene was calculated in the treated sam-
ple versus the untreated control in comparison to a ref-
erence gene.

Additional file

Additional file 1: Figure S1. Dose dependent increase of [Caz*]Cyt
elevation in Arabidopsis roots after treatment with A. brassicae PAMPs or
toxin. Figure S2. Physical and chemical properties of CWE, EPM, EPS and
toxin (Tox) from A. brassicae. Figure S3. Response of WT and cycam to
CWE and EPM from Rhizoctonia solani (A, B), Phytophthora parasitica var.
nicotianae (C, D), and the CWE from Agrobacterium tumefaciens (E).
Figure S4. The cycami-1 and cycami-2 are more susceptible to
Rhizoctonia solani and Phytophthora parasitica var. nicotianae infection.
Figure S5. Photosynthetic parameters are impaired in cycam in response
to different abiotic stress. Figure S6. Phytohormone regulated genes in
WT and cycam seedlings. Table S1. Inhibition of [Ca2+]Cyt elevation
induced by the A. brassicae-derived CWE, EPM, EPS and Tox preparations
by staurosporine in WT roots. Table S2. Primer list for RT-PCR.
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