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Abstract

Background: Kernel weight, controlled by quantitative trait loci (QTL), is an important component of grain yield in
maize. Cytokinins (CKs) participate in determining grain morphology and final grain yield in crops. ZmIPT2, which is
expressed mainly in the basal transfer cell layer, endosperm, and embryo during maize kernel development,
encodes an isopentenyl transferase (IPT) that is involved in CK biosynthesis.

Results: The coding region of ZmIPT2 was sequenced across a panel of 175 maize inbred lines that are currently
used in Chinese maize breeding programs. Only 16 single nucleotide polymorphisms (SNPs) and seven haplotypes
were detected among these inbred lines. Nucleotide diversity (1) within the ZmIPT2 window and coding region
were 0.347 and 0.0047, respectively, and they were significantly lower than the mean nucleotide diversity value of
0.372 for maize Chromosome 2 (P < 0.01). Association mapping revealed that a single nucleotide change from
cytosine (C) to thymine (T) in the ZmIPT2 coding region, which converted a proline residue into a serine residue,
was significantly associated with hundred kernel weight (HKW) in three environments (P <0.05), and explained
4.76% of the total phenotypic variation. In vitro characterization suggests that the dimethylallyl diphospate (DMAPP)
IPT activity of ZmIPT2-T is higher than that of ZmIPT2-C, as the amounts of adenosine triphosphate (ATP),
adenosine diphosphate (ADP), and adenosine monophosphate (AMP) consumed by ZmIPT2-T were 5.48-, 2.70-, and
1.87-fold, respectively, greater than those consumed by ZmIPT2-C. The effects of artificial selection on the Zm/PT2
coding region were evaluated using Tajima'’s D tests across six subgroups of Chinese maize germplasm, with the
most frequent favorable allele identified in subgroup PB (Partner B).

Conclusions: These results showed that ZmIPT2, which is associated with kernel weight, was subjected to artificial
selection during the maize breeding process. ZmIPT2-T had higher IPT activity than ZmIPT2-C, and this favorable
allele for kernel weight could be used in molecular marker-assisted selection for improvement of grain yield
components in Chinese maize breeding programs.
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Background

Genetic improvement of grain yield is important for ensur-
ing food security. Many important agronomic traits, in-
cluding yield, show continuous phenotypic variation [1].
Grain yield is a complex quantitative trait, and is deter-
mined by several components including kernel number
and kernel weight [2]. To date, more than 185 quantitative
trait loci (QTL) underlying yield components including
kernel row number (KRN), kernel number per row
(KNPR), and hundred kernel weight (HKW) have been
identified across the maize genome using various mapping
populations (2012 November update to Gramene data-
base), which has improved our understanding of the gen-
etic basis of maize yield. Therefore, grain size and kernel
weight are important targets for artificial selection for high
grain yield. For example, QTL associated with GS3 [3] and
GW5/SWS5 [4,5] have been selected for grain size in rice.
Also, QTL associated with TaGW2-6A Hap-6A-A for grain
size [6] and TaCKX6-D1 [7] for grain weight have been
identified and artificially selected from within Chinese
wheat germplasm. Markers derived from QTL controlling
similar components of grain yield in maize will be very use-
ful for marker-assisted selection.

Several genes that control kernel weight or kernel num-
ber have been cloned in crops, and some of these genes
were found to be involved in carbon and nitrogen metab-
olism [8-10], protein degradation [11,12], and hormone
metabolism [13,14]. All of these processes affect the pro-
duction and export of C- and N-assimilates to the seed,
thereby increasing crop yield. C- and N-metabolism are
essential to all processes in plants, including reproductive
development, but are especially so during grain filling [8].
Among the genes involved in carbon metabolism, rice
grain incomplete filling 1, which functions similarly to the
invertase encoded by miniature 1 in maize [10], also
encodes a cell-wall invertase required for carbon
partitioning during early grain-filling [8]. A gene in-
volved in nitrogen metabolism in rice, OsARG, encodes
an arginine hydrolase that, when overexpressed, in-
creases grain number per plant under nitrogen-limited
conditions, due to increased nitrogen remobilization at
the reproductive stage [9].

In addition, degradation of proteins via the ubiquitin/
proteasome pathway negatively regulates cell division and
grain yield. Another gene, Grain Weight 2 (GW2), which
encodes a RING-type E3 ubiquitin ligase, functions in
ubiquitin-mediated degradation, and the loss of GW2
function can enhance rice grain width, weight, and yield
[11]. Furthermore, ZmGW2-CHR4, which functions in the
same manner as GW2, is also associated with kernel width
and kernel weight in maize [12]. Although they have po-
tentially positive impacts on yield, alleles at these loci also
should be monitored to avoid possible negative effects of
introduced germplasm on yield.
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As to the influence of plant hormones, brassinosteroids
(BRs) and cytokinins (CKs) are useful for controlling grain
yield in crops. BRs stimulate the transport of sucrose and
other sugars to the endosperm and embryo. Expression of
the maize, rice, or Arabidopsis thaliana C-22 hydroxylase
that is involved in BR synthesis in stems, leaves, and roots
had clear effects on seed weight [14]. In rice, the accumu-
lation of CK in the inflorescence meristems increases the
number of grains per panicle. The rice gene Gnla encodes
an oxidase/dehydrogenase (OsCKX2) that functions in the
degradation of CKs. An 11-bp deletion in its coding region
created a premature stop codon that reduced expression
of OsCKX2 and resulted in increased grain number [13].
In wheat, TaCKX6-D1, an ortholog of rice OsCKX2, was
significantly associated with 1000-grain weight by linkage
mapping and association analysis [7]. Thus, the CK regu-
latory pathway likely plays a crucial role in grain yield.

There is also evidence for a role of CKs in balancing
the source and sink relationship [15]. Accordingly, ex-
ogenous applications of CKs increased seed set and yield
stability under heat stress in maize [16]. CKs are co-
regulated by isopentenyl transferase (IPT) and oxidase/
dehydrogenase in plants. The discovery of biosynthetic
enzymes IPT1 through IPT10 [17-19] and degradative
enzymes CKX1 through CKX12 [18,20-23] has led to a
better understanding of the role of CKs in maize kernel
development. Among the IPTs, IPT1 and IPTI0 are
highly abundant and are constitutively expressed in
all organs, but other IPT transcripts show distinct
spatial and temporal patterns of expression [18].
ZmlIPT?2 is specifically expressed in the pedicel, endo-
sperm, and embryo [18,19]. ZmIPT2 consists of an
intronless 966 bp coding region for dimethylallyl diphos-
phate (DMAPP): adenosine triphosphate (ATP)/adenosine
diphosphate (ADP) IPT, which preferred ATP and ADP
over adenosine monophosphate (AMP) as substrates for
IPT activity [19].

To date, the allelic diversity of ZmIPT2 and the most
favorable allele(s) affecting kernel weight have not yet
been reported for maize. The objectives of this study
were to (1) examine the sequence diversity of ZmIPT2 in
175 Chinese maize inbred lines; (2) test associations be-
tween nucleotide polymorphisms in ZmIPT2 and various
yield components including KRN, KNPR, and HKW,
and identify further favorable allele(s) for grain yield
components; (3) characterize the IPT activity of the pro-
tein products of different alleles in vitro; and (4) investi-
gate selection for favorable ZmIPT2 alleles for kernel
weight during maize breeding in China.

Results

Phenotypic data

Phenotypic values for individual lines ranged from 7.81
to 18.62 g for KRN (mean = 12.80), from 8.26 to 34.67 g
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for KNRP (mean = 22.40), and from 12.35 to 47.60 g for
HKW (mean = 28.36), as shown in Table 1. KRN was sig-
nificantly positively correlated with KNPR (P <0.01), while
HKW was negatively correlated with KNPR (P <0.05).
Analysis of variance (ANOVA) indicated significant
phenotypic variation for KRN, KNPR, and HKW among
these 175 maize lines (P <0.01). Heritabilities estimated on
a per-plot basis were 86.58% for KRN, 84.27% for KNRP,
and 86.12% for HKW.

Nucleotide diversity in the ZmIPT2 coding region

A total of 16 single nucleotide polymorphisms (SNPs) were
identified in the ZmIPT2 coding region, with an average of
one SNP every 60 bp, and six of these variants resulted in
amino acid substitutions (Figure 1A). Seven haplotypes,
named Hap_1 through Hap_7, were detected in our associ-
ation panel based on these 16 SNPs (Figure 1B). A total of
75 (42.9%) inbred lines harbored Hap_1, while 10, 31, 22,
9, 10, and 18 inbred lines carried Hap_2 through 7, re-
spectively. Hap_1 harbored the ZmIPT2-T allele at SNP28
(C-T), but other haplotypes bore the ZmIPT2-C allele. The
window covering ZmIPT2 exhibited relatively lower diver-
sity with a value of 0.347, and it was significantly lower
than the average diversity value of 0.372 for Chromosome
2 across 175 maize inbred lines (P < 0.01) (Figure 2). Most
polymorphisms in ZmIPT2 were found in the region from
360 to 590 bp, (P >0.005) (Figure 3). Among maize sub-
groups revealed by Xie et al. [24], subgroups Lancaster
(Lan) and Lvda red cob (LRC) harbored higher levels of di-
versity in the ZmIPT2 coding region, compared with the
average for all inbreds (Figure 3).

Association analysis of KRN, KNPR, and HKW

Association analysis revealed that SNP28 was signifi-
cantly associated with HKW across all three environ-
ments tested (P <0.05), and explained 5.42% of the
phenotypic variation in HKW at Xinjiang in 2007, 3.41%
of the phenotypic variation at Beijing in 2008, and 5.46%
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of the phenotypic variation at Xinjiang in 2008. Signifi-
cant association of HKW with SNP195, SNP413, and
SNP591 was detected in one or two environments
(Table 2). However, only SNP413 was found to be asso-
ciated with KNPR in Beijing (P <0.05), and no SNP was
significantly associated with KRN (Table 2). The inbred
lines containing the ZmIPT2-T allele had significantly
(P <0.05) greater kernel weight than those carrying the
ZmIPT2-C allele, as seen in the data from Xinjiang in
2007 and in Beijing in 2008 across this association
panel (Figure 4). The P value obtained here supports
the strength of the observed association between HKW
and SNP28, and improves confidence in identification
of the ZmIPT2-T allele in Hap_1 as the most favorable
allele for kernel weight in maize.

Characterization of ZmIPT2

Both the ZmIPT2-T and ZmIPT2-C protein alleles have
the same pl and aliphatic index. However, the transition
at SNP28 from cytosine (C) to thymine (T) converts
proline into serine, resulting in a decrease in the
hydropathicity of the entire ZmIPT?2 protein from -0.006
to —0.008, as analyzed using GRAVY. The IPT coding re-
gion aligned with the P-loop NTPase superfamily that is
characteristic of all NTP-binding proteins from position
28 to 480 with an E-value, or probability of a protein
sequence of a given bit score occurring by chance, of
1.3e-06 (NCBI blastp database) (Figure 1A). The 3-D
structure predicted by SWISS-MODEL (changed to http://
swissmodel.expasy.org/) showed that the spatial structure
of ZmIPT2-T and ZmIPT2-C differed due to variation in
hydrophobicity between the two proteins (Additional file 1).
These kinds of changes could affect the binding of sub-
strates to the enzyme, which is mediated by hydrogen
bonds [25]. This mutation and resultant differences in
physicochemical properties imply that IPT activity
could differ between the protein products of the
ZmIPT2-T and ZmIPT2-C alleles.

Table 1 Mean squares from ANOVA and correlation coefficients for KRN, KNPR, and HKW

Category Source of variation DF KRN KNPR HKW (g)

ANOVA Year 1 0.20 10.3** 214
Replication 2 1.39 0.16 044
Genotype 172 9.81%* 10.14%* 12.12%%
Year X Genotype 171(169)% 1.57%* 211 1.95%*

Descriptive Range 7.81-18.62 8.26-34.67 12.35-47.60

Statistics Mean £ 5D 12.80+1.80 2240+455 2798 +£546

Correlation KNPR 0.35%*

coefficients HKW (g) —-0.06 —-0.16%

h 86.58% 84.27% 86.12%

DF degrees of freedom, HKW hundred kernel weight, KRN kernel row number, KNPR kernel number per row, h? broad-sense heritability; **, P <0.01; *, P <0.05.
@ Because the phenotypic values for some lines were missing for kernel weight, the DF differ. The numbers in parentheses indicate the DF for HKW and the

numbers outside parentheses indicate the DF for KRN and KNPR.
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Figure 1 Nucleotide diversity and amino acid variants in the ZmIPT2 coding region. (A) The full sequence of ZmIPT2 gene. Sites are labeled
according to the position of the corresponding polymorphisms in the aligned sequences, with amino acid alterations indicated in parentheses.
The gray box indicates the IPT domain, which starts at position 28 and ends at position 480. (B) The ZmIPT2 genomic sequences grouped into
seven haplotypes defined by 16 single nucleotide polymorphisms identified in the alignment.

To further confirm the CK biosynthetic function of (Figure 5A, B). ZmIPT2-T consumed more ADP and
these two ZmIPT2 products in vitro, Escherichia coli ~ ATP, with means of 270.2% and 548.4%, respectively, than
prokaryotic expression vectors were constructed to ex- consumed by ZmIPT2-C. Additionally, ZmIPT2-T con-
press and purify ZmIPT2 as C-terminal His-tagged re- sumed much more ATP and ADP than it did AMP, with
combinant proteins. ZmIPT2-T and ZmIPT2-C purified means of 7.38- and 13.61-fold the amount of AMP con-
on Talon® columns reached 95-100% purity, as quantified  sumed, respectively (Additional file 3). These results indi-
by Coomassie staining after PAGE (Additional file 2). cate that the protein product of the ZmIPT2-T allele has
Purified proteins were then used to assay DMAPP:ATP,  higher IPT enzyme activity and prefers ADP as substrate,
DMAPP:ADP, and DMAPP:AMP transferase activity. and so could have a more favorable impact on yield.
Figure 5 shows the profile obtained from the reaction
mixture of purified ZmIPT2 protein incubated with  Selection in the region of the ZmIPT2 locus
DMAPP and substrates, including ATP, ADP, and AMP. A total of 4282 SNPs [26] were used to analyze the effects
ZmIPT2-T converted AMP to isopentenyl adenosine of selection occurring in this region of Chromosome 2 dur-
monophosphate (iPMP) with higher efficiency than did ing selection and breeding. The estimates for 1 and
ZmIPT2-C, as indicated by the amount of iPMP after re-  Tajima’s D in the ZmIPT2 window showed lower values
action (Figure 5C). The mean AMP consumption by than the mean estimates for those parameters for all of
ZmIPT2-T and ZmIPT2-C were 0.20 pmol and 0.07 maize Chromosome 2 (Figure 2). Tajima’s D tests of the
umol, respectively (Additional file 3). Similar results = ZmIPT2 coding region and genomic window identified dif-
were obtained with ATP or ADP as the substrate ferent artificial selection effects across these six maize
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Figure 2 Sliding-Window analyses of nucleotide diversity m and Tajima’s D in the association panel, with a sliding window size of 500
SNP markers and step intervals of 50 SNP markers on maize chromosome 2. Blue diamonds, 77; Black diamonds, Tajima’s D; Red diamonds,
windows containing the ZmIPT2 gene locus. Blue dashes represent the mean 77 value; Black dashes represent the mean Tajima’s D value.
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Figure 3 Sliding-Window analysis of nucleotide diversity in the ZmIPT2 coding region across six maize subgroups with 100 bp window
and 25 bp step size. BSSS, derived from US BSSS and Reid germplasm; Lan, derived from US Lancaster Sure Crop germplasm; LRC, derived from
Lvda Red Cob, a Chinese landrace; PA, derived from modern US hybrids in China; PB, derived from modern US hybrids in China; SPT, derived
from Si-ping-tou, a Chinese landrace. Combined sample, 175 maize inbred lines.

—BSSss
— Lan
—LRC
PA
PB
—SPT

—— Combined sample

450 500 550 600 650 700 750 800  850(bp)

subgroups, with the largest effect identified in subgroup PB
(Figure 6). Notably, 81% of inbred lines in subgroup PB
harbored the favorable allele ZmIPT2-T (Table 3). These
results indicate that artificial selection occurred in the gen-
omic region harboring ZmIPT?2 during maize breeding.

Table 2 ZmIPT2 polymorphisms associated with KRN,
KNPR, and HKW in the association panel

SNPs Genotype Frequency Environment KRN KNPR HKW
SNP9 C/A 153/22 07XJ - - -
08BJ - - -
08XJ - - -
75/100 07XJ - -
08BJ - - 0.0252
08XJ - - 0.0027
07XJ - - -
08BJ - - -
08XJ - - -
166/9 07XJ - - 0.0386
088J - - 0.0031
08XJ - - -
156/19 07XJ - - -
08BJ - - -
08XJ - - -
115/6 07XJ - -
08BJ -
08XJ - - 0.0351
85/90 07XJ - - -
08BJ - - -
08XJ - - 0.0187

SNP28 T/C 0.003

SNP54 /G

157/18

SNP195 G/A

SNP243 G/A

SNP413 A/G

0.0302

SNP591 T/C

HKW hundred kernel weight, KRN kernel row number, KNPR kernel number per
row, 07XJ Xinjiang in 2007, 08BJ Beijing in 2008, 08XJ Xinjiang in 2008; -, not
significant at P <0.05.

Discussion

Grain yield is a complex trait controlled by minor genes
Grain yield is one of the most important and complex
traits in maize. Although many studies on the genetic
basis of maize yield-related traits have been reported,
few favorable alleles for yield candidate genes have been
identified because single genes identified in association
studies explain only a small proportion of phenotypic
variation. In this study, SNP28 in the ZmIPT2 coding re-
gion was significantly associated with kernel weight
across three environments, explaining 4.76% of pheno-
typic variation. Relatively small allelic effects were also
found for one polymorphism in the ZmGS3 region,
which explained 6.29% of variation in Beijing and 7.73%
of that in Hainan [27], and another SNP, S40 in the
ZmGW2-CHR4 region, which accounted for less than
10% of variation across three environments [12]. Thus,
the identification and pyramiding of a large number of
favorable alleles will be the key to molecular marker-
assisted breeding of high-yielding maize.

Association mapping of complex traits

As an effective way to dissect complex traits and identify
favorable alleles or haplotypes, association mapping has
been widely used for many maize traits, including
flowering time [28], leaf architecture [29], plant height
[26], and disease resistance [30-32]. With candidate-
gene association mapping, excellent allelic variants of
many genes have been identified, such as c¢rtRB1 for
B-carotenoid synthesis in maize kernels [33]; Dwarf8
for maize flowering time [6,34,35]; ZmGW2-CHR4
[36] and ZmGS3 [27], which are related to maize ker-
nel size and weight; TaGW?2, which is associated with
wheat kernel weight and maturity [37]; and other
genes related to starch synthesis in rice [38].
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Figure 4 Hundred-kernel weight (HKW) comparison of groups harboring either ZmIPT2-T or ZmIPT2-C. P, P value for t-test comparing two
groups carrying different alleles in each of three environments. 07XJ, Xinjiang in 2007; 08XJ, Xinjiang in 2008; 08BJ, Beijing in 2008. White boxes
represent the ZmIPT2-T group; grey boxes represent the ZmIPT2-C group.

Contribution of CKs to grain yield

Plant hormones control many aspects of development, and
like other hormones, CKs affect many plant physiological
and biochemical processes, including those controlling de-
layed senescence [39], suppression of auxin-induced apical
dominance [40], signaling of nitrogen availability [41], cell
division and differentiation [42], and sink strength [15].
IPT proteins, which are involved in synthesis of CKs, are
encoded by a multi-gene family in maize [17-19], rice [43],
soybean [44], Arabidopsis [45/46], petunia [47], hop [48]
and pea [49]. A favorable IPT allele that resulted in

increased grain weight has now been identified in maize
using an association mapping approach (Figure 3).

CK content is co-regulated by two families of genes, includ-
ing isopentenyl transferase and an oxidase/dehydrogenase
in plants. In rice, reduced expression of OsCKX2, which
encodes the oxidase/dehydrogenase, caused an increase in
grain number per panicle, due to CK accumulation in in-
florescence meristems. OsCKX2 is expressed strongly in
pistils, at an intermediate level in inflorescences and seeds,
and at low levels in other organs [13]. TaCKX6-DI, a
wheat ortholog of rice OsCKX2, was related to HGW by

0.150 0150
0125 0125
€ 0100 ATP (standard) 0.100 ADP (satndard)
& oo 0075
5
g 0.050 0.050
§ oos 0025
3 N o
o 10 ] E) “0 50 & min 0 0 0
0.150 0.150
0125 ZniFT2T 0125
g o . 0.100
g oors 0075
{ oo -
g [
0025 0025
H
0 [
0 o E » a0 50 G0min 0 i EY
0.150 0.150
0125 ZmPT2C 0125
g 00 A 0.100 P
8 oors 0ars
u
é 0050 0050
£ oo TR 0025
3
0 o
0 10 E £l i 50 60min 0 0 0

Figure 5 Determination of isopentenyl transferase activity of ZmIPT2. A, B, and C depict determination of DMAPP:ATP, DMAPP:ADP, and
DMAPP:AMP isopenteny! transferase activity of recombinant ZmIPT2 protein. iPTP = isopentenyl adenosine triphosphate, iPDP = isopentenyl
adenosine diphosphate, and iPMP = isopentenyl adenosine monophosphate.

020
015
AMP (standard)

010
005
0

£ 0 50 i 0 10 2 0 “ 50 60min
020

ZmPT2T pp——
iPop 015 AMP
010
05
L

0

0 @ 50 &0min 0 i 20 0 @ % 60min
020

ZmiPT-C ZmIPT2C
015
AP
010
POP
005
PMP

0

) a0 50 0min 0 10 2 0 i = 0min




Weng et al. BVIC Plant Biology 2013, 13:98
http://www.biomedcentral.com/1471-2229/13/98

-

Tajima'D

HKW(g)

465 32
3.65 30
265 e

’ 26
1.65 24
0.65
035 HKW (07XJ) = HKW (08BJ)
-1.35 " HKW (08XJ) = Tajima'D

Figure 6 Tajima’s D values for the ZmIPT2 coding region and
hundred kernel weights across six maize subgroups. PB, derived
from modern US hybrids in China; BSSS, derived from US BSSS and
Reid germplasm; LRC, derived from Lvda Red Cob, a Chinese
landrace; PA, derived from modern US hybrids in China; Lan, derived
from US Lancaster Sure Crop germplasm; SPT, derived from Si-ping-tou,
a Chinese landrace. HKW, hundred-kernel weight. 07XJ, Xinjiang in 2007;
08XJ, Xinjiang in 2008; 08BJ, Beijing in 2008.

linkage mapping and association analysis. TaCKX6_D1
was expressed at a high level in seeds and pistils, but at a
low level in other organs [7]. One study showed that
ZmIPT2 is specifically expressed in pedicel, endosperm,
and embryo, and plays a major role in CK biosynthesis for
maize kernel development [18,19]. In this study, however,
only SNP413 was found to be significantly associated with
KNPR in one of the three experimental environments
(Beijing), and no associated SNP was found for KRN
(Table 2). CKs coordinately induce extracellular invertase
and hexose transporter activity, which are functionally
coupled to supply carbohydrates to sink tissues [15]. In
this study, a single nucleotide substitution from C to T in
the ZmIPT2 coding region was significantly associated
with kernel weight. This suggests that manipulation of CK
metabolism in reproductive organs could be an effective
approach to further increase crop grain yields, by increas-
ing the flow of assimilates from source to sink, or by in-
creasing sink capacity.

In vitro characterization of the ZmIPT2 enzyme showed
that it prefers ADP and ATP over AMP as substrates for
DMAPP IPT activity (Figure 5, Additional file 3), consist-
ent with the results of a previous study [19]. Six amino
acid substitutions, none of which were conservative, oc-
curred in ZmlIPT2, compared with 10 other maize

Table 3 Distribution of the ZmIPT2-T allele among six
subgroups in 175 Chinese inbred lines

PB BSSS LRC PA Lan SPT
ZmIPT2-T 17 18 1 19 5 5
No.? 21 29 27 55 18 25
Frequency®  81% 62% 41%  35%  28%  20%

@ The number of inbred lines in each subgroup.
® The frequency of the ZmIPT2-T allele in each subgroup.
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ZmlIPTs [18], indicating that ZmIPT?2, and its specific ex-
pression pattern, is conserved and essential for kernel de-
velopment. Interestingly, the mutation associated with the
favorable allele, ZmIPT2-T, was detected in the ZmIPT2
coding region, and found to result in a serine to proline
substitution in the conserved IPT domain that caused the
ZmIPT2-T enzyme to consume more ATP, ADP, and
AMP than the ZmIPT2-C enzyme (Figure 5, Additional
file 3). Thus, selection for the molecular marker SNP28
should improve yield by positively influencing maize ker-
nel development via an increase in IPT enzyme activity.

Nucleotide diversity in ZmIPT2 across six subgroups

In this study, the coding region of ZmIPT2 was se-
quenced across 175 Chinese maize inbreds. The coding
regions of functional genes tend to be relatively con-
served, due to their specificity for and affinity with other
types of molecules. Thus, under natural selection, bene-
ficial variants tend to become gradually fixed, while det-
rimental variants tend to be eliminated [37]. Lower
levels of diversity within the ZmIPT2 locus were esti-
mated in subgroups PB and BSSS, compared to the com-
bined group (P<0.01) (Figure 3), suggesting either that
the germplasm base remained remarkably narrow or that
strong positive selection at that locus occurred in these
subgroups. According to pedigrees, 17 inbreds in sub-
group PB were mainly derived from US hybrid P78599.
However, subgroup Lan harbored the most diversity in
the ZmIPT2 coding region across all these inbreds
(Table 1; Figure 3). This subgroup has been identified as
having the most genetic diversity in one study using 145
SSR loci randomly distributed across the genome [50].

Selection for grain yield during the breeding process

It is hypothesized that natural selection favored smaller-
seeded wild ancestors with a larger number of seeds per
plant, earlier maturity, and wider geographic distribution
[51]. However, high crop vyield associated with larger
grain size and weight has been the objective of artificial
selection during most breeding programs. For example,
the genes GS3 [52] and GW5/SW5 [3,53] have been
proven to be involved in the evolution of grain size in
rice. Unlike rice, in wheat and maize, artificial selection
is associated with an almost uniform increase in seed or
grain size. The allele TuGW2-6A Hap-6A-A, which was
associated with larger grain size, increased in frequency
under positive selection from 50.0% in the 1950s to
current levels of 77.42% [37]. Under strong selection at a
given locus, domestication has the potential to drastic-
ally increase LD and reduce diversity [4].

Estimates of the parameters m and Tajima’s D in this
study showed that artificial selection took place at the
ZmIPT2 locus (Figure 3). However, only Hap_1, among
seven haplotypes examined here, harbored the ZmIPT2-T
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allele (Figure 1), and this favorable allele was associated
with increased grain weight in two of the three experi-
mental environments (Figure 4), suggesting positive selec-
tion for higher grain weight. Similarly, a 95.7% reduction
in nucleotide diversity across the GS3 locus occurred
among rice accessions carrying the A allele for GS3 [52].
The current study found that the ZmIPT2-T allele was not
evenly distributed among these six maize subgroups, oc-
curring with the highest frequency in subgroup PB, in
which 81% of the tested lines harbor the favorable allele
(Table 3). The lowest Tajima’s D value was also found for
subgroup PB (Figure 6) indicating that distinct positive se-
lection pressure has taken place at the ZmIPT2 locus in
this subgroup. Selection for the favorable allele ZmIPT2-T
within each subgroup should be continued in order to im-
prove maize yield.

Conclusions

A favorable allele, ZmIPT2-T, was associated with kernel
weight in Chinese maize germplasm. ZmIPT2-T was
shown in vitro to have higher IPT activity than ZmIPT2-C
with ADP, ATP, or AMP as substrate. Artificial selection
at the ZmIPT?2 locus was detected with Tajimas D tests
across six subgroups of Chinese maize germplasm, with
the most frequent favorable allele identified in subgroup
PB. This favorable allele could be used in molecular
marker-assisted selection for improvement of grain yield
components in Chinese maize breeding programs.

Methods

Experimental design and statistical analyses

In this study, a total of 175 maize inbred lines were used,
which were subdivided into six subgroups [24], including
29 BSSS lines derived from US BSSS and Reid germ-
plasm; 55 PA (Partner A) lines derived from modern US
hybrids in China; 21 PB (Partner B, harboring the dis-
tinct heterosis reaction of PA) lines derived from mod-
ern US hybrids in China; 18 Lan lines derived from US
Lancaster Sure Crop germplasm; 27 LRC lines derived
from Lvda Red Cob, a Chinese landrace; and 25 SPT
lines derived from Si-ping-tou, a Chinese landrace. All
lines were planted at Xinjiang in 2007 and 2008, and at
Beijing in 2008 to measure grain yield components,
including KRN, KNPR, and HKW. A randomized
complete-block design was employed with three repli-
cations of 20 plants of each line per location planted
in 4.5-m rows, 0.6 m apart. Normal maize agricultural
practices were carried out. At maturity, all ears were
harvested manually and dried to grain moisture of
13%. KRN was scored as number of rows per ear,
KNPR was scored as total kernels in a row per ear,
and HKW was measured on 100 randomly selected
kernels per ear. The average phenotypic values of
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each plot over three replications in each environment
were used for final analysis.

Descriptive statistics and analysis of variance (ANOVA)
for KRN, KNPR, and HKW were obtained using the
program PROC GLM in SAS software version 9.13
(Copyright © 2009 SAS Institute Inc., 2009. SAS and
all other SAS Institute Inc. product or service names
are registered trademarks or trademarks of SAS Insti-
tute Inc., Cary, NC, USA). The SAS program PROC
CORR was used to quantify the relationship among the
three traits. Broad-sense heritability was estimated
based on plot as 4° = ng/ (ng + Gg12/ n + 0,2/nr), where ng
is genetic variance, Gg12 is genotype-by-environment inter-
action, ¢, is error variance, r is the number of replica-
tions, and # is the number of locations. The estimates for
agz, aglz, and o,” were acquired from ANOVA [5].

DNA isolation, PCR amplification and DNA sequencing
Genomic DNA was extracted from maize leaves using
the CTAB method [54]. Primers ZmIPT2-5" (5'-ATCAT
CAAGACAATGGAGCACGGTG-3") and ZmIPT2-3" (5'-
CGTCCGCTAGCTACTTATGCATCAG-3") were designed
based on the published ZmIPT2 cDNA sequence (Acces-
sion number EU263126). ZmIPT2 genomic sequences
were amplified from each of 175 inbred lines in 25 yL re-
action mixtures containing 20 ng of genomic DNA,
0.2 mM of each dNTP, 1 uM of each primer, 2 x GC
buffer (2 mM Mg?*), and 2.5 U TransTaq High Fidelity
DNA polymerase (Transgen Biotechnology Corporation,
Beijing, China). Touchdown PCR was applied as follows:
94°C for 2 min (one cycle);94°C for 30 s, 65°C for 45 s,
and 72°C for 90 s (5 cycles, annealing temperature re-
duced 1°C per cycle);94°C for 30 s, 60°C for 45 s and 72°C
for 1 min 30 s (30 cycles); 72°C for 7 min, then the reac-
tion was then held at 4°C. The products were sequenced
(ABI3730) at the public laboratory of the National Key Fa-
cility of Crop Gene Resources and Genetic Improvement,
Institute of Crop Science, Chinese Academy of Agricul-
tural Science.

Nucleotide diversity and selection in breeding process

DNA sequences of all lines were analyzed using DnaSP
Version 4.00 [55]. The Sliding-Window analysis of nucleo-
tide diversity was performed with window size set at 100
bp and steps of 25 bp. The parameter iz was estimated as
the average proportion of nucleotide differences between
all possible pairs of sequences in the sample [56]. A total
of 4282 SNPs on maize Chromosome 2 from the
MaizeSNP50 BeadChip (Illumina, Inc.) were used to esti-
mate 77 and Tajima’s D using TASSEL 3.0 software [26,57].

Association mapping of KRN, KNPR and HKW
To exclude the effect of population structure on association
mapping, population structure and kinship information for
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175 lines were analyzed using STRUCTURE version 2.3
and SPAGeDi software with SNPs selected from a collec-
tion of 5000 SNPs identified in a previous study and se-
lected based on physical position and minor allele
frequency [26]. Association mapping between three yield-
related traits and the nucleotide diversity of the ZmIPT2
coding region was performed using TASSEL 3.0 [57] with a
mixed linear model (MLM) controlling both population
structure (Q) and relative kinship (K).

Characterization of ZmIPT2

The 3D protein model of ZmIPT2 was predicted using the
online process SWISS-MODEL Automated Mode (http://
swissmodel.expasy.org/). Physicochemical properties of
ZmlIPT?2 proteins, including isoelectric point (pI), aliphatic
index, and grand average of hydropathicity (GRAVY) were
analyzed using ProtParam  (http://web.expasy.org/prot
param/). These kinds of changes could affect the binding of
substrates to the enzyme, which is mediated by hydrogen
bonds [25]. The conserved domain was used to query the
smart web program (http://smart.embl-heidelberg.de/).

To characterize the enzyme activity of the products of
these two ZmIPT2 alleles (the T variant and the C vari-
ant), prokaryotic expression and enzyme activity deter-
mination of ZmIPT2 were carried out in vitro. The gene
fragments harboring ZmIPT2-T or ZmIPT2-C were
amplified using gene-specific primers with appropriate
Ndel and Notl restriction site extensions, (5'-GGCAT
ATGGAGCACGGTGCCGTCGC-3" and 5'-CCGCGGC
CGCTCATCATGCATCAGCCACGGCGGTGA-3") from
the ‘Ye478 (Hap_1) and ‘Guanl?7’ (Hap_2) inbred lines,
respectively. The PCR products were digested with Ndel
and Notl, and then cloned into pET30b (Novagen,
Darmstadt, Germany) at these same restriction enzyme
sites. The recombinant plasmids were integrated into
BL21 (DE3) E. coli competent cells (Tiangen Biotech Co.,
Ltd, Beijing, China). The cultures were incubated at 37°C
with shaking until log phase at ODggg = ~ 0.4. Expression
of the IPT protein was induced by incubation with 1 mM
IPTG at 37°C for 3 h, followed by purification using the
HisTALON™ Gravity column Purification Kit (Clontech
Laboratories, Inc., CN) according to the manufacturer’s
guidelines. Sodium dodecyl sulfate (SDS)-polyacrylamide
gel electrophoresis analysis (PAGE) was performed to en-
sure purity, and protein density was measured using the
Macro-BCA Assay Kit (Gragen Life Science Inc., CN).

Purified protein was used to determine DMAPP:ATPD,
DMAPP:ADP, and DMAPP:AMP IPT activities. Each puri-
fied protein (~0.13 mg/ml) was incubated in a reaction mix-
ture containing 12.5 mM Tris—HCI (pH 7.5), 37.5 mM KCl,
5 mM MgCl,, 1 mM DMAPP (Sigma-Aldrich Co., St. Louis,
USA), and 1 mM ATP (Sigma-Aldrich Co., St. Louis, USA),
ADP (Sigma-Aldrich Co., St. Louis, USA) or AMP (Sigma-
Aldrich Co., St. Louis, USA) for 2 h at 30°C. The reaction

Page 9 of 11

was stopped by boiling for 5 min. The reaction products
were separated by reversed-phase HPLC (Shimadzu LC-
10AT series HPLC system with a SPD-10AVP UV-vis de-
tector) with a C;3-ODS, column (Kromasil), according to
the following program: 20 mM KH,PO, for 15 min, lin-
ear gradient of 0% acetonitrile, 20 mM KH,PO, to 20%
acetonitrile, and 4 mM KH,PO, over 30 min. UV absor-
bance was monitored at 280 nm.

Additional files

Additional file 1: 3-D structure of ZmIPT2 predicted with the
program Swiss-PdbViewer. Ser and Pro represent amino acids in
ZmIPT2-T and ZmIPT2-C, respectively.

Additional file 2: Purified recombinant proteins for enzyme activity
determination.

Additional file 3: The consumption of ATP, ADP, and AMP by

ZmIPT2-C and ZmIPT2-T during in vitro enzyme activity
determination.
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