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Abstract

Background: Limit dextrinase inhibitor (LDI) inhibits starch degradation in barley grains during malting because it
binds with limit dextrinase (LD). There is a wide genetic variation in LDI synthesis and inactivation during barley
grain development and germination. However, the genetic control of LDI activity remains little understood.

Results: In this study, association analysis was performed on 162 Tibetan wild accessions by using LDI activity, 835
Diversity Arrays Technology (DArT) markers and single nucleotide polymorphisms (SNPs) of the gene HvLDI encoding
LDI. Two DArT markers, bpb-8347, bpb-0068, and 31 SNPs of HvLDI were significantly associated with LDI activity,
explaining 10.0%, 6.6% and 13.4% of phenotypic variation, respectively. Bpb-8347 is located on chromosome 6H, near
the locus of HvLDI, and bpb-0068 is located on 3H.

Conclusions: The current results confirmed the locus of the gene controlling LDI activity and identified a new DArT
markers associated with LDI activity. The SNPs associated with LDI activity may provide a new insight into the genetic
variation of LDI activity in barley grains.

Keywords: Limit dextrinase inhibitor (LDI), Genome-wide association study (GWAS), Single nucleotide polymorphism
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Background

Malting is the first step in brewing or beer production
of malt barley, and the properties of malting barley are
generally evaluated on the basis of malting quality. High
malting quality is characterized by high malt extract
(ME) and diastatic power (DP), as well as high wort
fermentation by yeast, i.e. complete degradation of
starch and polysaccharide in malt [1]. The major chemical
compound in barley grains is starch, which consists of
30% amylose and 70% amylopectin [2].

Starch is degraded by coordinative action of a-amylase,
[B-amylase, limit dextrinase (LD) and a-glucosidase in the
endosperm of the germinating grains [3]. LD is the only
enzyme of cleaving a-1-6 linkages in branched dextrins
molecules [4]. Without the action of LD, the branched
dextrins could not be fermented by yeast [5]. Hence, LD
plays an important role in the brewing and distilling
industries for producing fermentable sugar.
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LD in barley grains exists in three different forms:
insoluble bound, soluble inactive and active free, and
only the active free form participates in starch mobilization
[6]. However, the free LD accounts for a small portion of
total LD. The low activity of available LD in grains is due
to its combination with endogenous inhibitors, limit
dextrinase inhibitor (LDI) [7]. LD and LDI interact with
each other in a 1:1 molar ratio complex [8]. The LD
bound to LDI is thought to be a limiting factor for
complete degradation of starch [9].

LDI is synthesized in the developing grains, and degraded
gradually during the malting process [7]. Consequently, LD
activity in malt is not only dependent on the amount of the
enzyme itself in mature grains, and also is closely related
to the amount and type of LDI. HvLDI was identified to
encode the LDI protein, and located at chromosome 6H
[10,11]. However, genetic variation and controlling of LDI
synthesis and degradation in barley grains and malt is not
totally understood. In view of a wider variation of LD
activity in Tibetan wild barley than in cultivated barley
(unpublished data), it is imperative to determine the
genetic variation of LDI content in Tibetan wild barley,
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which has been recently proved to be a progenitor of
cultivated barley and is rich in genetic diversity [12,13].

Association analysis has been widely used to identify
genes or loci of important traits, such as abiotic stress
tolerance [14,12,15], agronomic traits [16,17] and also
barley quality [18,19]. However, there has been no report
on the discovery of novel loci or elite alleles attributed
to LDI activity using association analysis.

The objectives of this study were to (1) determine the
genetic variation of LDI activity in Tibetan wild barley;
(2) identify the DArT markers and SNPs of HvLDI associ-
ated with LDI activity in Tibetan wild barley.

Methods

Plant materials

A total of 162 Tibetan wild barley accessions, kindly
provided by professor Sun of Huazhong Agricultural
University, China, were used for LDI activity and asso-
ciation analysis. All accessions were planted in early
November 2011 and 2012 in Zijingang campus, Zhejiang
University (Hangzhou, China). Every genotype was culti-
vated in accordance with local agronomic practices with
three replications. The 162 barley accessions were planted
in a block with each accession consisting of three lines
(2 m length and line distance is 0.25 m).

Assay of LDI activity

Grain samples were micro-malted in a Phoenix System
Micro-malting Apparatus (Adelaide, Australia) in the order
of steeping, germination and drying. LD was partially puri-
fied from barley malt according to Kristensen et al. [20].
The fractions were applied to gel filtration chromatography
after the ion exchange chromatography step, and partially
purified LD was collected and used for the measurement of
LDI activity.

LDI activity was determined according to MacGregor
et al. [21] with some modification. One ml of 0.1 M sodium
acetate (pH 5.5) containing 10 mM 1,10-phenanthroline
was added to 0.1 g barley powder, incubated at 4°C for
30 min. The extract was heated at 70°C for 40 min,
centrifuged and the supernatant was collected. The
protein content of the extracts was measured using
Bradford assay kits (Sangon Biotech). Twenty micrograms
protein of LDI extract were mixed with 10 mU partially
purified LD and the volume was made up to 0.5 ml in
0.1 M maleic acid containing 0.02% Na azide (pH 5.5).
The remaining LD was determined using the Limit-
Dextrinase assay kit (Megazyme). The LDI activity was
calculated as the reduced LD activity.

Population structure and kinship analysis

Totally, 771 DArT markers, with minor allele frequency
(MAF) higher than 0.03 (Additional file 1: Table S1), were
used for population structure analysis using STRUCTURE
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software (v2.3.3) [22], in which the number of clusters (k)
was set from 1 to 12 and ten iterations were performed in
an admixture model with 10,000 burning period and
100,000 MCMC (Markov Chain Monte Carlo). The DArT
markers used were derived from Diversity Arrays Tech-
nology Pty Ltd, Australia and distributed over the whole
genome [23-25]. The most probable number of clusters
(k) was estimated according to the value of Ak. When Ak
had the highest value, the value of k was the number of
clusters [26]. Kinship was estimated using SPAGeDi soft-
ware [27]. Genetic distance and neighbor-joining tree were
developed with NTSYSpc (version 2.10e).

Variance component and heritability estimation

Variance analysis was conducted using SPSS software.
The used model was: y=mu+ GENOTYPE + ERROR
(fixed in low case, random in capitals). Heritability was
estimated according to H* = Vg/(Vg + Ve).

Genome-wide association study (GWAS) of LDI activity
Genome-wide association study between LDI activity
(mean value of 2011 and 2012) and DArT markers was
conducted using TASSEL software (v3.0), where Q, K
and Q + K methods were applied [28]. The structure
matrix was included as covariate to correct population
structure in Q model: y=Qv+ XS +e, where X is the
DArT marker matrix, Q is the structure matrix, S and v
are coefficient vectors for DArT marker vector and
population structure vector, and e is the random error
vector. In K model: y=XS+ Zu +e. The Q + K model
can be written in a matrix form as: y= Qv+ XS+ Zu +e,
where X, 8, Q and v are the same as those mentioned
above, Z is the kinship matrix, and u is a vector of random
genetic effects u~N (0, 2 K), where K is the kinship
matrix. Manhattan plots were displayed using R software
(v2.14.2).

PCR amplification and sequencing
Genomic DNA was extracted from leaves of 150 barley
seedlings using CTAB method [29]. The primers used for
DNA amplification were designed using the primer design
tool of NCBI (http://www.ncbinlm.nih.gov/tools/primer-
blast/). Primers for HvLDI were: forward, TTTTCGCA
TGTCACCAAAAATGT; reverse, TCCGCTTCATTACCT
TGGCG. The amplified DNA fragment was about 900 bp.
The PCR reactions were completed as follows: 2.5 pl of
10 x TransTaq HiFi buffer I (200 mM Tris—HCI (pH 8.4),
100 mM (NH,4),SO4, 20 mM MgCl,, 200 mM KCl, 2 pl of
2.5 mM dNTPs, 1 ul of 10 uM forward primers, 1 pl of
10 uM reverse primer, 0.5 pl of 5 units pl™' of TransTaq
polymerase High Fidelity (Beijing TransGen Biotech Co.,
Ltd.), and 1 pl of 50 ng of genomic DNA. The PCR ampli-
fication program started at 5 min at 95°C, followed by
32 cycles of 30 s at 95°C, 30 s at 60°C, and 1 min at 72°C,
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Figure 1 The distribution frequency of LDI activity of the examined Tibetan wild barley accessions in 2011 and 2012. The X axis

represents LDI activity, the Y axis represents frequency of LDI activity.
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and then 10 min at 72°C for a final extension. The PCR
products were analyzed by 1% agarose gel electrophor-
esis. They were sequenced using 3730 x | DNA Analyzer
(Applied Biosystems Inc., USA).

Polymorphism of HvLDI and haplotype analysis
Alignment and polymorphism detection of HvLDI se-
quences were analyzed by MEGA v5.2 [30]. The haplotype
analysis was conducted with Dnasp v5.0 [31].

Availability of supporting data

The sequences of the 6 haplotypes were deposited in
GenBank, and the accession numbers of these haplotypes,
H1-H6 are KJ710426, KJ710427, KJ710427, K]J710429,
KJ710430 and KJ710431, respectively.

Results

LDI activities of 162 Tibetan wild accessions

A wide genetic variation of the LDI activity was observed
among 162 Tibetan barley accessions for two years
(Figure 1), ranged from -0.034 mU/pg to 0.295 mU/ug
for 2011 and from 0.003 mU/ug to 0.287 mU/ug for
2012, with a mean of 0.176 mU/pg and standard differ-
ence (SD) of 0.057 for 2011 samples, and a mean of
0.167 mU/ug and SD of 0.055 for 2012.

Table 1 Variance component and heritability (H?)
estimates for LDI activity of 2011 and 2012

Vg Ve H?
Year 2011 3.20E-03 2.88E-04 0928
Year 2012 2.48E-03 4.93E-04 0854

Note: Variance components are shown for Genotype (Vg), Error (Ve).

The results of variance analysis are presented in Table 1.
Estimates of the variance component for genotype and
error were 0.00320 and 0.000248 for 2011, 0.00288 and
0.000493 for 2012. The heritabilities for 2011 and 2012
were 0.928 and 0.854, respectively.

Population structure

The largest value of statistic index Ak was used as an indi-
cator of the most probable number of subpopulations for
all accessions (Figure 2). In the present study, the 162
accessions could be classified into five subpopulations,
with 19, 17, 21, 50 and 55 accessions for the each individ-
ual subpopulation (Figure 3). The result was consistent
with the data from the cluster analysis (Additional file 2:
Figure S1). The population structure of 162 Tibetan wild
barley accessions was listed in Additional file 3: Table S2.
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Figure 2 Estimation of the most probable number of clusters
(k), based on 10 independent runs and k ranging from 1 to 11.
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Figure 3 Population structure of 162 Tibetan barley accessions. Population structure of 162 barley accessions was divided based on genetic
diversity detected by 835 DArT markers with k= 5. Five subpopulations were represented by different colors.
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Genome-wide association study

The LDI activities of 162 accessions and 771 DArT markers
were used to perform genome-wide association study
(GWAS). Two markers, bpb-8347 and bpb-0068 showed
significance under Q, K and Q + K methods (Additional
file 4: Table S3). When Q method was used, the -log;o(p)

values for bpb-8347 and bpb-0068 were 5.48 and 3.75 in
2011 and 7.76 and 4.26 in 2012. If only kinship was con-
sidered, the -log;o(p) values for bpb-8347 and bpb-0068
were 240 and 2.25 in 2011, and 3.10 and 2.15 in 2012.
When a more restrict method, Q + K method was applied,
the -log;o(p) values were 2.75 and 2.30 in 2011, and 3.74

bpb-0068

bpb-8347

-log10(P)

Chromosome

Figure 4 GWAS of LDI activity of 162 Tibetan barley accessions. GWAS was analyzed by three methods: a, d and g: Q method for 2011, 2012
and mean values of 2011 and 2012; b, e, h: K method for 2011, 2012 and mean values; b, d and f: Q + K method for 2011, 2012 and mean values.
Significant associations were identified using criterion of -log;o(P) >2 (P < 0.01).
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and 2.29 in 2012, all of which reached the threshold of sig-
nificance in association analysis: —log10(P) = 2 (Figure 4).
For the mean LDI activity of the two years, the -log;o(p)
values for bpb-8347 and bpb-0068 were 8.07 and 4.88,
respectively, if considered from only one population
structure, and 3.06 and 2.66 if only kinship being con-
sidered, and 3.70 and 2.71, if both population structure
and kinship being considered.

Bpb-8347 and bpb-0068, located at 73.44 cM on
chromosome 6H and 66.50 cM on 3H, showed significant
associations with LDI activity, explaining 6.8% and 5.3% of
phenotypic variation in 2011 and 10.4% and 5.5% in 2012
under Q +k method. Similarly, the two DArT markers
could explain 10.0% and 6.6% of phenotypic variation for
the mean values of 2011 and 2012.
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Association between HvLDI and LDI activity and
haplotype analysis
The variation of HvLDI and its promoter region were
further investigated because several evidences supported
the existence of a major gene responsible for LDI activity
[7,10]. Alignment of this region revealed 35 SNPs in the
150 accessions. Thirty-one SNPs (green-labeled in Figure 5)
were significantly associated with LDI activity, explaining
13.4% of the phenotypic variation and —logio(p) value of
each SNP reaching a highly significant level (Figure 5).
According to polymorphism of 35 SNPs, the 150 barley
accessions can be divided into 6 haplotypes: H1-H6.
H1-H4 showed high similarity of HvLDI sequence, while
H5 and H6 had the similar sequences (Figure 5). Be-
cause the 31 significant SNPs in HvLDI were complete
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Figure 5 Haplotype analysis of the HvLDI using 35 SNPs. The first site of coding region was presented as 0. The green areas are the SNPs
significantly correlated with LDI activity, for which the value of -log;o(P) >2. Marker R? is the fraction of the total variation explained by
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disequilibrium (r* = 1) with each other, they could be
regarded as one variant (Additional file 5: Figure S2).
Hence, all accessions may be classified into two haplo-
types, i.e. HA and HB. Accordingly, the distribution of
haplotypes within different subpopulations was investi-
gated. Q1, Q2 and Q5 were mainly constructed by haplo-
type 1, and Q3 by haplotype 5, whereas Q4 subpopulation
showed specificity to other subpopulations for its balanced
composition of HA and HB (HA: HB = 18:29). Interestingly,
HA showed significantly lower LDI activity than HB in Q4
subpopulation (Figure 6b,c),while there was no difference
between them in other subpopulations.

Discussion

In this study, we investigated the genetic variation of
LDI activity and performed GWAS analysis of HvLDI, in
order to identify the loci controlling LDI activity in Tibetan
wild barley. A wide variation in LDI activity was found in
the 162 Tibetan wild barley accessions, and some of which
displayed a minus value. It should be noted that some
dextrins released by the de-branching enzymes during ger-
mination could also be detected by the Limit-Dextrizyme
method, and these dextrins may account for the overesti-
mation of LD activity [11,32,33]. Thus, the detected LD
activities in extraction solutions of some accessions were
higher than those of added LD, resulting in minus values
of LDI activity, which was calculated as the reduced
LD activity. However, the minus values of LDI in this

Ly
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Figure 6 The distribution and LDI activity of different haplotypes.
(a) The distribution of haplotypes among different subpopulations.
(b) The LDI activity of HA and HB in total population and Q4 in 2011.
(c) The LDI activity of HA and HB in total population and Q4 in 2012
HA includes H1, H2, H3 and H4; HB encompasses H5 and H6. Each bar
is the mean of LDI activities of accessions belonging to the
corresponding haplotypes. Error bars are SE values.
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experiment only occurred in very few accessions, and
were very small (close to zero). Therefore the accessions
with minus values of LDI are quite low in LDI activity.
Actually, the impact of these dextrins produced during
short-time extraction on the final LDI values could be
negligible, as reported by [32].

Two DArT markers, i.e. bpb-8347 and bpb-0068 were
found to be associated with LDI activities in Tibetan wild
barley. Bpb-8347, a marker with highest GWA peak, is
located near the locus of HvLDI gene obtained from IPK
database, where the whole barley genome sequences lay
[34]. This result confirms that HvLDI is a major gene con-
trolling LDI activity in barley grain. Bpb-0068 might be a
potential locus contributing to LDI activity, and it has not
been reported up to date. Hence, it may be assumed that
some minor effect genes affecting LDI activity may exist
in Tibetan wild barley, and need to be confirmed by QTL
analysis in segregating population in future work.

A total of 31 SNPs of HvLDI were significantly associated
with LDI activity. It is also found that 11 of these SNPs
are significantly associated with the malt extract in 56 cul-
tivated genotypes in a previous study [19], in which associ-
ation analysis between HvLDI gene and LDI activity was
not conducted. These results indicate that the LDI activity
has a close relationship with malt extract, because the
two traits are affected by the same 11 SNPs. Indeed, it
was previously reported that the HvLDI antisense lines
showed unpredicted pleiotropic effects on numerous
enzyme activities, including a- and B-amylases, starch
synthases, as well as starch granule types, all of which
affect malt extract [35]. In addition, the LD activity-
associated SNP in the previous study [19] was not detected
in the Tibetan wild population, suggesting that LD activity
in malt may be independent on polymorphism of HvLDI
gene in Tibetan population.

Interestingly, HA and HB showed a significant difference
of the LDI activity only in Q4 subpopulation (Figure 6b,c).
Q4 contains all kinds of haplotypes, while every other sub-
population mainly consists of one haplotype (Figure 6a).
In other word, Q4 has a wider genetic diversity than every
other subpopulation. It seems that these associated SNPs
are false positive due to highly structured LD (Additional
file 5: Figure S2) in this chromosomal region, and similar
phenomenon were also observed in association ana-
lysis of frost tolerance [36,37]. It may be hypothesized
that the variation of LDI activity in Q4 may be caused
by other variations, which share linkage disequilibrium
with the detected SNPs, in or around this region [34,38].
These variations should only belong to the accessions of
HA in Q4 subpopulation, and may exist in the upstream
or promoter region of HvLDI, or the regulated factors,
which co-segregated with the detected SNPs. However,
the assumption needs to be confirmed in the further
work.
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Four SNPs (13, 24, 72, and 352) within a coding region
generate the alteration of the amino acids sequence. But
these two kinds of haplotypes showed no significant
difference in LDI activity among all accessions. It can be
concluded that the alteration of LDI activity may be not
due to the change of amino acid composition.

Conclusions

This study confirmed the locus of LDI gene and detected
a DArT marker, bpb-0068, associated with LDI activity.
The results provide useful information for identifying
minor effect genes affecting LDI activity, and also prove
that Tibetan wild barley is an elite germplasm, which
may act as an abundant gene pool for barley breeding.
Furthermore, the detected SNPs in this study should be
helpful for better understanding the genetic control of
LDI activity in barley grain.
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