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Abstract

from the QTL analysis.

and adequate supply of Fe, respectively.

Background: Iron (Fe) deficiency symptoms in maize (Zea mays subsp. mays) express as leaf chlorosis, growth
retardation, as well as yield reduction and are typically observed when plants grow in calcareous soils at alkaline pH.
To improve our understanding of genotypical variability in the tolerance to Fe deficiency-induced chlorosis, the
objectives of this study were to (i) determine the natural genetic variation of traits related to Fe homeostasis in the
maize intermated B73 x Mo17 (IBM) population, (i) to identify quantitative trait loci (QTLs) for these traits, and (iii) to
analyze expression levels of genes known to be involved in Fe homeostasis as well as of candidate genes obtained

Results: In hydroponically-grown maize, a total of 47 and 39 QTLs were detected for the traits recorded under limited

Conclusions: From the QTL results, we were able to identify new putative candidate genes involved in Fe
homeostasis under a deficient or adequate Fe nutritional status, like Ferredoxin class gene, putative ferredoxin PETF,
metal tolerance protein MTP4, and MTP8. Furthermore, our expression analysis of candidate genes suggested the
importance of trans-acting regulation for 2'-deoxymugineic acid synthase 1 (DMAST), nicotianamine synthase (NAS3,
NAST), formate dehydrogenase 1 (FDHT), methylthioribose-1-phosphate isomerase (IDI2), aspartate/tyrosine/aromatic
aminotransferase (ID/4), and methylthioribose kinase (MTK).

Background
Iron (Fe) deficiency in maize (Zea mays subsp. mays)
mostly occurs during growth on calcareous or alkaline
soils, where Fe becomes sparingly soluble due to its pre-
cipitation in form of hydroxides, oxides, or phosphates
[1]. Approximately 30% of the world’s arable soils are of
high pH and include preferential maize cultivation areas
like the river valley of Nebraska with about 0.4 million
hectares (ha) [2] and the arid and semi-arid regions of
the Great Plains [3-5]. Therefore, yield reduction in Fe-
deficient maize is of agronomic importance [6].
Graminaceous plant species like maize acquire Fe by so-
called strategy II mechanisms, which include the release
of phytosiderophores, acting as high-affinity hexaden-
tate chelators for ferric Fe, and an elevated expres-
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sion of transport systems for Fe(IIl)-phytosiderophores
at the root plasma membrane [7]. Comparative stud-
ies among different grass species have suggested that
in particular the release of phytosiderophores is limit-
ing most an efficient acquisition of Fe from the soil [8].
Relative to other graminaceous plant species, however,
maize is generally considered as a weak strategy II plant,
i.e. releasing approximately fivefold lower amounts of phy-
tosiderophores than for instance barley [9]. This may
explain at least in part the high susceptibility of maize
to Fe deficiency-induced chlorosis. Although genotypical
variation for chlorosis tolerance and the rate of phy-
tosiderophore release have already been reported [10],
attempts to characterize the intraspecific variation in
chlorosis tolerance or other Fe efficiency traits across
larger populations of maize genotypes have not yet been
reported.

Previous studies on other graminaceous plant species
have characterized various essential mechanisms and
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genes involved in Fe efficiency, i.e. the ability of plants
to produce less chlorotic leaves, higher biomass, or
grain yield under Fe-deficient growth conditions.
In graminaceous species Fe deficiency upregulates
the transcription factors IDEF1 and IRO2, which
leads to an increase of phytosiderophore biosynthe-
sis [11]. The first step in phytosiderohore biosynthesis
is the conjugation of three S-adenosyl-methionine
(SAM) residues by the enzyme nicotianamine syn-
thase (NAS) to nicotianamine (NA) [12]. The linked
methionine salvage pathway restores methionine levels
and includes the genes methylthioadenosine/S-adenosyl
homocysteine nucleosidase (MTN), methylthioribose
kinase (MTK), methylthioribose-1-phosphate isomerase
(IDI2), dehydratase-enolase-phosphatase (DEP), aspar-
tate/tyrosine/aromatic aminotransferase (/DI4), and
Formate dehydrogenase 1 FDH restores the Methionine
for SAM synthesis [13]. NA is then subject to subse-
quent amino transfer by nicotianamine aminotransferase
(NAAT) [14] and a reduction step by deoxymugineic
acid synthase (DMAS) to yield deoxy-mugineic acid
(DMA), which is the only phytosiderophore species being
released by maize plants [15]. Subsequently, DMA is
released by the transporter of mugineic acid 1 (TOM1)
which is localized at the root plasma membrane [16].
Most of these genes being involved in phytosiderophore
biosynthesis and release are subject to upregulation when
the Fe nutritional status of the shoot is low [17]. Fol-
lowing metal chelation in the rhizosphere, the uptake of
Fe(III)-phytosiderophores into root cells is mediated by
membrane proteins of the yellow stripe 1/yellow stripe
like (YS1/YSL) family that possess a particularly high
affinity for phytosiderophore-chelated ferric Fe [18,19].
The fairly robust upregulation of YSI gene expression
under Fe-deficiency goes along with an upregulation
of ST-type sulfate transporters, most likely due to an
enhanced sulphur demand for synthesis of the nico-
tianamine precursor SAM [20]. Inside root cells, ferric
Fe may be reduced and exchange chelated to NA [21]
and further transported radially for xylem loading and
translocated to the shoot, where the majority of Fe is
stored in ferritin (FER). In seeds and young seedlings
vacuolar loading and unloading are critical for Fe effi-
ciency too, since Fe loading of the vacuole by the vacuolar
iron transporter VIT1 [22] and remobilization therefrom
by natural resistance associated macrophage proteins
(NRAMP3 and 4) are at least in Arabidopsis essential pro-
cesses for early seedling development under Fe-limiting
growth conditions [23]. While in Arabidopsis and other
plants VIT1 is poorly responsive to the Fe nutritional sta-
tus of the plant, NRAMP3 and NRAMP4 are upregulated
under Fe deficiency [22,23].

Despite this comprehensive knowledge on the func-
tional aspects of Fe acquisition and homeostasis, studies
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examining the natural variation of Fe efficiency traits in
maize and the role of natural allelic variation in deter-
mining bottle-necks of Fe efficiency in maize have
remained poor. However, such information will be instru-
mental for the selection and development of chlorosis-
tolerant maize cultivars by classical plant breeding
methods. Furthermore, when such analyses are linked to
molecular marker information, they have the potential to
identify new genes mechanistically involved in the trait
of interest, that have not been identified using classical
functional genetics. This is due to the fact that in con-
trast to mutant screens, which consider one gene in one
genetic background [24], analyses on the natural varia-
tion of traits allow discovering multiple gene actions in
complex genetic backgrounds [25].

One first step to reach this goal is quantitative trait
loci (QTL) mapping, which provides information on the
chromosomal locations contributing to the quantitative
variation of complex traits [26,27]. Besides high resolution
mapping of such QTLs, their combination with expression
studies of positional candidate genes have the potential to
improve our understanding of the QTL of interest.

The objectives of this study were to (i) determine the
natural genetic variation of traits related to Fe homeosta-
sis in the maize intermated B73 x Mo17 (IBM) population
when these plants were grown under adequate or limiting
Fe supply, (ii) identify QTLs for these traits, (iii) ana-
lyze Fe-dependent expression levels of genes known to be
involved in Fe homeostasis as well as positional candidate
genes from QTL analysis.

Results

Heritability

The heritability represents the genotypic contribution to
the phenotypic variation. The variance analysis of the phe-
notypic data evaluated for each of the 13 traits using
85 intermated recombinant inbred lines (IRILs) provided
the genetic and error variance values for the heritability
calculation. The broad sense heritabilities for the traits
evaluated under Fe deficiency ranged from 0.35 (shoot
length (SL)) to 0.80 (SPAD value at leaf 3 (SP3)) (Table 1).
A similar trend was observed for the broad sense heritabil-
ities for the Fe-sufficient growth regime, which was lowest
for SL (0.28) and highest for SP5 (0.80).

Trait variation in the IBM population

The adjusted entry means (AEM) for the traits SP3 to
SP6, root length (RL), root weight (RW), SL, shoot dry
weight (SDW), SDW/SL, and lateral root formation (LAT)
was on average across all IRILs lower under Fe defi-
ciency than under Fe sufficiency (Figure 1). The trait water
(H20) showed higher AEM values for the IRILs under
Fe deficiency, whereas leaf necrosis (NEC) showed on
average across all IRILs no difference between both Fe
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Table 1 Traits recorded in the current study for two Fe
conditions (Fe-deficient and Fe-sufficient), where H? is the
broad sense heritability on an entry means basis

HZ

Trait Abbreviation Unit Fe-deficient Fe-sufficient
SPAD value at SP3 0.80 0.67
leaf 3

SPAD value at SP4 0.77 0.70
leaf 4

SPAD value at SP5 0.80 0.80
leaf 5

SPAD value at SP6 0.75 0.64
leaf 6

Root length RL cm 0.51 042
Root weight RW g 0.66 0.50
Shoot length SL cm 0.35 0.28
Shoot dry weight SDW g 0.58 038
Shoot water H>,O % 0.65 0.65
content

Ratio between  SDW/SL gcm™! 0.53 041

shoot dry weight
and shoot length

Branching at BTR 0.64 !
the terminal

5 cm of root

Lateral root LAT 0.55 0.58
formation

Leaf necrosis NEC 044 0.59

For details, see materials and methods.
"No variation observed.

regimes. The parental inbred Mo17 showed for all traits
in both Fe regimes a lower AEM compared to the second
parental inbred B73. The progenies showed transgressive
segregation for all traits.

The network analysis based on the partial correlation
coefficients between all pairs of traits that focus on the
correlation between the residuals revealed eight groups of
traits (Figure 2). The highest positive and negative correla-
tion was observed between SDW and SDW/SL (between
1.00 and 0.83) and between SDW/SL and SL (between
-1.00 and -0.83), respectively, for both Fe regimes. Fur-
thermore, the Pearson pairwise correlation coefficients
between the SPAD value and the shoot Fe concentration
increased from SP3 (0.41), SP4 (0.51), SP5 (0.61) to SP6
(0.62) under Fe deficiency. In contrast, the opposite trend
was observed under Fe sufficiency where the correlation
coefficients ranged from 0.08 (SP3), 0.01 (SP4), -0.28 (SP5)
to -0.41 (SP6).

QTL analysis
The QTL analyses for the traits recorded under Fe defi-
ciency regime using the 85 IRILs and their corresponding
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AEMs for each trait revealed a total of 47 QTLs (Table 2).
The highest number of QTLs was detected for SP3
(8) and the lowest for RL, SL, SDW/SL, and LAT (1).
The proportion of phenotypic variance explained by the
QTL was highest for SP5 QTL2 (34.0%). The maxi-
mum of the proportion of phenotypic variance explained
in a simultaneous fit by all QTLs for one trait was
59.4% (SP3), where the minimum was 9.6% (SL). The
additive effect of the QTLs revealed that at 15 QTLs
the allele increasing the trait value was contributed by
Mol7.

Under Fe sufficiency, 39 QTLs were detected (Table 3).
In dependence of the individual trait, the number of QTLs
ranged from 10 (SP5) to 1 (SP4 and SL). The proportion
of phenotypic variance explained by the QTL showed for
QTL2 of SDW the highest (21.8%) value. The proportion
of phenotypic variance explained in a simultaneous fit by
all QTLs was maximal for SP5 (65.5%) and minimal for
SL (9.8%). The additive effect of the QTLs indicated for
12 QTLs that the trait increasing allele was contributed by
Mo17.

The largest QTL confidence interval was detected for
QTL5 of RW (16.5 cM) and the lowest for QTL3 of SP4
and HyO (0.3 cM) under Fe deficiency. For Fe sufficiency,
the size of the confidence intervals ranged from 22.3 cM
for QTL5 of SP6 to 0.1 cM for QTL3 of HyO. The number
of genes detected under Fe deficiency and Fe sufficiency
within these confidence intervals using the physical map
information ranged from 367 (SP4 QTL4 and RW QTL7)
to 0 (H,O QTL5 and QTL6) and between 273 (QTL2 of
H,0) and 0 (QTL3 of SP3), respectively.

QTL confidence interval projection

The presentation of the QTL confidence intervals on the
genetic map revealed for regions on chromosome 1, 4, 7,
and 8 a clustering of QTLs for multiple traits (Figure 3).
We observed that the genes involved in Fe homeostasis
NAS3, MTN, Aconitase 1 ACO1, DEP, IDI4, FDH1, and
VITI mapped to QTL confidence intervals.

Expression analysis

The expression levels of genes relative to ACTINI ranged
between 0.19 (Mol17 ST1) and 16.20 (Mo17 IDI2) under
Fe deficiency and between 0.45 (B73 ST1) and 20.30
(Mo17 NASI) under Fe sufficiency (Figure 4). No sig-
nificant differences (¢ = 0.05) between both Fe regimes
were observed for IDEF1, IRO2, mitochondrial iron trans-
porter 1 MIT1 and NRAMP3, whereas expression of the
remaining genes was significantly different (o« = 0.05). The
strongest expression differences between B73 and Mol7
under Fe deficiency were detected for DMAS1, IDI2, IDI4
and MTK. Furthermore, under Fe sufficiency striking dif-
ferences were observed for FDH1, FERI, IDI2, IDI4, MTK,
NASI, and NAS3.
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Figure 1 Boxplot of the adjusted entry means of all traits for the 85 maize intermated recombinant inbred lines of the maize IBM
population evaluated at Fe-deficient (white) and Fe-sufficient (grey) regimes. The adjusted entry means of the parental inbreds B73 and
Mo17 are represented by a square and a triangle, respectively. The line in the box represents the median of the trait. T-test application to examine
the difference for a trait between both Fe conditions. *, **, ***: P = 0.05, 0.01, and 0.001, respectively; ns, not significant.

Discussion

Maize is often grown on soils with low Fe availability
although it is highly sensitive to Fe deficiency-induced
chlorosis. Therefore, understanding the genetic architec-
ture of Fe-efficiency in maize is instrumental for the
selection and development of chlorosis-tolerant maize
cultivars by classical plant breeding methods. Further-
more, when such analyses are linked to molecular marker
information they have the potential to identify new genes
mechanistically involved in the trait of interest. Therefore,
we took a two-step approach to explore the intraspe-
cific variation in Fe-responsive traits in a segregating
population of maize. First, traits related to Fe home-
ostasis were determined that promise to be relevant for
Fe-efficiency. In a second step, these traits were used
for a quantitative genetic approach and the subsequent
determination of new candidate genes involved in Fe
homeostasis.

Genotypic variation of traits related to Fe homeostasis

The means of all traits, except NEC, showed a highly sig-
nificant (@ = 0.01) difference between the two examined
Fe regimes (Figure 1). This finding is in accordance with
results of [28] who observed a considerable reduction in
biomass and chlorophyll concentration under Fe-deficient
growth conditions. Our observation illustrates the signif-
icant influence of Fe supply on the extent of phenotypical
changes in the IBM population.

The broad sense heritabilities observed for the traits
under consideration were moderate to high at both Fe
regimes (Table 1). This is in accordance with the results of
[29] who detected high heritabilities for Fe concentration
in maize kernels of the IBM population. This observation
indicates that the data of our study provide a reliable basis
for detecting QTLs for morphological and physiological
traits contributing to superior plant performance under
different Fe regimes [30].
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strength and direction of the partial correlation.

Figure 2 Network representation of the partial correlations between all pairs of traits evaluated at Fe-deficient (orange) and Fe-sufficient
(green) conditions for the 85 maize intermated recombinant inbred lines. Thickness and color intensity of the lines is proportional to the

-0.49 =<r<-0.32
—0.66 =<r < -0.49
-0.83 =<r<-0.66
-1.00=<r<-0.83

r=-1.00

To verify whether the SPAD value could be used as indi-
rect measure for the Fe nutritional status, we correlated
the leaf chlorophyll index (SPAD value) with measured Fe
concentrations. Plants grown under adequate Fe supply
showed no correlation between leaf greenness measured
by SPAD and the Fe concentration. This is not surprising
considering the facts that i) Fe partially precipitates in the
apoplast contributing to the so-called chlorosis paradox
[31], and ii) the chlorophyll concentration decreases under
Fe overload in the chloroplast [32]. When Fe provision
to shoots is sufficient to saturate chlorophyll biosynthe-
sis, excess Fe will be stored in ferritin [33] to prevent
chlorophyll degradation.

In contrast to Fe-sufficient growth conditions, a correla-
tion coefficient of 0.41 to 0.62 was observed for the corre-
lation between Fe concentrations in leaves and the SPAD
values obtained from Fe-deficient plants. This finding was
in accordance with results of [28] who observed a tight
relationship between the chlorophyll concentration and
the extractable Fe in maize leaves under Fe-limiting con-
ditions. This relationship indicates that the SPAD values

measured in our study were appropriate measures of the
Fe nutritional status under Fe-deficient conditions.

With respect to the SPAD measurements, the 3'? leaf
of Fe-deficient plants showed higher trait values in com-
parison to the younger leaves 4 to 6 (Figure 1). Fur-
thermore, the 3™ leaf exhibited the smallest differences
between the Fe-deficient and Fe-sufficient regimes. Under
Fe-sufficiency, no obvious difference between the means
of SP3 to SP6 was observed. Only for leaf no. 3 there
was a significant (o = 0.05) correlation between the SPAD
measurements under both Fe regimes (Figure 2). These
observations are most likely related to the fact that leaf
no. 3 was formed during the early vegetative growth phase
when Fe was supplied in the preculture. This also allowed
plants to build up an Fe reservoir in the root apoplast
which can be an important Fe source during subsequent
growth [34]. The detection of loci being important for
an efficient depletion of the apoplastic Fe reservoir still
need to be determined. Furthermore, the loci causing
the differences between both Fe regimes in the relative
chlorophyll contents of SP4 to SP6 may also merit further



Table 2 Summary of the quantitative trait loci (QTL) detected using the maize IBM population evaluated in a Fe-deficient nutrient solution, where Chr. is the
chromosome, Pos. the position in centi Morgan on the genetic map, Add. the additive effect, %r? the percentage of the explained phenotypic variance, and

genetic map interval in centi Morgan of the flanking markers with corresponding physical map interval including the number of genes in the corresponding QTL
confidence interval according to the filtered gene set B73 RefGen_v2

Trait QTL Chr. Pos. (cM) Add. %r?2 Interval (cM) Flanking markers Physical map interval Genes
SP3 1 1 556.0 15 1.7 553.6 - 557.6 umc1748 - bnlg1615 191,860,023 - 192,968,163 17
SP3 2 2 5240 3.1 83 5235 - 529.2 umc1604 - bnlg1316 211,345,382 - 212,352,714 29
SP3 3 4 226.0 0.2 < 0.1 2257 - 2284 umc1963 - umc1652 26,437,539 - 27,757,462 22
SP3 4 4 240.0 31 2.8 2378 - 2455 bnlg490 - agrr301 31,323,581 - 40,458,411 186
SP3 5 7 2520 4.1 13.7 249.1 - 2524 umc1929 - umc1787 105,804,341 - 110,057,749 42
SP3 6 8 464.0 4.1 15.0 460.8 - 464.0 bnlg1065 - rz538a 165,689,209 - 166,244,750 20
SP3 7 9 206.0 -15 09 2044 - 208.5 ufg71 - mmp170b 25,825,748 - 26,709,137 19
SP3 8 9 2220 42 7.2 220.7 - 2239 psr160c - rz273c 26,822,048 - 49,039,937 292
Total 594
SP4 1 1 834.0 6.1 219 833.0 - 839.3 chrom?7 - glb1 256,342,909 - 257,540,930 26
SP4 2 4 278.0 4.1 58 2778 - 2799 psr152b - nnri 46,450,572 - 65,900,096 202
SP4 3 4 300.0 0.2 < 0.1 299.9 - 300.2 bnlg1755 - mmp45 118,324,214 - 135,333,950 173
SP4 4 8 194.0 -3.2 6.3 191.0 - 194.1 mmp120 - mmp72 23,404,908 - 60,338,399 367
Total 40.1
SP5 1 1 690.0 -4.6 103 685.2 - 690.5 lim442 - mmp189 214,921,545 - 219,064,269 68
SP5 2 1 8380 84 34.0 833.0 - 8393 chrom?7 - glb1 256,342,909 - 257,540,930 26
SP5 3 4 2380 5.1 14.0 2378 - 2455 bnlg490 - agrr301 31,323,581 - 40,458,411 186
Total 494
SP6 1 1 690.0 -38 49 685.2 - 690.5 lim442 - mmp189 214,921,545 - 219,064,269 68
SP6 2 1 714.0 =23 1.7 7115 - 7144 umc1128 - umci1147 224,265,940 - 224,970,667 18
SP6 3 1 830.0 7.7 277 825.8 - 833.0 1z403 - chrom?7 255,041,502 - 257,540,930 53
SP6 4 4 238.0 52 14.1 237.8 - 2455 bnlg490 - agrr301 31,323,581 - 40,458,411 186
Total 44.2
RL 1 3 4520 -6.9 180 4515 - 4527 jpsb79 - umc60 180,725,934 - 180,867,611 4
Total 18.0
RW 1 1 824.0 0.5 0.8 8215 - 825.8 csu696 - 17403 253,570,111 - 256,342,908 57
RW 2 1 846.0 0.8 19 839.3 - 8473 glb1 - csu222a 256,342,909 - 261,572,322 145
RW 3 5 74.0 13 126 733 - 74.4 mmp43 - bnl7.21c 3,727,289 - 3,810,656 6
RW 4 5 4120 12 11.0 4108 - 413.6 umc1155 - csul73 180,186,573 - 181,568,742 33
RW 5 7 148.0 0.7 3.7 1320 - 148.5 asg34a - gtalOla 14,027,268 - 14,698,304 10
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Table 2 Summary of the quantitative trait loci (QTL) detected using the maize IBM population evaluated in a Fe-deficient nutrient solution, where Chr. is the
chromosome, Pos. the position in centi Morgan on the genetic map, Add. the additive effect, %r? the percentage of the explained phenotypic variance, and

genetic map interval in centi Morgan of the flanking markers with corresponding physical map interval including the number of genes in the corresponding QTL
confidence interval according to the filtered gene set B73 RefGen_v2 (Continued)

RW
RW

SL

SDW
SDW
SDW
SDW
Sbw

H,O
H,O
H,O
H,O
H,O
H,O
H,O

SDW/SL

BTR

BTR

BTR

LAT

NEC
NEC

6
7

wu A W N

~N O L AN

1

7
8

NN N B

O OV OV VW N

290.0
194.0

840.0

888.0
2380
164.0
174.0
184.0

3700
272.0
300.0
138.0
146.0
150.0
164.0

466.0

672.0

836.0

156.0

188.0

208.0
90.0

09
-09
Total
24
Total
0.3
0.3
0.1
-0.1
03
Total

-038
Total
-08
0.6
Total

59
6.7
589
9.6
9.6

346
8.0
8.8
0.9
0.8
1.7
2.0
06

359

144

144

19.0
12.6
24.0

2889
191.0

839.3

887.5
237.8
162.4
170.8
183.7

369.3
2714
2999
1311
142.6
147.5
162.5

464.0

670.2

833.0

153.3

179.5

205.0
87.8

2984
194.1

847.3

890.9
2455
167.4
178.0
184.4

3735
274.7
300.2
139.0
147.5
1530
1704

466.5

685.2

839.3

156.6

191.0

208.5
90.3

umcl16a

mmp120

glb1

cdo122a
bnlg490
AY105589
cr2

uaz187

umc1079
umc1964
bnlg1755
omt2
bnlg244
bnlg1401
mmp30

rz538a
umc23a
chrom7
umc1974

umc1530

lim122
BE640649

umcl1713
mmp72

csu222a

AY110019
agrr301
npi600
AY110473
mmp26

bnlg1036
AY110290
mmp45
mmp162
bnlg1401
mmp77
umc1698

umc1607
lim442
glb1
psr598

mmp120

umc1073
npi421a

127,039,567
23,404,908

256,342,909

263,205,925
31,323,581
17,029,068
24,318,258
50,078,806

152,207,394
42,102,039
118,324,214
15,578,721
18,040,440
18,561,278
16,660,671

165,636,122

212,899,665

256,342,909

16,722,932

22,245,756

27,398,858
6,474,435

129,866,479
60,338,399

261,572,322

270,965,223
40,458,411
21,464,802
50,154,299
50,149,169

163,566,033
46,621,469
135,333,950
18,071,240
18,071,240
18,607,113
20,791,656

166,188,782

219,195,665

257,540,930

18,272,098

25,351,500

32,868,895
6,534,813

59
367

145

186

186

82
312

150

69

173

91

146

20

110

26

35

59

125

Total is the percentage of the phenotypic variation explained by all QTL for a trait in a simultaneos fit.
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Table 3 Summary of the quantitative trait loci (QTL) detected using the maize IBM population evaluated in a Fe-sufficient nutrient solution, where Chr. is the
chromosome, Pos. the position in centi Morgan on the genetic map, Add. the additive effect, %r? the percentage of the explained phenotypic variance, and

genetic map interval in centi Morgan of the flanking markers with corresponding physical map interval including the number of genes in the corresponding QTL
confidence interval according to the filtered gene set B73 RefGen_v2

Trait QTL Chr. Pos. (cM) Add. %r? Interval (cM) Flanking markers Physical map interval Genes
SP3 1 1 852.0 3.2 14.8 8473 - 864.6 csu222a - umcl197a 257,951,442 - 262,818,614 141
SP3 2 3 508.0 19 0.6 507.2 - 5111 AY111125 - php15033 190,454,440 - 193,733,670 72
SP3 3 3 516.0 12 0.2 512.7 - 5170 Al770795 - pco067132 193,638,925 - 193,733,670 0
SP3 4 4 2720 22 8.2 2714 - 274.7 umc1964 - AY110290 42,102,039 - 46,621,469 69
Total 429
SP4 1 1 840.0 38 215 839.3 - 847.3 glb1 - csu222a 256,342,909 - 261,572,322 145
Total 215
SP5 1 1 840.0 22 22 839.3 - 847.3 glb1 - csu222a 256,342,909 - 261,572,322 145
SP5 2 1 864.0 2.2 24 8473 - 864.6 csu222a - umcl197a 257,951,442 - 262,818,614 141
SP5 3 3 5180 3.2 10.2 5170 - 520.7 asg’b - bnl6.16a 190,889,172 - 196,152,996 138
SP5 4 4 2740 2.1 4.3 2714 - 274.7 umc1964 - AY110290 42,102,039 - 46,621,469 69
SP5 5 7 266.0 32 59 2653 - 280.5 mmp21 - ufg54 121,188,675 - 129,322,867 172
SP5 6 7 286.0 0.8 04 2854 - 2889 cdo412b - umcl16a 128,981,461 - 130,295,570 28
SP5 7 9 254.0 2.7 84 253.7 - 254.0 AW257883 - umc1743 100,609,365 - 100,724,531 3
SP5 8 10 258.0 1.9 14 256.8 - 2594 AY109920 - AY109876 107,077,362 - 108,377,749 17
SP5 9 10 270.0 06 0.1 269.6 - 2713 mmp121 - AY110365 113,828,273 - 114,695,818 18
SP5 10 10 288.0 0.5 0.1 2879 - 2909 umc1330 - umcl1697 122,801,569 - 122,924,003 3
Total 65.5
SP6 1 1 698.0 -25 1.7 693.6 - 699.9 mmp173 - php20661 222,399,299 - 222,711,359 10
SP6 2 1 706.0 -04 0.1 703.5 - 706.4 bcd207a - AY110356 223,974,395 - 224,078,859 3
SP6 3 1 862.0 23 19 8473 - 864.6 csu222a - umcl197a 257,951,442 - 262,818,614 141
SP6 4 1 884.0 13 0.6 882.7 - 886.1 tb1 - umc1431 266,933,205 - 267,050,083 4
SP6 5 4 210.0 0.9 04 189.1 - 2114 mmp111 - npi386a 17,981,907 - 25,233,582 114
SP6 6 4 226.0 29 5.1 2257 - 2284 umc1963 - umc1652 26,437,539 - 27,757,462 22
SP6 7 4 414.0 2.5 6.1 4113 - 414.2 umc2038 - umcl19 172,796,153 - 173,318,462 19
SP6 8 8 622.0 3.0 8.9 6216 - 626.7 umc1638 - umcl1916 174,236,946 - 175,350,404 34
SP6 9 9 2240 2.2 4.6 2239 - 2263 1z273c¢ - umc81 27,011,615 - 27,062,858 2
Total 62.3
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Table 3 Summary of the quantitative trait loci (QTL) detected using the maize IBM population evaluated in a Fe-sufficient nutrient solution, where Chr. is the
chromosome, Pos. the position in centi Morgan on the genetic map, Add. the additive effect, %r? the percentage of the explained phenotypic variance, and

genetic map interval in centi Morgan of the flanking markers with corresponding physical map interval including the number of genes in the corresponding QTL
confidence interval according to the filtered gene set B73 RefGen_v2 (Continued)

RW
RW
RW

SL

SDW
SDW

H,O
H,O
H,O
H,O

NEC
NEC
NEC
NEC
NEC

1
2
3

AW

o~ w N

5
5
7

~N O A~N

NN NN N W

720
80.0
290.0

1016.0

864.0
5340

154.0
402.0
69.3
2580

418.0
5320
542.0
588.0
602.0

12
03
15
Total
-24
Total
0.3
-04
Total
-0.3
-0.3
-0.2
-04
Total
-0.7
-0.6
-0.1
-< 0.1
0.6

Total

20
0.1
136
254
9.8
9.8
10.7
218
314
6.8
56
29
9.3
370
1.7
4.8
0.2
<01
2.1
295

719
744
2889

1014.9

8473
5337

153.1
3974

70.2
2529

416.1
5189
540.8
586.6
600.4

733
83.7
2984

1031.8

864.6
536.7

154.6
408.7
70.3

2615

4236
5320
5434
5989
602.9

umc1523
bnl7.21¢c

umcl16a

igh

csu222a
npi380

umc1262a
umcéba
umc1606
umc2092

asg39
umc1412
mmp67
cdo938d
umc2334

mmp43
jpsb239a
umcl1713

umc2242

umc197a

npi433

umcl1261a
umc104a
cdo1173¢

umc5b

BE639846
umc245
mmp25
umc1406
ufg39

3,320,773
3,320,773
127,039,567

287,881,695

257,951,442
168,366,640

13,716,641
162,903,780
9,410,989
109,977,320

175,604,963
167,566,759
169,262,253
170,246,381
170,246,381

3,727,971
4,383,850
129,866,479

290,146,916

262,818,614
169,262,520

14,406,715
172,858,882
21,903,419
122,636,428

176,553,867
169,345,697
170,497,141
170,998,616
170,998,616

30
70
59

70

141
36

20
273
132
186

33
73
42
39
39

Total is the percentage of the phenotypic variation explained by all QTL for a trait in a simultaneos fit.
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Figure 3 Projection of 18 genes involved in iron homeostasis on the IBM2 genetic map. The genetic position of confidence intervals of the
quantitative trait loci detected for the 13 traits of our study at Fe-deficient and Fe-sufficient regimes are represented by orange and green bars,
respectively. The trait value increasing alleles determined according to QTL analyses are indicated as blue and red bars for Mo17 and B73, respectively.
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Figure 4 Quantitative transcript levels of 17 genes important for Fe homeostasis under Fe-deficient (-Fe) and Fe-sufficient (+Fe) regimes
=+ standard error relative to the transcript level of ACTIN1. Mean values of four technical replications of the parental inbred lines B73 and Mo17
marked with different letters for each gene are significantly (o = 0.05) different expressed.

investigations respecting as they are likely to contribute
to improved Fe efficiency and thus might be valuable
in breeding programs. For this reason QTL mapping is
the method of choice to identify those loci that allow
improving Fe efficiency in maize.

QTL and gene expression analyses

Besides the general analyses of the physiological and mor-
phological traits evaluated under two Fe regimes for 85
IRILs we combined this phenotypic information with
1652 genetic markers for QTL mapping. Under Fe defi-
ciency the traits SP3, RW, and H,O showed the highest
number of QTLs (7 - 8) explaining between < 0.1% to 15%
of the phenotypic variance (%r?) (Table 3). In contrast, SP4
to SP6 showed with 3 to 4 QTLs the highest %r? of 34.0%.
This observation suggests that under Fe deficiency SP4 to

SP6 are of lower genetic complexity which increases the
probability to identify in these QTL confidence intervals
genes contributing largely to the natural variation in Fe
homeostasis-related traits.

According to the genome sequence of the QTL inter-
vals of SP3, SP5, and SP6 measured under Fe deficiency,
these intervals include among others a Ferredoxin class
gene (GRMZM?2G043162) on chromosome 4 (Figure 3,
Table 2). Ferredoxin transcript and protein levels strongly
decrease under Fe deficiency [35] suggesting that ferre-
doxins respond sensitively to the Fe nutritional status.
The sequence of the Ferredoxin class gene found in the
above-mentioned QTL interval was not homologous to
the maize ferredoxins FDX1, FDX2, FDX3, or FDX5 char-
acterized by [36] or to FDX6. We assume that the detected
Ferredoxin class gene is, like the other homologs, involved
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in the capture and distribution of reducing equivalents
derived from photosynthetic electron transport chain in
chloroplasts. However, more than the other homologs,
this Ferredoxin class gene may be a candidate gene con-
ferring differential chlorosis tolerance among maize lines.
Targeted biochemical and metabolite analyses will be nec-
essary to validate whether Ferredoxin class gene functions
are crucial for chlorosis tolerance.

Under adequate Fe supply, we observed in the QTL
intervals of SP3 to SP6 another putative ferredoxin gene
that was located on chromosome 1 (Figure 3, Table 3).
This ferredoxin gene is most likely an ortholog to PETF
(GRMZM2G359127) in Chlamydomonas, which is upreg-
ulated under Fe sufficiency [37]. The precise function
of this ferredoxin homolog in maize is still unclear.
However, the corresponding maize protein sequence
revealed a homology of 64% with the PETF gene of the
cyanobacterium Fischerella (data not shown). As stud-
ies in algae have indicated that multiple ferredoxin iso-
forms allow for the allocation of reduction equivalents
to specific metabolic pathways in the chloroplast, the
putative maize ferredoxin PETF might be particularly rel-
evant not only for electron transport in the presence or
excess of Fe but also for intraspecific variation in this
function.

Under Fe-deficient growth conditions, we detected in
the QTL intervals for branching at the terminal 5 cm
root (BTR), SP5, and SP6 the gene encoding the metal
tolerance protein 8 (MTP8) (GRMZM2G116831) and in
the QTL interval of NEC the MTP4 (GRMZM2G118497)
gene on chromosome 1 (Figure 3, Table 2). Schaaf et
al.,, 2004 [19] showed that the maize phytosiderophore-
transporter YS1 is able to transport besides Fe also other
phytosiderophore-chelated metals across the membrane,
which may contribute to the typical accumulation of met-
als in Fe-deficient maize plants [38,39]. Hanikenne et al.,
2005 [40] and Talke et al., 2006 [41] showed that MTPs
are necessary for the detoxification of excess metals by
sequestering them from the cytoplasm to the vacuole. The
detection of the MTPs in the QTL confidence intervals
supported the notion that maize has to cope not only
with Fe deficiency but also with excess accumulation of
metals to prevent the cytoplasm from metal toxicity. In
this regard, the results of our study suggested that these
two MTPs apparently contribute to the genetic variabil-
ity of Fe deficiency-induced chlorosis in maize leaves.
Furthermore, the trait increasing alleles of QTL intervals
including MTP8 and MTP4 were provided by B73 as well
as Mol7, respectively. Therefore, the combination of trait
increasing alleles from both parental inbreds at different
loci may cause the transgressive segregation in progenies
which can be used to breed maize inbreds with a higher
tolerance against excess metal accumulation during Fe
starvation (Figure 1; Fe-deficient).
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The QTL confidence intervals of SP4, SP5, and SP6
monitored in Fe-sufficient plants included the nico-
tianamine synthase 3 (NAS3) (GRMZM2G478568) gene
on chromosome 1 (Figure 3, Table 3). This observation is
in accordance with results of [42] who showed that the
NAS3 protein was exclusively present under Fe-sufficient
growth conditions. The corresponding protein is impor-
tant for NA-mediated Fe chelation under adequate or
even excess Fe provision to prevent the formation of reac-
tive oxygen species via the Fenton reaction and thus to
maintain Fe homeostasis in the cytosol [21,43]. The gene
expression analyses for NAS3 showed a significant (o =
0.05) three times higher transcript level for B73 compared
to Mo17 at adequate Fe growth conditions (Figure 4). Fur-
thermore, the transcript level of NAS3 in Mo17 did not
vary significantly between adequate and deficient Fe sup-
ply. This, in turn, is in accordance with the observation
that the trait-increasing allele in the QTL was provided by
B73.

It was proposed by [11] that expression patterns of
Fe homeostasis-related genes in grasses are regulated
according to the Fe status and by sensing mechanisms
mediated by the transcription factors IDEF1 and IDEF2.
Furthermore, these authors showed that the expression
pattern of OsNAS3, which is the ortholog of ZmNAS3
[42], was downregulated during Fe limitation. Taken
together, these observations suggest that the transcrip-
tional regulation of the Mo17 allele of NAS3 might carry a
disadvantageous mutation, e.g. in the upstream regulators
or cis-acting elements of NAS3.

In the QTL interval for the trait NEC under Fe-deficient
conditions (chromosome 1) we detected the DMASI
(GRMZM2G060952) gene, which is essential for the last
step of the phytosiderophore biosynthesis in maize [15].
Since the capacity for the synthesis and release of phy-
tosiderophore in graminaceous plants is strongly deter-
mining chlorosis tolerance under Fe-limiting conditions
[44], DMASI is likely to play a key role for efficient Fe
acquisition irrespective of which Fe source is provided
[45].

With regard to the DMAS1 gene expression, Mol7
showed under Fe deficiency a three times lower tran-
script level compared to B73 (Figure 4). Bashir et al,
2006 [15] showed that the DMAS genes of rice, barley,
wheat, and maize were upregulated during Fe deficiency
in roots allowing to enhance the production and secretion
of PS. This indicates that Mo17 might have a disadvanta-
geous allele in the promoter region of DMASI. However,
further genes which might be regulated by IDEF1 and
IRO2 (c¢f. [46]) showed differences in expression levels
between B73 and Mol7 under both Fe regimes, namely
NASI and the methionine cycle related genes FDHI,
IDI2, IDI4, and MTK (Figure 4). Besides a weaker induc-
tion by an upstream regulator, this may also be due to
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a disequilibirium in Fe sensing leading to a more Fe-
inefficient phenotype in Mo17.

The gene coding for the transcription factor IDEFI was
not located in any QTL interval of our study and was not
differentially expressed between B73 and Mol7 at either
Fe regime (Figure 4). On the one hand, this might be
explained by the fact that the resolution power for QTL
mapping was too weak for the detection of a QTL includ-
ing IDEF1 in the confidence interval. However, the present
results might also be explained by the presence of another
upstream regulator in the IDEFI-dependent or an inde-
pendent regulatory pathway. This unknown gene could be
polymorphic between B73 and Mol7 and could be hid-
den within the confidence intervals of the corresponding
QTL detected in our study in which no other obvious can-
didate gene was found. The detection of regulatory tran-
scription factors essential for chlorosis-free growth under
different Fe regimes would certainly benefit from addi-
tional analyses of quantitative trait loci with expression
(eQTL) and protein (pQTL) data of genes modulating Fe
homeostasis.

Conclusions

With regard to Fe homeostasis, Mo17 contributed some
advantageous alleles which caused in combination with
the more advantageous genetic background of B73 a
transgressive segregation in some IRILs. The morpholog-
ical and physiological traits determined here indicated a
moderate to high dependency on natural genetic variation
suggesting a powerful basis for QTL mapping approaches.
Based on our QTL mapping results, we were able to
identify new putative candidate genes like Ferredoxin 1,
putative ferredoxin PETF, MTP4 and MTP8 which have
so far not been considered as relevant for efficient Fe
homeostasis under both, low or high Fe concentrations.
Furthermore, we characterized candidate gene expression
and provided an insight into putative trans-acting regu-
lation on candidate genes especially for DMAS1, NAS3,
NASI, FDH]1, IDI2, IDI4, and MTK.

Methods

Plant material

The intermated recombinant inbred lines (IRILs) of the
IBM population was used, which was derived from a cross
of the maize parental inbreds B73 and Mo17 [47]. Due to
the unavailability of seeds for the IRILs MO040, MO043,
MO048, MO057, MO062, MO063, MO076, MO079, and
MO344, a total of 85 IRILs were evaluated in our study.

Culture conditions and evaluated traits

Maize seeds were sterilized in a 3% NaClO solution for
3 minutes and then treated with 60°C hot water for 5
minutes. Afterwards, seeds were placed between two fil-
ter paper sheets moistened with saturated CaSO, solution
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for germination in the dark at room temperature. After 6
days, the germinated seeds were transplanted to a contin-
uously aerated nutrient solution with nutrient concentra-
tions as described by [48]. The plants were supplied with
100 uM Fe(III)-EDTA for 7 days. From day 14 to 28, plants
were supplied with 10 (Fe-deficient) or 300 (Fe-sufficient)
uM Fe(III)-EDTA. The nutrient solution was exchanged
every third day. Plants were cultivated from day 7 to day 28
in a growth chamber at a relative humidity of 60%, a light
intensity of 170 umol m~2 s~1 in the leaf canopy, and a
day-night temperature regime of 16 h/24°C and 8 h/22°C,
respectively.

Four plants of each genotype were grown in one 5 L
pot. All pots were arranged in a split-plot design in the
growth chamber, where the two parental genotypes were
included as checks. The entire experiment was replicated
b = 3 times.

The relative chlorophyll content of leaf 3, 4, 5, and 6
(SP3, SP4, SP5, and SP6) was measured with a SPAD meter
(Minolta SPAD 502) at day 25 for each individual plant.
Furthermore, stress symptoms like branching at the ter-
minal 5 cm of the root (BTR) and leaf necrosis (NEC) were
recorded as a visual score on a scale from 1 (high trait
expression) to 9 (low trait expression). Furthermore, the
lateral root formation (LAT) was recorded on a scale from
1 (low trait expression) to 9 (high trait expression) at day
26. Additionally, the root length (RL), root weight (RW),
and shoot length (SL) were measured for all plants in one
pot as one sample and root samples were frozen immedi-
ately in liquid nitrogen at harvest on day 28. After drying
the shoot material at 70°C, shoot dry weight (SDW), water
content (H,O), and the ratio between shoot dry weight
and shoot length (SDW/SL) was calculated.

A total of 21 IRILs were selected such that they repre-
sented the largest possible variation of trait values for SP5.
For each of these IRILSs, shoot samples of four plants were
pooled so that each IRIL was represented by one sample
for each of the three replicates. Afterwards, the samples
were ground and Fe concentrations were measured using
inductively coupled plasma optical emission spectrom-
etry (iCAP 6000 SERIES, Thermo Fisher) according to
[49].

Quantitative RT-PCR analysis

Total RNA was extracted from roots of two replications
of the parental inbreds B73 and Mol7 that were col-
lected from both Fe regimes using RNeasy Plant Mini Kit
(QIAGEN, Germany). Total RNA was treated with DNase
(Ambion DNA-free, Invitrogen). Afterwards, cDNA syn-
thesis was performed (SuperScript VILO, Invitrogen) and
primers for candidate genes (Additional file 1: Table
S1, Additional file 2: Table S2) were used for quanti-
tative RT-PCR according to the manufacturer’s instruc-
tions (DyNAmo ColorFlash SYBR Green qPCR Kit) using
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ACTIN1 (NM_001155179.1) to normalize relative tran-
script abundances of candidate genes (Table 2).

Statistical analyses
The data of each Fe treatment were analyzed using the
following mixed model:

Yik =W+ g + 1+ e,

where y; is the mean of four plants of the ith genotype
in one pot of the kth replication, u the general mean,
gi the effect of the ith genotype, ri the effect of the kth
replication, and e;; the residual error.

To estimate adjusted entry means (AEM) for all geno-
types, g; and r; were considered as fixed. Furthermore, g;
was considered as random to estimate the genotypic vari-
ance (ng) and the error variance (¢2). All mixed model
calculations were performed with ASReml [50].

The broad sense heritability /2 for each Fe regime was
calculated as:

H? — o
ol
b

The AEM of all genotypes for all traits and Fe regimes
were tested with a Kolmogorov-Smirnov test [51] for their
normal distribution. Partial correlation coefficients were
assessed between all pairs of traits [52]. Network analyses
of the partial correlations were prepared according to [53].

2
og—{—

Genetic map

The publicly available genotypic data (http://www.
maizegdb.org/map.php) for the IRILs were used in our
study. The genetic map positions of these markers on the
IBM2 map are available (http://www.maizegdb.org/map.
php) and were the basis of our analyses. 336 markers were
excluded that showed a highly significant (P < 0.001) dis-
torted segregation (cf. [54]). The remaining 1652 markers
were used for the QTL analyses. Missing genotypic infor-
mation in our marker set was imputed as described by
[55].

QTL analyses

Due to the high number of available markers, cofactors
could not be selected using standard stepwise regression.
Therefore, the following procedure was applied for each
trait. One random marker was selected from each bin.
Multiple stepwise regression was used to select cofactors
from this set of markers based on the Bayesian informa-
tion criterion (BIC) [56]. This procedure was repeated
1000 times. The average number of selected cofactors
across the 1000 times repetition was used as estimator of
the number of bins to study in more detail. Out of these
bins 100 markers were chosen randomly and the final set
of cofactors based on BIC was selected.

Page 14 of 16

For the QTL mapping adjusted entry means of the 3
experimental replications for each trait, Fe regime, and
each of 85 IRILs were used. The QTL analysis was carried
out using the multiple QTL mapping (MQM) procedure
[57] implemented in the R package ‘qtl’ version 1.21-2 [58].
The QTL detection was performed with a 2 ¢cM (centi
Morgan) step size (cf. [59]).

A total of 1000 permutation runs were performed for
each trait and Fe regime to determine the o = 0.05
experiment-wise type I error for a QTL [60]. The 95%
Bayesian confidence interval was calculated for each QTL
location [61]. The confidence interval was expanded to the
nearest flanking markers and their physical map localiza-
tion was derived from B73 RefGen_v2_sequence to be able
to extract all putative genes from a defined interval.

If not stated differently, all analyses were performed
using the statistical software R [62].

Additional files

Additional file 1: Table S1 Genes involved in Fe homeostasis, which
were projected on the IBM2 genetic map of maize (Figure 4) and for
quantitative RT-PCR analysis in root tissue.

Additional file 2: Table S2 Primer list (forward: F, reverse: R) for
qRT-PCR.
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