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Abstract

Background: The pepper fruit is the second most consumed vegetable worldwide. However, low temperature
affects the vegetative development and reproduction of the pepper, resulting in economic losses. To identify
cold-related genes regulated by abscisic acid (ABA) in pepper seedlings, cDNA representational difference analysis
was previously performed using a suppression subtractive hybridization method. One of the genes cloned from
the subtraction was homologous to Solanum tuberosum MBF1 (StMBF1) encoding the coactivator multiprotein
bridging factor 1. Here, we have characterized this StMBF1 homolog (named CaMBF1) from Capsicum annuum
and investigated its role in abiotic stress tolerance.

Results: Tissue expression profile analysis using quantitative RT-PCR showed that CaMBFT was expressed in all
tested tissues, and high-level expression was detected in the flowers and seeds. The expression of CaMBFIT in
pepper seedlings was dramatically suppressed by exogenously supplied salicylic acid, high salt, osmotic and heavy
metal stresses. Constitutive overexpression of CaMBF1 in Arabidopsis aggravated the visible symptoms of leaf
damage and the electrolyte leakage of cell damage caused by cold stress in seedlings. Furthermore, the expression
of RD29A, ERD15, KINT, and RD22 in the transgenic plants was lower than that in the wild-type plants. On the other
hand, seed germination, cotyledon greening and lateral root formation were more severely influenced by salt stress
in transgenic lines compared with wild-type plants, indicating that CaMBFT1-overexpressing Arabidopsis plants were

hypersensitive to salt stress.

Conclusions: Overexpression of CaMBF1 in Arabidopsis displayed reduced tolerance to cold and high salt stress
during seed germination and post-germination stages. CaMBF1 transgenic Arabidopsis may reduce stress tolerance
by downregulating stress-responsive genes to aggravate the leaf damage caused by cold stress. CaMBFT may be
useful for genetic engineering of novel pepper cultivars in the future.
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Background

Transcriptional regulatory proteins play a central role in
the expression of genomic information during complex
biological processes in all organisms. Among these pro-
teins, transcriptional co-activators are key components
of eukaryotic gene expression by interacting with both
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transcription factors and/or other regulatory elements
and the basal transcription machinery [1,2]. Multiprotein
bridging factor 1 (MBFI), a transcriptional co-activator,
enhances transcription of its target genes by bridging
the general factor TBP (TATA box Binding Protein) and
specific transcription factors bound to their target pro-
moters in eukaryotes such as yeast [3], Drosophila [4]
and Arabidopsis [5].

MBFI-type genes (SIER24 and StMBF1I) encode func-
tional transcriptional co-activators as demonstrated by
their capacity to complement the yeast mbfI mutant
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[6,7]. Fusion of tomato SIER24 to EAR (Amphiphilic Re-
pression) in the MicroTom cultivar induced a delay of seed
germination, but had no obvious effect on plant growth [6].
Moreover, it was reported that the StMBFI gene in potato
was induced by pathogen attack, oxidative stress, wounding
and in response to salicylic acid (SA) treatment [7,8]. Direct
evidence of the involvement of MBFI in plant responses to
environmental stresses was obtained by enhancing toler-
ance to heat and osmotic stresses in transgenic Arabidopsis
lines expressing the AtMBFIc gene and more recently
AtMBFla, without growth retardation [9,10]. These data
indicate that MBF1-like genes can be associated with a var-
iety of developmental processes in plants such as environ-
mental stress tolerance. To date, there are very few data on
the significance of MBF1I in cold stress tolerance.

Pepper (Capsicum annuum L.) is a member of the
Solanaceae family, and an important vegetable and spice
crop valued for its aroma, taste, pungency and flavor. The
pepper fruit is the second most consumed vegetable around
the world [11]. Different types of peppers, including
chili, mild and sweet peppers are cultivated worldwide.
Low temperature is one of the most important abiotic
factors limiting the growth, development and geo-
graphical distribution of plants [12]. Pepper plants ori-
ginate from tropical regions and are very sensitive to
low temperature, which affects their vegetative devel-
opment and reproduction, resulting in economic losses
[13-15]. As part of production and fruit quality im-
provement, we are interested in investigating plant
defense mechanisms to improve resistance to environ-
mental stresses. In our previous report, we showed that
exogenous application of ABA increased the tolerance of
pepper seedlings to chilling-induced oxidative damage,
mainly by enhancing the activity of antioxidant enzymes
and expression of related genes [16]. Furthermore, ABA-
mediated candidate genes associated with chilling stress
have been fully characterized in pepper plants using a sup-
pression subtractive hybridization (SSH) method [17].
One of the genes cloned from the reverse subtraction was
homologous to Solanum tuberosum MBF1 (StMBFI) en-
coding the coactivator multiprotein bridging factor 1. Ex-
pression of this MBFI homologue was highly induced by
cold stress, whereas ABA-pretreatment decreased its ex-
pression in pepper seedlings subjected to cold stress.
However, the function of this gene involved in the defense
response to chilling stress remains to be elucidated.

In this study, based on the above-mentioned expressed
sequence tag (EST) from the reverse SSH library that
enriched the up-regulated expressed genes responding
to chilling stress, we have functionally characterized the
homolog of StMBFI in pepper (designated as CaMBFI).
The results of this study suggest that CaMBFI tran-
script in pepper seedlings can be suppressed by SA, salt,
osmotic and heavy metal stresses. Overexpression of
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CaMBFI in Arabidopsis displayed reduced tolerance to
cold and high salt stress.

Results

Isolation of the CaMBF1 cDNA clone and sequence analysis

A differential screening of a cold-related pepper seedling
¢DNA library, using PCR-amplified subtracted and control
probes, was performed previously [17]. One of the isolated
clones exhibited 80% identity at the nucleotide level to
StMBFI from Solanum tuberosum [8]. A full-length clone
of this homologue was obtained by a homology-based can-
didate gene method, including the complete open reading
frame. The gene was named CaMBFI and submitted to
GenBank with the Accession Number JX402927. The size
of the CaMBFI clone was 648 bp, comprising an open
reading frame of 420 bp (139 amino acids). The predicted
polypeptide was basic, with a pI of 9.86 and a molecular
mass of 15.3 kDa. An alignment of the deduced amino
acid sequence of CaMBFI with other homologous sequences
is presented in Figure 1. At the amino acid level, CaMBFI
showed a high degree of conservation with known genes of
other plant species: Solanum tuberosum (StMBFI1, 95%
identity) [8], and Arabidopsis thaliana (AtMBFI1b, 80%
identity; AtMBFla, 79% identity) [10].

Expression of CaMBF1 in pepper seedlings is severely
suppressed by stress and SA treatments

A number of MBFI genes were found to be differentially
induced by abiotic stress [10,18,19]. Therefore, we sus-
pected that the CaMBFI1 gene may be involved in stress
signaling pathways and were interested in its possible func-
tion in stress responses. As a first step toward functional
analysis, we examined the expression pattern of CaMBFI
in pepper plants using qRT-PCR analysis. This analysis re-
vealed that the CaMBFI gene was expressed ubiquitously
in all developmental stages of plants and in all tested or-
gans, including root, stem, leaf, flower, fruit and seed
(Figure 2). High-level expression was detected in flower
and seed, although expression level in root was rather low.
As shown in Figure 3, CaMBFI expression was dramatic-
ally decreased by several stress conditions, including 5 mM
SA, high salt (300 mM NacCl), osmotic stress (300 mM
mannitol), and heavy metal (300 pM Hg). Rapid and ro-
bust down-regulation of CaMBF1I transcript was observed
at 1 h after salt, osmotic and heavy metal treatments,
which decreased to 0.06-fold, 0.03-fold and 0.12-fold, re-
spectively. In contrast, a slight reduction of CaMBF1I tran-
script was found during 12 h of SA treatment and
followed by an increase to the initial level (Figure 3A).

Reduced tolerance of CaMBF1-overexpressing Arabidopsis
plants to cold stress

To test the function of CaMBFI in Arabidopsis, we gen-
erated transgenic plants that constitutively expressed
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Figure 1 Alignment of deduced amino acid sequences of CaMBF1 and other MBF proteins. StMBF1 (AAF81108.1) from Solanum tuberosum,
MBF1 (NP_001234341.1), MBF1b (XP_004251896.1), MBF1c (ABG29114.1) from Solanum lycopersicum and MBF1A (NP_565981.1), MBF1b (NP_191427.1)
from Arabidopsis thaliana. Conserved residues are shaded in black, dark grey shading indicates similar residues in at least six out of the seven
sequences, and light grey shading indicates similar residues in four to five out of the seven sequences.

CaMBF1I under the control of the CaMV 35S promoter.
Transgenic plants expressing CaMBF1 appeared similar
in their growth and development to WT plants. However,
as shown in Figure 4, the transgenic plants were larger
than the WT plants during the florescence production
period; the rosette leaves of transgenic plants were 70%
longer and 60% wider than those of WT plants.

To study the response of CaMBFI-expressing plants to
abiotic stress, 2-week-old WT and transgenic seedlings
were subjected to several stresses, including cold, salinity,
and ABA. Firstly, transcript levels of the high homology
(AtMBFla, AtMBFI1b or AtMBFIc) modulated by the over-
expression of CaMBFI under normal conditions were
determined by qRT-PCR. Compared to WT plants, the
expression of the homologous genes was not basically
altered in transgenic plants when grown in normal condi-
tion (Figure 5), indicating that overexpression of pepper
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Figure 2 Tissue specific expression of CaMBF1 in pepper
seedlings. Pepper UBI-3 gene (GenBank No. AY486137.1) was used
as an internal control for normalization of different cDNA samples.

CaMBFI gene has no obvious effect on AtMBFls tran-
scripts in Arabidopsis. The CaMBF1 gene was not de-
tected in WT plants. CaMBFI transcript in transgenic
plants subjected to cold stress, salinity, and ABA was
much lower than that detected in transgenic plants
under normal conditions (Figure 6), suggesting that ex-
pression of CaMBFI in Arabidopsis was dramatically
decreased by stress treatments such as cold, salinity, and
ABA. Furthermore, the visible symptoms of leaf damage in
transgenic seedlings were observed to examine the toler-
ance of CaMBF1-expressing plants to cold stress. As shown
in Figure 7, overexpression of the pepper CaMBFI gene in
Arabidopsis aggravated the visible symptoms of leaf damage
caused by cold stress in seedlings. Wilting appeared after
6 h of cold stress in transgenic plants and became serious
at 24 h, while control leaves only exhibited withering after
48 h of cold stress. Meanwhile, to evaluate the extent of cell
damage caused by cold stress in CaMBFI-expressing seed-
lings, electrolyte leakage was measured. The transgenic
plants presented 1.5 folds higher electrolyte leakage than
WT, which suggests that the membrane is likely to be im-
paired in these seedlings subjected to cold stress (Figure 8).
These results suggested that overexpression of CaMBFI in
Arabidopsis could downregulate the expression of genes in-
volved in stress tolerance.

We selected a group of candidate genes and conducted
qRT-PCR analysis to test this hypothesis (Figure 9). Earlier
studies have found RD29A, RD22, RABIS8, KINI1 and
ERDIS5 to be involved in the response to dehydration
and cold/ABA [20-23]. Compared with normal conditions,
cold stress induced RD29A, ERDI15 and KINI genes ex-
pression in both transgenic and WT plants (Figure 9A, D
and E). After cold treatment, the expression of RD29A,
ERDIS (except at 48 h) and KIN1I in the transgenic plants
was lower than that in the WT plants. Meanwhile, RABIS8
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Figure 3 Analysis of CaMBF1 expression profiles in pepper seedlings in response to different stress treatments. The pepper seedlings
were sprayed with 5 mM SA solution (A); the pepper seedlings were exposed to salt stress (300 mM NaCl) (B), osmotic stress (300 mM mannitol)
(C) and heavy metal (300 uM Hg) (D) for the indicated times (0, 1, 3, 6, 12 and 24 h). Pepper UBI-3 gene (GenBank No. AY486137.1) was used as

an internal control for normalization of different cDNA samples. The expression level of CaMBF1 at 0 h was used as control (quantities of
calibrator) and was assumed as 1. Error bars represent standard error of means based on three independent reactions.

and RD22 transcripts were dramatically decreased in
both transgenic and control plants subjected to cold
stress (Figure 9B and C). The expression of the RD22
gene was basically not detected in transgenic plants
under cold stress; the decrease in RABI8 expression in
transgenic plants was similar to that in WT plants during

24 h of cold stress. Overall, after cold treatment overex-
pression of the CaMBF1 gene in Arabidopsis suppressed
chilling-induced RD29A, ERD15 and KIN1 transcripts and
aggravated chilling-decreased RD22 expression. Therefore,
CaMBF1I appeared to act as a negative regulator of stress-
responsive gene expression such as RD29A, ERDI15 KIN1
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Figure 4 Phenotypic analysis of wild-type and CaMBF1-overexpressing transgenic Arabidopsis (#12 and # 21). Wild-type (Col-0) and
transgenic Arabidopsis were grown at 22°C, with a 14/10 h photoperiod, a light intensity of 120 mmol m
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Figure 5 Relative expressions of AtMBF1s transcripts in
transgenic or wild-type plants under normal growth conditions.
Arabidopsis encodes three different AtMBFT isoforms (AtMBF1a,
At2g42680; AtMBF1b, At3g58680; AtMBF1c, At3g24500).

and RD22, consistent with the results from leaf chilling in-
jury assays and electrolyte leakage measurement.

The CaMBF1-overexpressing Arabidopsis is hypersensitive
to salt stress

To further characterize the tolerance of CaMBFI-over-
expressing plants to salinity, transgenic seeds were ger-
minated in MS/2 media supplemented with 100 mM
NaCl and allowed to grow for 8 days. Transgenic seeds
exhibited hypersensitivity to salinity compared with WT
seeds (Figure 10A). On medium containing 100 mM
NaCl, 78% of WT seeds germinated within 2 d, whereas
the germination percentage for transgenic seeds was
only 12% during the same period. In addition, the ger-
mination and subsequent growth of transgenic seedlings
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Figure 6 Analysis of CaMBF1 expression profiles in transgenic
lines in response to different stress treatments. For salt stress
and ABA treatments, 2-week-old seedlings were submerged in a
MS/2 medium containing 150 mM NaCl and 100 uM ABA solutions,
respectively. For cold treatment, 2-week-old transgenic seedlings
were subjected to 4°C for 48 h. Samples were collected from both
stress-treated and control (CK) plants at 0, 2, 6, 24, and 48 h of cold,
salt stress and ABA treatment. Arabidopsis elF4A gene (At3g13920)
was used as an internal control for normalizing the variations in
cDNA amounts used. Error bars represent standard error of means
based on three independent reactions.
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were comparable to WT plants on normal medium, but
were significantly more inhibited by salt stress (Figure 10).
The cotyledons of 6-day-old transgenic lines were
bleached 7 days after transfer to medium containing
150 mM NaCl and became serious at 9 days, whereas
the cotyledons of WT plants were slightly affected
(Figure 10B). On the other hand, the primary root
growth of transgenic plants was similar to that of WT
plants under salt stress. However, lateral root formation
was more severely influenced by salinity in transgenic
plants compared with WT plants (Figure 10B).

Similarly, comparative expression analyses of the stress
gene markers described above were also performed by
qRT-PCR on RNA isolated from 2-week-old plants grown
under non-stress and salt stress conditions (Figure 11).
Upon salinity treatment, several gene markers (RD29A,
RABI18 and KINI) were highly induced in both WT and
transgenic seedlings (Figure 11A, B and E). Conversely,
RD22 and ERDIS5 transcripts were dramatically decreased
in both transgenic and WT plants subjected to salt stress
(Figure 11C and D). Furthermore, the expression of
RD29A, RAB18, KIN1 and ERDIS in the transgenic lines
was higher than that in the WT plants under high salt
conditions. Therefore, overexpression of CaMBFI in
Arabidopsis appeared to positively regulate the expres-
sion of stress-responsive gene markers such as RD29A,
RABI18, KINI and ERDI15, which was not consistent
with the results from seed germination and cotyledon
greening assays. In some cases, the level of stress gene
expression appears to be insufficient to induce tolerance
changes [24-26].

Altered expression of stress-responsive HSPs in the
CaMBF1-overexpressing Arabidopsis

To evaluate whether CaMBFI expression could be cor-
related with alterations of other stress-responsive genes,
classical heat-shock genes, HSP70 and HSP90 were
tested in all lines by qRT-PCR (Figure 12). Compared
with control plants, HSP70 and HSP90 transcripts (ex-
cept at 0 h) were decreased in transgenic plants under
normal conditions. After cold treatment, the expression
of HSP70 and HSP90 in the transgenic plants was lower
than that in the WT plants (Figure 12A and B); whereas,
the expression of these genes in the transgenic lines was
higher than that in the WT plants under high salt condi-
tions (Figure 12C and D), indicating that comparative
regulation of HSPs in response to CaMBFI1 overexpres-
sion could be related to different stresses.

Discussion

Here, we report a putative transcription coactivator from
pepper seedlings, the putative amino acid sequence of
which was 95% and 80% identical to those of StMBFI
and AtMBFIb, respectively. Therefore, CaMBFI could
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35S::CaMBF1

plants subjected to cold stress for 48 h.

35S::CaMBFI

Figure 7 Effect of cold stress on visual damage symptoms of wild-type and CaMBF1-overexpressing transgenic plants. A, Wild-type
Arabidopsis (Col-0) were subjected to cold stress for 2 h; B, Transgenic plants were subjected to cold stress for 2 h; C, Wild-type plants were
subjected to cold stress for 6 h; D, Transgenic plants were subjected to cold stress for 6 h; E, Wild-type plants were subjected to cold stress for
24 h; F, Transgenic plants were subjected to cold stress for 24 h; G, Wild-type plants were subjected to cold stress for 48 h; H, Transgenic plants
were subjected to cold stress for 48 h. The differences among treatments are marked with white arrows in rosette leaves. Photographs show

J

be categorized as belonging to the same group as StMBF1
[8]. The deduced amino acid sequences of plant MBFIs
revealed the existence of highly conserved amino acid
residues in each group [19]. Additionally, tissue-specific
expression of CaMBFI observed here (Figure 2) sug-
gests that CaMBFI1 may be involved in physiological
processes of pepper plants. In this regard, the highly
homologous StMBFI also exhibits a ubiquitous tissue
distribution [8].
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Figure 8 Effect of cold stress on Electrolyte leakage of wild-type
and CaMBF1-overexpressing transgenic plants. 2-week-old WT and
transgenic seedlings were exposed to low temperature 4°C for 24 h.
Electrolyte leakage was expressed as a percentage of total electrolytes.
Data are mean values (+SD) of at least three independent experiments.
*indicates significantly different values between treatments (P < 0.05).

Control

In the present study, CaMBFI transcript in pepper or
Arabidopsis seedlings was dramatically decreased in
response to abiotic stresses such as SA, ABA, high salt,
osmotic, and heavy metal stress (Figures 3 and 6). Par-
ticularly, under cold stress the expression of CaMBFI
was downregulated in Arabidopsis seedlings (Figure 6).
These results indicated that CaMBFI may be negatively
involved in stress signaling pathways. Unlike other MBF1
genes, the expression of AtMBFIc is induced by various
stresses, including salinity, drought, heat, H,O, and ABA,
and is not affected by cold stress [19]. Salinity also induced
AtMBFla/b expression [10] and cold stress did not sig-
nificantly change mRNA accumulation of AtMBFIla and
AtMBF1b in Arabidopsis [19].

CaMBFI-overexpressing plants showed extremely large
leaf phenotypes (Figure 4). This finding could be explained
by similar evidence reported by Tojo et al. [27] who sug-
gested that AtMBFIs play a crucial role in controlling
rapid leaf expansion through promotion of cell expansion.
The amino acid sequences of MBFIs are widely conserved
among plant species. Similarly, transgenic Arabidopsis
expressing AtMBFIc were 20% larger than control plants
and produced more seeds [9].

The visible symptoms of leaf damage in CaMBFI-
expressing transgenic Arabidopsis were observed more se-
verely than that in WT plants (Figure 7) and the transgenic
plants presented 1.5 folds higher electrolyte leakage than
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Figure 9 Expression of stress-responsive genes in wild-type and transgenic plants subjected to cold stress. Relative expression levels of

stress-responsive genes were determined by gRT-PCR using cDNA synthesized from total RNAs isolated from the leaves of 2-week-old Arabidopsis
exposed to low temperature 4°C for 48 h. A, RD29A; B, RAB18; C, RD22; D, ERD15; E, KINT. There were four treatments: WT CK represents wild-type
plants grown under non-stressed conditions; 355:CaMBF1 CK represents transgenic plants grown under non-stressed conditions; 35S:CaMBF1 Cold

indicate standard error of the mean.

represents transgenic plants subjected to cold stress; WT Cold represents wild-type plants subjected to cold stress. Arabidopsis elF4A gene
(At3913920) was used as an internal control for normalization of different cDNA samples. The expression levels of stress-responsive genes in
wild-type plants at 0 h were used as control (quantities of calibrator) and were assumed as 1. Three biological triplicates were averaged and Bars

WT under cold stress (Figure 8), suggesting that the toler-
ance of transgenic plants to cold stress was reduced. This
result was in agreement with the fact that some genes iso-
lated from the reverse SSH library, including a MBFI
homologue, were related to reduction in cold tolerance of
plants [17]. Moreover, overexpression of the CaMBFI gene
in Arabidopsis reduced the expression of RD29A, ERDIS,
KIN1, and RD22 during cold treatment (Figure 9). CaMBF1
may reduce the tolerance of Arabidopsis to cold stress
by negatively regulating stress-tolerant gene expression.
Suzuki et al. [9] reported that the tolerance of MBFIc-
expressing transgenic seedlings to cold stress was similar
to that of WT seedlings. On the other hand, CaMBFI-
expressing transgenic plants showed high susceptibility to
salt stress imposed during seed germination (Figure 10A).
In contrast to this result, the triple knock-down mutant

(abc-) presented a significant diminution of germination
under osmotic stress [28] and MBF1 genes negatively reg-
ulated ABA-dependent inhibition of germination [29].
The cotyledons and lateral root formation were more se-
verely influenced by salinity in transgenic plants compared
with WT plants (Figure 10B). Meanwhile, root growth of
MBF1la/c-expressing plants adopted to the high or low-
salt condition comparatively better than WT plants [9,10].
Seed germination is controlled by the antagonistic action of
gibberellic acid (GA) or ethylene and ABA [30-32]. MBFI
may be involved in several hormone signal transduction
pathways (ethylene, GA/ABA) during seed germination
[6,33]. In addition, the expression of RD29A, RAB18, KINI
and ERDIS5 in CaMBFI-expressing transgenic Arabidopsis
was higher than that in WT plants under high salt condi-
tions (Figure 11). Kim et al. [10] also reported that
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Figure 10 Analysis of 35S::CaMBF1 transgenic lines subjected to salt stress. A, Effects of salinity on germination. Complete radicle
emergence was used as a marker for germination. 50 seeds were counted at indicated days, and Data represent means standard deviation

of three independent experiments. B, Post-germination assay of transgenic seedlings. 6-day-old seedlings were transferred to half-strength Murashige
and Skoog (MS/2) medium without (right panel) or with (left panel) 150 mM NaCl. Photographs were taken at 7 d or 9 d after the transfer.

150 mM NaCl
for7d

MBF1la-overexpressing transgenic Arabidopsis induced
RD29A, ERDI5, and KIN2 during the course of salt
treatment. The accumulation of a number of defense
transcripts was similarly augmented in MBFIc transgenic
Arabidopsis in response to heat stress [9].

The expression patterns of the above-mentioned stress
gene markers in transgenic plants subjected to cold
stress were different from those in transgenic lines under
salt stress. This difference could be related to that each
stress opens out specific defense mechanisms in young
seedlings and the participation of CaMBFI might be dif-
ferent depending on the stress condition imposed.
Since different stresses may disrupt plant growth and

development in specific ways, the plant might alleviate
damage by different mechanisms. The results of this
study, that overexpression of the pepper CaMBF1 gene
differently modules the expression of HSPs in Arabidopsis
under cold and salt stresses (Figure 12), supported this
hypothesis. There were similar reports as follows: con-
stitutive expression of stress-responsive HSP genes was
augmented in the abc- mutant, indicating that AtMBF1s
may act as negative regulators of HSP in Arabidopsis
thaliana seedlings [28]. Suzuki et al. [9] described that
transcripts encoding classical HSPs accumulated to a simi-
lar level in WT and transgenic plants over-expressing
MBFIc; they suggested that the enhanced tolerance of
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plants at 0 h were used as control (quantities of calibrator) and were assumed as 1. Three biological triplicates were averaged and Bars indicate

these plants to osmotic and heat-shock stress was associ-
ated with the expression of other stress-responsive genes
rather than with the constitutive expression of HSPs. Fi-
nally, our data together with previous evidences support
that Capsicum annum CaMBF1 play a different role as
Arabidopsis AtMBFI in response to salt or cold stress.
Further studies will be necessary to reveal specific func-
tions for each gene.

Conclusions

This study demonstrates that the manipulation of the
CaMBF1 gene from pepper using a transgenic approach
can lead to reduced cold-stress and salt-stress tolerance
in Arabidopsis. In addition, overexpression of CaMBFI
may reduce stress tolerance by downregulating stress-
responsive genes to aggravate the leaf damage caused

by cold stress. However, upregulation of such stress-
responsive genes appears to be insufficient to induce
tolerance of CaMBFI transgenic plants to salt stress.
The CaMBFI gene could be a candidate gene for fu-
ture research on abiotic stress signaling pathways and
genetic engineering of novel pepper cultivars. The re-
sults of this study will be helpful in providing beneficial
information to support biotechnology applications and
molecular breeding, which clarify the function of a
gene involved in abiotic stress in plants.

Methods

Plant materials and stress treatments

Pepper (Capsicum annuum L.) cv. P70 seeds were sown
at a depth of 1.0 cm into 9-cm-deep plastic pots filled
with growth medium consisting of grass charcoal and
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perlite in a ratio of 3:1 after accelerated germination
and grown in a growth chamber using a previously
described method [16]. The seedlings at the sixth leaf
expansion stage were used to establish the following
treatments. ABA and cold treatments were performed
as described by Guo et al. [17]. For ABA and cold
treatments, seedlings were sprayed with freshly pre-
pared 0.57 mM ABA solution or water (control). At
72 h after foliar application, control and ABA treat-
ment groups were subjected to chilling stress at 6°C.
For salt, osmotic, and the heavy metal (Hg) treat-
ments, the seedling roots were immersed in solutions
containing 300 mM sodium chloride (NaCl), 300 mM
mannitol, or 300 pM Hg and maintained at 25°C for
the indicated times. For SA treatment, seedlings were
sprayed with 5 mM SA solution and incubated for the
indicated times. The treated seedlings were harvested
after 0, 1, 3, 6, 12 and 24 h for examination of
CaMBF1 expression pattern under various stress con-
ditions. At each time point, two or three upper young
leaves from four separate seedlings were collected to
form one sample, wrapped with foil, immediately fro-
zen in liquid nitrogen and stored at —80°C. The treat-
ments were arranged in a randomized complete block
design with three replicates.

Isolation of CaMBF1 cDNA clone and sequence analysis
The MBFI1-homologous EST (GenBank No: JZ198811)
characterized from the differential screening of a cold-
related pepper seedling cDNA library was reported by
Guo et al. [17]. The full-length open reading frame of the
MBF1 homologue was obtained using the cDNA fragment
of this homolog as a probe by a homology-based candi-
date gene method [34]. The full-length forward and re-
verse primers for CaMBF1 were 5 -GAAGAAAAAAA
GCAATGAGTGG-3' and 5-GCAGAAACGAATTTA
G-GATTTG-3" respectively. The theoretical molecular
weight (Mw) and isoelectric point (pI) were calculated
with the ExPASy compute pI/Mw tool [35]. Sequence
data were analyzed using Clustal W [36]. Homology
searches in database were carried out using the default
parameters of the BLAST program on the website
http://www.ncbi.nlm.nih.gov:blast [37].

Generation of CaMBF1 transgenic Arabidopsis plants

Full-length forward and reverse primers with an added
BamHI site were used to generate a DNA fragment en-
coding the CaMBFI gene. The CaMBFI fragment was
inserted into the cloning site of the pMD19 T-vector
(Takara, Tokyo, Japan) and then this plasmid DNA
was digested using Xbal and BamHI from the pMD19
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T-vector. The CaMBFI DNA fragment was inserted
into the Xbal-BamHI site of the pVBG2307 vector
under the control of the 35S cauliflower mosaic virus
(CaMV) promoter, resulting in the pVBG2307-CaMBFI
construct. The pVBG2307 vector was constructed accord-
ing to pCAMBIA2300 vector [38]. This construct was
confirmed by sequencing and then introduced into
Agrobacterium tumefaciens GV3101 using electropor-
ation. Arabidopsis (ecotype Columbia-0, Col-0), chosen
for transgenic studies, was grown in a controlled environ-
ment chamber at 22°C, with a 14/10 h photoperiod, a light
intensity of 120 mmol m™> s™', and 70% relative humidity.
Transgenic plants were generated by Agrobacterium-me-
diated transformation using the floral dip method [39].
CaMBFI-overexpressing transgenic seedlings were
confirmed by examining the segregation ratio of the
kanamycin selectable marker and by PCR analysis of
NPTII and CaMBFI using the primers NPTII-F/R and
CaMBF1-F/R (Additional file 1: Table S1). T2 lines that
produced 100% kanamycin -resistant plants in the T3
generation were considered as homozygous transformants.
In each experiment, T2 generations of homozygous trans-
genic lines (#5, #12 and #21) were selected for further
analysis. Similar phenotypes and results used for this study
were observed in more than three independent lines of
transgenic plants.

Performance of transgenic lines under stress treatments
Two-week-old transgenic seedlings were subjected to vari-
ous treatments. Cold treatment was conducted in the dark
by exposure of plants grown on vermiculite soil at 22°C to
4°C for 48 h, whereas control plants were placed in the
dark at 22°C for 48 h. After cold treatment, wild-type
(WT) and CaMBF1-overexpressing transgenic plants were
visually examined to determine the extent of chilling
damage. For high-salinity and ABA treatments, 2-week-
old seedlings were submerged in half-strength Mura-
shige and Skoog (MS/2) medium containing 150 mM
NaCl or 100 pM ABA solutions, whereas control plants
were submerged in a MS/2 medium. Third—fourth rosette
leaves were collected from both stress-treated and control
plants after 0, 2, 6, 24, and 48 h of cold, salt stress or ABA
treatments. At each time point, sample was frozen in li-
quid nitrogen, stored at —80°C and used for extraction of
total RNA. The treatments were arranged in a randomized
complete block design with three replicates.

Homozygous T2 seeds of the transgenic lines were
used for phenotypic analysis. For high-salinity treatment,
seeds of WT and transgenic plants were plated on MS/2
agar plates supplemented with 100 mM NaCl, grown in a
growth chamber, and assessed for percentage of germin-
ation after various times (0, 2, 4, 6 and 8 d). Experiments
were done in triplicate for each line (50 seeds each).
6-day-old plants grown on normal MS/2 agar plates
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were transferred to vertical MS/2 agar plates containing
150 mM NaCl, and grown for another week as previously
described [40]. The root growth and cotyledon greening
of 24 seedlings were observed.

Measurement of electrolyte leakage

Leaflets from 2-week-old seedlings were transferred to 4°C
and incubated for 24 h in the dark in the growth chamber.
The conductivity of the suspending solution was mea-
sured according to the method of Arce et al. [28]. The
electrical conductivity of the solution was measured using
an electrical conductivity analyzer (DDS-307; Shanghai
Precision Scientific Instrument Co., Ltd.,, China) before
and after autoclaving at 120°C for 30 min to release the
total electrolytes. The conductivity was scored at least for
4 plants per line and pretreatment. Electrolyte leakage was
expressed as a percentage of total electrolytes.

Real-time quantitative PCR (qRT-PCR) analysis

RNA extraction, cDNA preparation and qRT-PCR were
performed as described by Guo et al. [17]. Relative gene
expression levels were determined using the 2"-AA CT
method. Total RNA was extracted from the leaves of pep-
per plants subjected to various stress for 0, 1, 3, 6, 12, and
24 h as described above. The ubiquitin -conjugating pro-
tein gene (UBI-3, GenBank accession no. AY486137.1)
from pepper plants was amplified as a reference gene for
normalization of CaMBFI ¢cDNA samples. On the other
hand, total RNA of CaMBFI transgenic and WT Arabi-
dopsis were used to examine the expression of seven
stress-related genes (RD29A, RABI18, ERD15, KIN1, RD22,
HSP70 and HSP90) and three Arabidopsis isoforms
(AtMBFla, AtMBF1b, AtMBFIc). Arabidopsis eIF4A gene
(At3g13920) was included in the assays as an internal con-
trol for normalizing the variations in cDNA amounts used
[41]. The corresponding specific primers were listed in
Additional file 1: Table S1.

Statistical analysis

Data were analyzed using analysis of variance (SAS 8.2,
North Carolina State University, USA) and mean sepa-
ration was analyzed using the least significant difference.
The P value <0.05 was considered to be significant.

Supporting data
All the supporting data are included as additional files.
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Additional file 1: Table S1. The sequences of primers used in this
study.
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